UK Autonomous Systems Technology Validation Programme

Lambert Dopping-Hepenstal, FREng
ASTRAEA Programme Director
ICAS Workshop, 24th September 2007
- What is ASTRAEA?
- Who is involved?
- How is it addressing the challenge?
- Where have we got to?
- Where next?

ICAS Workshop 24th September 2007
What is ASTRAEA?

A collaborative research and validation programme

- To enable the opening up of the UK and European airspace to the routine use of autonomous Unmanned Aircraft Systems (UAS), without the need for special, restrictive conditions of operation, through the development and demonstration of technologies and operating procedures.

- A key element of the National Aerospace Technology Strategy to build on the collective capability of UK plc in the realm of aerospace technology.
Who is involved?

A £32 million partnership, jointly funded by industry and the public sector

- **BERR / TSB**
- **Regions**
 - Welsh Assembly Govt
 - Scottish Enterprise
 - SEEDA
 - SWRDA
 - NWDA
- **Industry**
 - Agent Oriented Software
 - BAE Systems
 - EADS
 - Flight Refuelling
 - QinetiQ
 - Rolls-Royce
 - Thales
- **Universities**
 - Cranfield
 - Lancaster
 - Leicester
 - Loughborough
 - Sheffield
 - West of England

40+ Subcontract SMEs and Universities
‘Hard’ Technical Drivers

- Highly dependable and secure communications (spectrum/bandwidth)
- Sense & Avoidance of other air traffic (non-cooperative) in air and ground
- Dependable ability to monitor, comply and respond to ATC instructions
- Integration of Sense & Avoidance with existing co-operative systems (e.g. TCAS) and air traffic management
- Highly dependable navigation, including the ability to re-route
- Management of faults to a similar level afforded by pilots
- Dependable flight termination in emergencies (including forced landings)
- Obstacle / Terrain avoidance
- Affordability

Source: JAA/EUROCONTROL UAV Task Force
‘Soft’ Drivers

Regulatory (e.g.)
• Acceptance that visual signals are unnecessary

Procedures / Training
• Submission, maintenance and closure of flight plans
• Pilot licensing and training
• Ground handling and maintenance
• Preventing disruption of UAV operator
• Establishing pilot fatigue criteria
• Establishing weather minima

Source: JAA/EUROCONTROL UAV Task Force
What is Autonomy?

Automation has fixed choice points and a number of fixed alternatives

- e.g. bank of lifts in a building
- ‘black box’ implementation – logic not visible to the human, but simple
- does not take account of current circumstances

The concept of automation has a long history, evolving from 19th century mechanical industrial control technology

Autonomy, a contemporary concept, is distinguished on the other hand by need for decisions to be made at any time. Such a system

- makes “rational” decisions
- has a view of current situation
- evaluates potential courses of action in light of this appreciation
- needs to expose its reasoning process to humans
Regulatory framework and procedures

For UAS to be routinely used in place of manned aircraft for common operational missions, the current regulatory framework requires re-interpretation:

- UAS should operate at an equivalent level of safety within the existing Air Traffic Management (ATM) structure.
- UAS should show an equivalent level of compliance with ATM and Communications, Navigation and Surveillance (CNS) requirements.
- The provision of Air Traffic Services to a UAS must be transparent to the controller and other airspace users.
To form a proposal for agreed acceptable levels of UAV Good Airmanship in order to operate a UAV transparently within a mixed manned/UAV environment, with adequate safety levels. Evolve a framework for developing Certification and Operational Rules.

Seeks to construct a framework looking at all aspects of operation, with reference to current manned aircraft rules – procedures, approvals, maintenance and training requirements – and the likely operational aspects and features of UAV systems.

Aims to develop a route to compliance for UAV systems, by investigating the means for achieving clearance of UAV system designs that are intended for operation in UK airspace.

Considers the operational aspects of UAV integration with regard to technology, procedures and protocols. Will provide a regulatory framework for ATM related technology projects.

