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Abstract 

Using RTCA DO-365B test-vectors and Monte-Carlo simulations, the impact of position- and velocity 

uncertainty is illustrated in the TCPA-DCPA domain for three different sensor-types: ADSB, Mode C and ATAR. 

Following this, Sensor Uncertainty Management (SUM) strategies are presented and the required decisions 

concerning the quantification of the relevant design parameters are discussed. To illustrate the performance 

of a prototype SUM function, baseline alerting performance statistics are provided for two alerting algorithm 

configurations without SUM that use the bounds of the available trade-space of a DO-365B Detect and Avoid 

alerting function. This data provides insight into the possible trade-off between missed alerts and incorrect 

alerts without SUM. The performance statistics of the prototype SUM function demonstrate a significant 

reduction in missed alerts both for the use of ADSB and Mode C tracker data with no increase in incorrect 

alerts for ADSB and less than a 1% increase for Mode C. 

Keywords: Sensor Uncertainty Management, Detect and Avoid 

 

1. Introduction 
To safely integrate remotely piloted aircraft systems (RPAS) into the U.S. National Airspace (NAS), 

Detect and Avoid (DAA) systems are required [1]1. A DAA system is an electronic means to support 

the pilot with avoiding conflicting traffic before the situation has turned into a collision hazard. To 

achieve this, a DAA system provides the pilot with alerting and guidance to remain DAA Well Clear 

(DWC)2. To provide timely alerting and guidance, it needs to be assessed whether the future 

separation with other traffic is predicted to decrease below the DWC boundary within a specified 

alert time3. Such an assessment is typically performed using an extrapolation of the measured 

ownship- and traffic state. 

1.1 The need for Sensor Uncertainty Management (SUM) 
The measurements of ownship and traffic position and velocity will contain errors, the magnitude of 

which will be a function of sensor type but can furthermore depend on conflict geometry. In [3], the 

impact of position- and velocity uncertainty on the computation on the boundaries of conflict space 

defined by a spatial threshold is discussed. It is illustrated how the inaccuracy in velocity 

measurements constrains the effective look-ahead time that can be used by a conflict prediction 

function. In Figure 1 (from [3]), the solid red contour represents the space where horizontal separation 

is predicted to decrease below 2 NM based on the reference (true) state of ownship and intruder. The 

dashed, dash-dotted and dotted red contours represent the same threshold, but now for three different 

combinations of velocity and track uncertainty. The solid red line arc at the top of the figure represents 

the headings which must be avoided to prevent a decrease in separation below 2 NM. The dotted arc 

indicates these headings for the highest velocity and track uncertainty used in the example.  

 

 
1 Comparable requirements are under development for access to the European Airspace. 
2 For UAS access to the NAS, the DWC boundary is mathematically defined and quantified in [2]. 
3 DO-365B specifies the boundaries of time (i.e. ‘no earlier than’ and ‘no later than’) within which an alert is to 
be provided and a minimum average alert time. 
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Figure 1 – Impact of velocity uncertainty on conflict space [3] 

As can be seen by comparing the solid heading arc with the dotted arc, the increase in velocity 
uncertainty requires a significantly larger change in heading to avoid the predicted separation to 
decrease below 2 NM. 

In [2] minimum sensor performance requirements are provided for the DAA alerting and guidance 
functions, and it is indicated that “Implementing an alerting and guidance scheme using simple 
predictions and the HAZ values directly from the requirements will result in unacceptable 
performance”. This “unacceptable performance” is characterized by a too high percentage of late- 
and/or missed alerts, a too high percentage of nuisance alerts and too many intermittent alerts. Sensor 
Uncertainty Management (SUM) is intended to achieve the required performance by addressing all 
three issues. To test the performance of an alerting function and generate alerting performance 
statistics for a particular implementation, so-called test-vectors are provided in [2]. These test-vectors 
comprise ownship and intruder trajectories for hundredths of geometries and are accompanied by so-
called Encounter Characterization Files (ECF) that provide a reference for the required alert. The 
availability of such a standard test-vector set allows comparisons between different implementations 
and/or configurations of DAA alerting functions while ensuring that performance differences are not 
caused by the input data. All data used in this paper to analyze encounters and generate alerting 
performance statistics is from the test-vector archive provided with [2]. 

