

FLAVIIR

Integrated UAV Research Programme

Presentation to ICAS Workshop Sept 24th 2007

Academic Technical Director: Project Manager: Prof. Phil John (Cranfield University) Dr Clyde Warsop (BAE Systems ATC)

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

FLAVIR INNOVATION THROUGH PARTNERSHIP

Industrial Need: To be Prepared for Future Markets

The Challenge: Large scale coordination and alignment

- To align cross-company requirements
- To align the best university skills

- To involve ALL stakeholders
- To assemble sufficient funding

BAE SYSTEMS

BAE SYSTEMS' Objectives

Maintain and develop a capability in autonomous, unmanned air vehicle systems.

- Provide credible technology options for the next generation defence systems.
- Maintain and develop aeronautical engineering capability.

FLAVIIR Strategic UAV Programme

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

FLAVIIR "Grand Challenges"

Clear simple challenges:

- "A maintenance-free UCAV without conventional control surfaces and no cost or performance penalties"
- "Significant research impact through effective academic/industry management and exploitation of large-scale, integrated academic research"

Addressing high-risk technologies with potential for significant advancements in capability and future business growth

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

Technology (Control Systems)

- Preview Control
 - Tighter flight path following less control input.
- Non-linear adaptive control
 - Robust to change in vehicle characteristics (damage, wear or design/manufacturing tolerance.
- Real-time path planning
 - Adaptive real-time navigation
- Low-cost flight dynamics parameter identification process.

BAE SYSTEMS

Technology (Electromagnetics)

EM nested reverberation test facilities and evaluation

We require a tool which is capable of modelling features on widely different length scales in the same problem space.

cable modelling for EM compatibility simulation

FLACTOR THROUGH PARTNERSHIP

Technology (Design Tools)

Integrated, rapid design simulation and optimisation tools

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

Technology (Materials)

Virtual testing of composite structure failure by numerical simulation:

Reduces cost and time for testing

Simulation

Technology (Manufacturing)

Robotic tufting of preformed dry composite lay-ups for increased through-thickness strength

"Direct Write" Technologies

Resin infusion moulding

Reconfigurable tooling

BAE SYSTEMS

Rapid Low Cost Composite Manufacture

Reduces cost and time

Research/Development Process

Flying Without Ailerons

Trailing edge slot

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

Flying With Fluidic Thrust Vectoring

Thrust Vectoring Nozzle

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

Integrated Demonstrators

- All Electric Powered
- 4 Min. Endurance
- Weight: 7Kg.
- Speed: 30m/s

• Fluidic manoeuvre effectors as the sole flight controls

Gas-Turbine Demonstrators

JAVA 15Kg fluidic flight control shakedown test platform

DEMON 70Kg multi-technology demonstrator

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

Technologies (Integration)

• Large-Scale Flying Demonstrations

- Higher Technology Readiness Levels
- Integration into a working system
- Pursue industrial exploitation
- To learn how technologies interact & affect air vehicle configuration and operation

BAE SYSTEMS

Technology Integration/Demonstration

Demonstrator Development

design

System development & integration

Aerodynamic testing

EPSRC Engineering and Physical Sciences Research Council

BAE SYSTEMS

Conclusions

- FLAVIR: an experiment in collaborative academic research
 - fundamental research, integration and demonstration
- Many challenges involved in this type of project
 - Collaboration between academics/industry
 - Increased TRL from universities
 - Achieving flexibility to meet industry needs
- New technologies pose serious questions for clearance and certification
 - Coupled propulsion/fluidic flight control
 - Adaptive flight control algorithms

Questions?

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

BAE SYSTEMS

Scope

Aeronautical Engineering

- Technologies integral to the design, development and through life support of an air platform and those that enable a vehicle to fly.
- Heavily reliant upon integration of disciplines, knowledge and data transfer and maintenance.

FLAVIIR Aim

 To research and demonstrate integrated technologies leading to dramatically increased business opportunities in the area of UAVs.

Statistics

£6.5M, 10 Universities, 35+ researchers, Sept 2004-Sept 2009.

FLAVIIR Research Process

- Flexible, demonstrator led programmes
- Emphasis on "Blue Skies" and higher TRL (2015-2020)

- High BAE Systems involvement
 - Key technical representation in management
 - Fully involved in reviews and programme setting

Emphasis on leverage
DTA, JGS, EPSRC, DTI & SME involvement

Technology (Aerodynamics)

Fluidic Control for Manoeuvre

Circulation control

Fluidic Thrust Vectoring

Dynamic Dimples

Boundary Layer Control

Simulation of Flow actuators

BAE SYSTEMS

Dynamic Test Facilities

FLAVIR INNOVATION THROUGH PARTNERSHIP

Boundary Layer Control

Objective: Control Flow Separation

- Enabler for Increased high-lift capability
- Enabler for "receptive aerodynamics" flight control
- Fundamental experimental/numerical (LES) studies
- Simplified methods in RANS for engineering design
- Understanding of basic fluid physics

BAE SYSTEMS

INTEGRATED PROGRAMME IN AERONAUTICAL ENGINEERING

Dynamic Test Facility

- Computer driven motion platform (6DOF)
- Integral force balance & position feedback
- Static/dynamic derivatives
- Force/motion feedback gives "captive flight" capability

- Low-cost, transferable system
- Inertial scaling of model not required
- Arbitrary motions can be defined