RULES FOR UAV CERTIFICATE OF AIRWORTHINESS AND OPERATION supported by appropriate authority
Engaging wider Regulation Authorities

ASTRAEA

Technology and Regulatory Standards and Specifications in UK airspace

EUROCAE WG-73

Aviation Regulators
Air Navigation Service Providers (ANSPs)
Industry
UAV Associations
Aviation Organisations

EUROCONTROL / EASA

ICAO

RTCA SC-203

FAA

UAV Operating Standards and Specifications

ICAS Workshop 24th September 2007
Capability Developments

Ground operations and human system interface (T1)
Communications & Air Traffic Control (T2)
UAV handling (T3)
Adaptive routeing (T4)
Collision avoidance systems (T5)
Multiple air vehicle integration (T6)
Prognostics & health management (T7)
Decision making (T8)
Propulsion & power systems (E1)
Qualification of affordable processes (E2)
Demonstrations
Synthetic Environment at Parc Aberporth
ASTRAEA Achievements

The first year of activity saw the following tasks completed:

- Requirements captured for technology projects
- Established a co-ordinated set of practical and synthetic demonstrations
- Identified a roadmap to achieve the ultimate goal
- Input to CAP 722 Issue 4
- Initial demonstrations

Year 2 and 3 will:

- Mature the understanding of the route to routine operation of UAS by development of technology and engagement with regulators
- Undertake further practical and synthetic demonstrations
- Identify the critical areas still to be addressed in a future phase
Website www.ASTRAEA.aero

ASTRAEA is a public-private sector collaborative programme to develop the technologies, systems, facilities together with the necessary regulatory environment so that unmanned aircraft can operate safely and routinely in UK civil airspace.

ASTRAEA NEWS

PACABERPORT UNMANNED SYSTEMS 2007
11 - 12 July 2007, Aberporth, Wales
The ASTRAEA programme will again be exhibiting at the PacaBerdport Unmanned Systems 2007 show.
Now in its fourth year, the two-day show... To read more click the link above

ASTRAEA WEBSITE TAKES OFF
The launch of this newsletter coincides with the launch of a brand new website for the ASTRAEA programme. The site is hosted by the Society of British Aerospace Companies but can be reached directly at www.astrea.aero
It is the first time that ASTRAEA... To read more click the link above.

EVENTS

ASTRAEA CONFERENCE 2007
16 - 17 October 2007, Bristol
It has been confirmed that the first national conference on ASTRAEA will take place on October 16 and 17 2007 at the Royal Marriott Hotel in Bristol.
The first day of the conference will be ... To

ASTRAEA 'ON TRACK'
Members of the Royal Aeronautical Society were last month given an upbeat update on the ASTRAEA programme by programme director, Lambert Sapping-Hopstital.
Speaking at the Aerospace 2007 'Working Together' Conference, his presentation, 'ASTRAEA - Clearing the Obstacles for... To
The next big aerospace market

ASTRAEA Programme
Unmanned Systems
National Conference
Bristol, 17 October 2007

As a key element of the National Aerospace Technology Strategy, ASTRAEA (Autonomous Systems Technology Related Airborne Evaluation & Assessment) seeks to research, develop and validate the necessary technologies, systems, facilities and procedures to promote and enable safe and routine use of UASs in non-segregated airspace. Bringing together representatives from leading aerospace companies, suppliers, specialist consultants, national and regional government and academic and research institutions, the Conference will deliver progress on specific elements of the ASTRAEA programme as well as raising wider issues of regulation and utility of autonomous airborne systems.

With contributions from the Civil Aviation Authority, the Aerospace Technology Strategy Group and public sector partners, the day will explore the economic benefits of the ASTRAEA programme, particularly in maintaining the global strength of the UK aerospace industry through the development of world-class technologies.