 

1.1.1 TCPA, DCPA and alerting thresholds 
Two key parameters in a DAA alerting algorithm are the predicted Distance at the Closest Point of 
Approach (DCPA) and the Time to Closest Point of Approach (TCPA). Due to accuracy limitations 
regarding the measured position and velocity of ownship and traffic, errors in the predicted DCPA and 
TCPA will result. For a given spatial alerting threshold, this will cause a false alert if the DCPA based 
on ‘perfect data’ is above the alerting threshold while the DCPA based on measured data is below it. 
The opposite situation will cause a missed alert. 

In [4] it is described how the use of time to co-altitude, data filtering, alert filtering, alert hysteresis and 
sensor specific adaptive thresholds have been applied to increase the robustness of the alerting 
function. The TCPA-DCPA depiction (Figure 2) was used to illustrate the trade-space that exist in 
terms of spatial- and temporal alerting thresholds. In this figure, the origin (TCPA=0) is on the right 
side and TCPA increases from right to left. A converging encounter would yield a TCPA that moves 
from left to right. 

A designer can position the alerting threshold in the may-Alert zone, which is the space between the 
Non-Hazard Zone (NHZ) and the Hazard Zone (HAZ). The NHZ is characterized by a DMOD of 1.5 
[NM] for the Preventive and Corrective Alerts and 1.2 [NM] for the Warning Alert. If (A) represents the 
true state (lying in the NHZ) and (B) represents the computed state (lying in the Corrective may-Alert 
zone), the fact that (B) lies above the alert threshold (blue line) prevents an alert from being generated. 
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Only if the difference between true and computed state would be so large that the computed state lies 
below the blue line, a False Alert would be declared. 

On the other hand, if the true state is represented by (C) and the measured state by either (B) or (A), 
no alert will be generated because both measured states lie above the blue line. This is still acceptable 
since the true state does not lie in the Must Alert zone represented by the white box. On the other 
hand, if the observed state in this case is represented by (D), an alert is generated. This is acceptable 
since the true state lies in the may-Alert zone. Finally, if the true state is represented by (D) and the 
computed state by (C), an alert will be generated because (C) lies below the blue line. However, if the 
computed state is represented by (B), a Missed Alert condition occurs. 

 

 
Figure 2 – TCPA-DCPA Chart with Example Alert Threshold [4] 

 

The selection of the alerting threshold should follow from (statistical) information on sensor 

performance. If real-time information on the measurement uncertainty is available, a more robust 

approach for reducing missed alerts is to use this information to estimate the 95%4 TCPA-DCPA 

containment for the received position and velocity data and test whether that containment intersects 

with an alerting threshold. In such a configuration, the alerting thresholds can be kept closer to the 

actual HAZ boundary. 

In the DO-365B reference implementation [2], a SUM approach that is further detailed in [5] is applied. 

This SUM approach uses a ‘wrapper’ that besides the measured state also uses information about 

the standard deviations of measured position- and velocity data to feed the alerting algorithm with 

variations to the state to determine the worst-case in terms of future separation. To reduce the amount 

of intermittent alerts, m-out-of-n filtering is used. 

2. Impact of sensor noise 

To allow a designer to assess the alerting performance in the presence of sensor noise, Appendix P 

of [2] contains a total of 444 en-route test-vectors. Of these, 302 represent ‘must-alert’ situations and 

84 ‘must not alert’. The remaining 58 represent ‘may alert’ situations. These are conflict geometries 

in which the intruder leaves the NHZ but never enters the HAZ. Each test-vector is available as a 

truth-reference, as the simulated output of an ADSB, mode C, mode S or ATAR sensor, and as the 

simulated output of a tracker that uses one of the previous four simulated sensor-outputs as input. 

Figure 3 provides an overview of the relation between these test-vectors. 

 
4 The 95% is an example. The actual percentage should follow from alerting performance requirements. 
Increasing the percentage will also increase the likelihood of false alerts. 
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Figure 3 – Relation between test-vector truth-, sensor- and tracker representations from [2] 

 

Figure 4 shows the plan-view of a truth-vector, an ADSB tracker output and a mode C tracker 

output. In these plan-views, the blue line represents ownship trajectory, with the start location 

indicated by a circle. In the ADSB- and mode C tracker plots, the red-dotted line represents the true 

intruder trajectory and the red-dashed line the estimated intruder trajectory. The estimated start 

location is indicated by a circle. 

 

   

 
Figure 4 – Plan view of trajectory from test-vector C14 using truth, ADSB tracker and ASTc tracker data 

 

As can be seen, the plan-view based on the ADSB tracker data is very similar to the plan-view 

based on the truth data. However, the plan view based on the Mode C tracker data illustrates that 

initially the estimated position is rather different from the true position. It takes some time before the 

estimates of the intruder position converge around the true trajectory. This can have an impact on 

alerting performance. 
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2.1 Sensor-specific and geometry specific accuracy performance 

An ADSB report contains both the position and velocity as measured by the reporting traffic. As a 

result, the position- and velocity accuracy for ADSB data does not depend on distance to ownship 

or conflict geometry. This is different for the other sensors; Mode C and Mode S estimate range to 

traffic from the time between the transmitted interrogations and the received replies. Bearing is 

estimated using a direction-finding antenna. The accuracy of the resulting position estimate is 

inversely proportional to range. A tracker requires multiple range-bearing measurements to estimate 

the relative velocity vector. Because the position error in the direction of the range measurement is 

typically (much) smaller than the position error perpendicular to it, the accuracy of the relative velocity 

is a function of conflict geometry (i.e. head-on, crossing, overtake). In the DO-365B tracker output, 

the sensor uncertainty is specified as 1-sigma values for the North-South direction and the East-

West direction, and the error-covariance. Figure 5 depicts the position- and velocity uncertainty as a 

function of TCPA for tracker output of three different sensors for test-vector C14. 

 

   
 

Figure 5 – 2 sigma value of position and velocity uncertainty for ADSB, mode C and RADAR tracker 

In the plots in Figure 5, the East-West velocity uncertainty is represented by the dashed orange line. 

The North-South velocity uncertainty is represented by the dashed purple line. The scale on the 

vertical axis is in [kts] for these velocity uncertainties. For the 1-sigma position uncertainty, the 

resolution of the source data is 0.1 NM, which is about 600 ft. The red solid line in the above figures 

depicts the 2-sigma position uncertainty. The numbers of the vertical scale represent the uncertainty 

divided by 100, e.g. 12 represents 1200 ft. Given the magnitude of the velocity uncertainty in case of 

the mode C and RADAR tracker, this will be the determining factor for missed- and incorrect alerts. 

The next section will discuss a method to illustrate how such uncertainties impact the alerting decision. 

Whereas Figure 2 depicted the alerting thresholds in the TCPA-DCPA domain, the next section will 

present the impact of sensor noise in the TCPA-DCPA domain. 

3. Depicting the impact of sensor noise in the TCPA-DCPA domain 

In Figure 2 it was illustrated how the depiction of the computed TCPA and DCPA of an intruder 

relative to the thresholds depicted in the TCPA-DCPA space can be used to determine the horizontal 

alert condition. The transformation of subsequent trajectory points of ownship and intruder to the 

TCPA-DCPA space can be used to plot a TCPA-DCPA profile as presented on the right in Figure 6. 

Note that compared to Figure 2, the origin of the plot is now on the left side, and TCPA increases 

from left to right. As a result, subsequent TCPA-DCPA points for a converging encounter will move 

from right to left. 
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Figure 6 – Trajectory plan-view and associated TCPA-DCPA profile for test-vector C14 truth data 

In the test-vectors, for ADSB data the position and velocity noise is based on a Gauss-Markov model 

with a 5 minute decorrelation [2]. For Mode C, per test-vector the range noise is based on a single 

sample from a uniform distribution for the bias and Gaussian noise to represent the additional jitter. 

The bearing noise is Gaussian [2].  

In case the accuracy of velocity is independent on range to the intruder and direction of the relative 

velocity (as is the case with ADSB), the 2-sigma value of the velocity noise can be used to compute 

and depict the 95% TCPA-DCPA containment space (due to velocity uncertainty) relative to the truth-

line. Figure 7 shows the results for two test-vectors using a 2-sigma value of 20 kts in the North-

South direction and in the East-West direction.  

 

  

 
Figure 7 – TCPA-DCPA uncertainty space for P11 and C15 using a velocity of 20 kts as 2-sigma value  

The 2-sigma contours intersect the vertical NHZ lines before the (extended) horizontal thresholds 

would be crossed. This indicates that for the P11 and the C15 must-alert test-vectors, even with the 
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limited velocity accuracy (20 kts), fewer than 5% of the TCPA-DCPA points will be in the NHZ 

determined by the HMD5. Since a designer can choose a spatial alerting threshold that is larger than 

the HAZ threshold, the insight obtained from this TCPA-DCPA depiction also helps to understand 

why increasing the threshold with an increase in TCPA will help increase alerting performance. 