Smaller Warrens are already involved in ASTRAEA and the conference will include a presentation from the SWE portfolio.

www.astraeia.aero

First ASTRAEA Conference
Bristol, 17th October 2007

www.astraeia.aero

ICAS Workshop 24th September 2007
Technology validation

Ground operations and human system interface (T1)

Objective: aimed at defining ground-based elements involved in the management of flight operations for civil UAS and providing an understanding of the role of the human in such operations

Innovations & outputs

- Identified operator roles within a civil context (including location, numbers, skills and required toolset)
- Planning, monitoring and control systems capable of supporting autonomous air vehicle operations
- Presentation of decision support information in line with platform-variable autonomy levels
Technology validation

Communications & Air Traffic Control (T2)

Objective: aimed at the data requirements for autonomous operation, it also addresses the communications technology needed to interact with Air Traffic Control system.

Innovations & outputs

➢ To define requirements for the first CAA-certified communication system to control the flight of a UAS
Technology validation

UAV handling (T3)

Objective: developing basic enabling systems for flight control and airfield movement management

Innovations & outputs

- Airfield movement algorithms for autonomous air vehicles.
- Emergency recovery algorithms for autonomous air vehicles
Experimentation and demonstration

Propulsion & power systems (E1)

Objective: to assess, in the absence of a pilot-in-the-loop, the functionality and interface requirements between a typical propulsion system and a modern Aircraft Management System,

Innovations & outputs

- Automate the functionality of the pilot with regard to propulsion & power delivery decision-making
- Develop an autonomous intelligent response to environmental and goal-based inputs
Experimentation and demonstration

Qualification of affordable processes (E2)

Objective: to develop affordable and qualifiable processes for the design and manufacture of UAS airframes and engines,

Innovations & outputs

- Use of low-cost, resin-infused composites as flight-qualified primary structure
- Target of 80% reduction in cost of engine components
Technology validation

Multiple air vehicle integration (T6)

Objective: researching of technologies and procedures that will increase UAS utility by enabling safe and affordable task co-operation among multiple air vehicles (UAS or manned) within a common air environment

Innovations & outputs

- Non co-operative autonomous sensing systems
- Integration of ‘sense and co-operate’ with ‘sense and avoid’
- Co-operative multi-vehicle search patterns
- Modeling of wake turbulence effects
Technology validation

Prognostics & health management (T7)

Objective: aims to provide technology and systems so that UAS can monitor their own state, perform real-time prognosis of immediate and future capabilities and to make decisions on how best to assist optimal mission performance

Innovations & outputs

- Development of innovative hazard identification, reliability analysis, prognostics & health management design tools and methods, and Phased Mission Modelling methods facilitating UAS Contingency Management
- Platform Level PHM Demonstration in a Synthetic Environment
- ‘No-harm’ flight demonstration
Technology validation

Decision making (T8)

Objective: to develop a robust and clearable system that will provide on-board decision-making capability for operational UAS

Innovations & outputs

- Demonstration of prototype UAS decision-making system operating within a civil scenario
- A roadmap for certification of decision-making technologies operating in civil airspace
Technology validation

Adaptive routeing (T4)

Objective: aimed at developing and implementing an adaptive routeing algorithm for use aboard UAS to aid their use in civil operations

Innovations & outputs

- Adaptive routeing algorithm for autonomous air vehicles.
- Application for auto-routeing
- Application for setting rules and constraints for adaptive routeing algorithm
Technology validation

Collision avoidance systems (T5)

Objective: to verify the merits of ‘sense and avoid’ system capabilities to provide a realistic and informed set of options for use by various categories of UAS to support routine operations in all classes of airspace

Innovations & outputs

- Application of technologies (sensors, fusion, avoidance algorithms and decision-making architectures) to identify ‘sense and avoid’ system solutions for various UAS platforms
- Synthetic demonstration of unmanned air systems ‘sense and avoid’ with rule-based decision-making capabilities
Where is ASTRAEA taking us?

The first year of activity saw the following tasks completed:

- Requirements captured for technology projects
- Established a co-ordinated set of practical and synthetic demonstrations
- Identified a roadmap to achieve the ultimate goal
- Regulatory engagement plans drafted
- Initial demonstrations

Year 2 and 3 will:

- Mature the understanding of the route to routine operation of UAS by development of technology and engagement with regulators
- Culminate in a series of practical and synthetic demonstrations
- Identify the critical areas still to be addressed in a future phase