However, this will come at a cost of an increase is false alerts. 

Unfortunately, the position and velocity accuracy of mode C, mode S and ATAR depend on range 

and conflict geometry. Hence, the simplification used in Figure 7 is only helpful for 

development/configuration of SUM for ADSB traffic. Figure 8 shows the TCPA-DCPA for C14 truth, 

ADSB tracker and mode C tracker. 

 

   

 
Figure 8 – TCPA-DCPA plots for C14 Truth, ADSB tracker and Mode C tracker  

3.1 Visualizing the 2-sigma velocity impact using Monte-Carlo 

Whereas a TCPA-DCPA plot of a single degraded test-vector such as depicted in Figure 8 provides 

an indication about the severity of the sensor noise, a much larger number would be needed to 

create a graphic from which the contours of the TCPA-DCPA uncertainty space can be observed. 

The underlying data can also be used to estimate the likelihood that points with a true HMD in the 

HAZ end up in the NHZ and vice-versa. 

In Figure 3 it was illustrated how the original degraded test-vectors were created by SC-228. To 

create additional degraded test-vectors, both a sensor model/simulation and a tracker 

model/simulation are required. Since these simulations are not available at the Netherlands Defence 

Academy (NLDA), a simplified method to generate additional degraded test-vectors has been 

applied. To generate additional samples of a particular test-vector with representative sensor-noise, 

the specification of the position- and velocity uncertainty (available in the output from the tracker files 

for each individual position and velocity sample) has been used as the standard-deviation scaling 

factor of a random-number generator. For each entry in the truth vector, the associated standard 

deviations of position- and velocity errors are used to generate new errors which are subsequently 

added to the truth-vectors. For the examples used in this paper, this process is repeated 20 times 

for each truth-vector, yielding 20 new degraded test-vectors with the same statistical properties in 

terms of the distribution of the error6. Figure 9 provides an overview of the approach that has been 

used. 

 

 
5 The uncertainty in velocity also causes an uncertainty in TCPA. This can cause early alerting when the actual 
TCPA is still in the NHZ and the computed TCPA has left the NHZ. 
6 It is recognized that aspects such as correlation between subsequent samples and a bias are not captured by 
this approach. However, these would only be relevant if the resulting data were used to drive an alerting 
algorithm. For the application in this paper, the data was only intended to be used to depict the resulting 
uncertainty in TCPA-DCPA space and generate percentages of TCPA-DCPA points in the HAZ and NHZ. 



Sensor Uncertainty Mitigation 

8 

 

 

 
Figure 9 – Approach to create more simulated noisy samples of a single test-vector 

Figure 10 presents the results for a conflict geometry with a high closure-rate. The red U-shape 

indicates range, the blue lines are the DCPA traces as a function of TCPA. The impact of velocity 

noise will increase with a decrease in relative velocity. This can be seen in Figure 11. 

 

  
 

Figure 10 – TCPA-DCPA plot for 20 simulated instances of C14 from ADSB and mode C tracker  

 

  

 
Figure 11 – TCPA-DCPA plot for 20 simulated instances of C1 from ADSB and mode C tracker  

Although the right TCPA-DCPA plot in Figure 10 may still look good from a must alert perspective, it 

also shows that there is a considerable likelihood that DCPA may remain in the NHZ, and this above 

any reasonable alert threshold. The use of a scaled standard deviation of position and velocity to 

vary the input to the alerting is a technique used to increase the likelihood of a timely alert in such 
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situations [2,5]. However, this comes at a cost of an increase in false alerts in non-alerting 

geometries. This becomes clear when looking at an example of a TCPA-DCPA plot for a ‘must not 

alert’ test-vector (Figure 12).   

 

  

 
Figure 12 – TCPA-DCPA plot for 20 simulated instances of C25 from ADSB and mode C tracker  

The right TCPA-DCPA plot shows that for mode C even without the addition of a scaled standard-

deviation a considerable part of the TCPA-DCPA points below TCPA=110 (the early alert threshold) 

extends from the NHZ to a DCPA smaller than 4000 ft, the minimum spatial threshold that should be 

used. One take-away from plots such as Figure 12 is that for mode C some occasional false alerts 

seem unavoidable.   

3.2 Sensitivity to noise when close to alerting threshold 

In DO-365B Appendix K, agreed exemptions for ACAS-Xu failure to particular test-vectors are 

provided. As one of the reasons for agreement on an exemption it is indicated that the test-vectors 

include situations ‘in which the test vector geometry places the aircraft on or near the various alerting 

boundaries, or the boundaries are marginally violated. Once noise is applied, the proximity to the 

alerting boundaries makes passing or failing that encounter highly susceptible to noise’. The 

examples in Figures 13 and 14 illustrate this issue for a ‘must-alert’ and ‘must-not-alert’ geometry. 

 

  
 

Figure 13 – TCPA-DCPA plot for 20 simulated instances of P11 from ADSB and mode C tracker  
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Figure 14 – TCPA-DCPA plot for 20 simulated instances of P18 from ADSB and mode C tracker  

4. SUM 

4.1 Introduction 

In the operational environment, the specification of position- and velocity uncertainty can be available 

in different forms. ADSB messages may include so-called NACp7 and NACv8 data. Such data is not 

directly available for mode C and mode S traffic. A tracker that estimates traffic position and velocity 

from subsequent ranges and bearings (from mode C, mode S or ATAR) should be able to provide a 

measure of uncertainty for these estimates. However, situations may also occur in which no 

uncertainty data is available. 

4.2 SUM strategies 

Using the reported uncertainty, variations to the reported position and velocity can be input to the 

alerting algorithm to find the associated TCPA and DCPA and test whether an alert condition is met 

for any of these combinations.  However, if these variations yield both options in the HAZ and in the 

NHZ, the uncertainty is too large to declare a reliable alert. To reduce the likelihood of having 

outcomes both in the HAZ and NHZ, [5] uses range-based scaling of the standard deviations added 

to the reported data. Another (additional) possibility to deal with too much uncertainty is to use the 

available margins between the early and late-alert time to reduce the alert-time threshold in case the 

variations yield both outcomes in the NHZ and HAZ. In case no uncertainty data is available, sensor-

specific assumptions can be used to increase the threshold against which HMDP is tested, and also 

make it a function of range and/or TCPA. 

In the reference implementation from [2], scaled standard deviations are used to create states 

located on the contour of a hockey puck around the reported state. These new states are used as 

input to the alerting algorithm. The scaling factors provide the designer with a certain trade-space. 

Clearly, reducing late- and missed alerts by increasing the scaling factors will also increase the 

potential for incorrect alerts. The likelihood of such incorrect alerts can be reduced with the 

application of m-out-of-n filters that will require m alert conditions within n tests to occur before an 

alert is declared. A larger value of m will increase the capability to reject incorrect alerts but will also 

increase the time between the occurrence of an alert condition and the actual alert. For non-

maneuvering geometries this can partly be compensated by using a larger value for the alert-time. 

However, the maximum value of m is limited by the alert-time requirements since for maneuvering 

encounters in which an intruder quickly transitions from the NHZ to the HAZ, an alert is required no 

later than 5 seconds after entering the HAZ. Using dynamic m and n, e.g. based on TCPA, a faster 

 
7 NACp is an integer value that references a maximum standard deviation of the reported horizontal position. A 
lookup table is needed to convert NACp to the standard deviation. 
8 NACv is an integer value that references a maximum standard deviation of the reported horizontal velocity. A 
lookup table is needed to convert NACv to the standard deviation. 
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response at lower TCPA can be combined with better reduction of incorrect alerts at higher TCPA 

(where the impact of velocity uncertainty is also more likely to cause incorrect alert conditions). 

It is evident that besides the design of SUM algorithms, the many degrees of freedom provide the 

designer with a challenge concerning the quantification of the relevant design parameters. These 

include but are not limited to: 

• The scaling factors for the standard deviations of horizontal- and vertical position 

• The scaling factors for the standard deviations of horizontal- and vertical velocity 

• Any dynamic scaling factors that make the above scaling dependent on range and/or TCPA 

• The m and n for each sensor-specific filter 

• Any TCPA thresholds to dynamically configure the m-out-of-n, with associated m and n 

• The actual HMD used to test HMDp against (this may be larger than the HMD that defines 

the HAZ), possibly sensor-specific 

• The time-thresholds use to declare an alert (these may be made dynamic to reduce the 

impact of too much uncertainty) 

Also, given the required consistency with guidance, it is essential to realize that these quantifications 

will have impact on the guidance. As illustrated in Figure 1, an increase in uncertainty will increase 

the directions to be avoided.  

Using the methods to analyze the impact of sensor-uncertainty in the TCPA-DCPA domain together 

with test-vectors from [2] that are both available in truth- and degraded form, the impact of 

configuration changes can be related to the domain in which the thresholds for alerting are defined. 

This aids in the development of the rationale underlying the quantification of the design parameters. 

The next section compares the performance of a prototype SUM implementation against two 

conceptual performance baselines without SUM. 

4.3 SUM performance improvement 

4.3.1 Implementation 

To realize acceptable alerting performance, a SUM function has been designed and implemented. 

The configuration has been performed using the results from fast-time simulation with the test-

vectors from [2] as input. Given the identified impact of position- and velocity errors in the TCPA-

DCPA domain, the following SUM strategies have been implemented to reduce late- and missed 

alerts, reduce intermittent alerts and keep false alerts to a minimum:  

- Dynamic (i.e. sensor type and TCPA dependent) spatial threshold against which DCPA is tested 

- Dynamic (sensor type dependent) alert-time 

- Position- and velocity variations as input to the alerting function using scaled standard deviations 

- Sensor and TCPA-dependent m-out-of-n filter for the transition from non-alert to alert to reduce 

early and intermittent alerting 

- Alert-coasting in the transition from alert to non-alert to reduce intermittent alerting 

 

4.3.2 Establishing the baseline for performance 

To assess the performance of the SUM approach, two baselines were established. The first baseline 

is obtained by using the HAZ thresholds for alerting. Any DCPA larger than the HMD defined by the 

HAZ is regarded as a non-alert. In other words, none of the available ‘may alert’ trade-space is used. 

In the current paper, only the results for ADSB and Mode C are presented. Table 1 provides an 

overview of the ‘Must Alert’ performance using the ADSB tracker test-vectors, Table 2 lists the 

performance for the ‘Must not Alert’ ADSB tracker test-vectors. For the Mode C tracker test-vectors, 

Table 3 provides an overview of the ‘Must Alert’ performance and Table 4 for the ‘Must not Alert’ 

performance. 
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Table 1 - Must-alert performance using HAZ threshold and ADSB test-vectors  

 Early alerts Late- and missed alerts 

Early 
Caution 

Early 
Warning 

Early Caution 
& Early 
Warning 

Late 
Caution 

Late 
Warning or 

no alert 

Late Caution 
& Late 

Warning 

Alerts 0 0 0 10 3 23 

Percentage 0 0 0 3.3 1.0 7.6 

Total % 0 11.9 

 
Table 2 - Must-not-alert performance using HAZ threshold and ADSB test-vectors 

 False alerts 

 Caution Warning Caution & 
Warning 

Alerts 1 2 1 

Percentage 1.2 2.4 1.2 

Total % 4.8 

 
Table 3 - Must-alert performance using HAZ threshold and Mode C test-vectors 

 Early alerts Late- and missed alerts 

Early 
Caution 

Early 
Warning 

Early Caution 
& Early 
Warning 

Late 
Caution 

Late 
Warning or 
no alert 

Late Caution 
& Late 
Warning 

Alerts 10 6 8 6 6 20 

Percentage 3.3 2.0 2.6 2.0 2.0 6.6 

Total % 7.9 10.6 

 
Table 4 - Must-not-alert performance using HAZ threshold and Mode C test-vectors 

 False alerts 

Caution Warning Caution & 
Warning 

Alerts 8 7 8 

Percentage 9.5 8.3 9.5 

Total % 27.3 

 

What stands out is the much larger percentage of false alerts for Mode C (alerts in the ‘Must not 

alert’ set of test-vectors). Given the earlier depiction of variation in the TCPA-DCPA domain (i.e. 

Figures 12 and 14), this is not surprising. 

The second baseline for performance is established by moving the decision threshold from the HAZ 

to the Warning alert NHZ HMD, i.e. 1.2 NM. Any DCPA below this value will be considered as a 

trigger for an alert (within the alert time). This should reduce the number of late-and missed alerts, 

but at the expense of an increased amount of false alerts. 

Table 5 provides an overview of the ‘Must Alert’ performance using the ADSB tracker test-vectors, 

Table 6 lists the performance for the ‘Must not Alert’ ADSB tracker test-vectors. For the Mode C 

tracker test-vectors, Table 7 provides an overview of the ‘Must Alert’ performance and Table 8 for 

the ‘Must not Alert’ performance. 
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Table 5 - Must-alert performance using NHZ threshold and ADSB test-vectors 

 Early alerts Late- and missed alerts 

Early 
Caution 

Early 
Warning 

Early Caution 
& Early 
Warning 

Late 
Caution 

Late 
Warning or 
no alert 

Late Caution 
& Late 
Warning 

Alerts 1 34 23 4 1 6 

Percentage 0.3 11.3 7.6 1.3 0.3 2.0 

Total % 19.2 3.6 

 
Table 6 - Must-not-alert performance using NHZ threshold and ADSB test-vectors 

 False alerts 

Caution Warning Caution & 
Warning 

Alerts 1 2 1 

percentage 1.2 2.4 1.2 

Total % 4.8 

 
Table 7 - Must-alert performance using NHZ threshold and Mode C test-vectors 

 Early alerts Late- and missed alerts 

Early 
Caution 

Early 
Warning 

Early Caution 
& Early 
Warning 

Late 
Caution 

Late 
Warning or 
no alert 

Late Caution 
& Late 
Warning 

Alerts 12 26 33 4 2 10 

Percentage 4.0 8.6 10.9 1.3 0.7 3.3 

Total % 23.5 5.3 

 
Table 8 - Must-not-alert performance using NHZ threshold and Mode C test-vectors 

 False alerts 

Caution Warning Caution & Warning 

Alerts 6 10 14 

percentage 7.1 11.9 16.7 

Total % 35.7 

 

Table 9 provides a summary of the data in Tables 1 to 8, allowing a comparison of the two baselines 

for the performance per sensor. 

 
Table 9 – Summary of the baseline performance for thresholds at HAZ and NHZ 

  ADSB tracker Mode C tracker 

HMD At 
HAZ 

At 
NHZ 

At 
HAZ 

At 
NHZ 

Must Alert Early [%] 0 19.2 7.9 23.5 

Late and missed 
[%] 

11.9 3.6 10.6 5.3 

Must Not 
alert 

False alert [%] 4.8 4.8 27.3 35.7 

 

The results in Table 9 confirm that indeed the amount of missed- and late alerts reduces significantly 

when increasing the HMD threshold from the HAZ to the NHZ. For ADSB, the reduction is from 

11.9% to 3.6% and for mode C from 10.6% to 5.3%. Furthermore, for Mode C the results in Table 9 

confirm what can be expected as the cost for this improvement, i.e. moving the alerting threshold 

towards the NHZ increases the amount of false alerts. For ADSB however, the amount of false alerts 

does not increase. This is not too surprising since the margin between the HAZ and the NHZ is 
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significantly larger than the impact of the position- and velocity uncertainty with ADSB. But there is 

another cost: Both for ADSB and mode C, the amount of Early alerts increases.  

4.3.3 Performance using SUM 

This section provides an overview of the alerting performance with the application of the SUM 

function used for the current research. Table 10 provides the performance for the must-alert test-

vectors using the ADSB tracker output files from [2], and Table 11 shows the performance on the 

‘must-not-alert’ ADSB tracker output files. Similarly, Table 12 provides the performance for the must-

alert test-vectors using the mode C tracker output files from [2], and Table 13 shows the performance 

on the ‘must-not-alert’ mode C tracker output files. 

 
Table 10 - Must-alert performance using SUM and ADSB test-vectors 

 Early alerts Late- and missed alerts 

Early 
Caution 

Early 
Warning 

Early Caution 
& Early 
Warning 

Late 
Caution 

Late 
Warning or 

no alert 

Late Caution 
& Late 

Warning 

Alerts 2 0 0 0 2 0 

Percentage 0.7 0 0 0 0.7 0 

Total % 0.7 0.7 

 
Table 11 - Must-not-alert performance using SUM and ADSB test-vectors 

 False alerts 

Caution Warning Caution & 
Warning 

Alerts 2 1 1 

Percentage 2.4 1.2 1.2 

Total % 4.8 

 
Table 12 - Must-alert performance using SUM and Mode C test-vectors 

 Early alerts Late- and missed alerts 

Early 
Caution 

Early 
Warning 

Early Caution 
& Early 
Warning 

Late 
Caution 

Late 
Warning or 

no alert 

Late Caution 
& Late 

Warning 

Alerts 1 7 3 5 3 4 

Percentage 0.3 2.3 1.0 1.7 1.0 1.3 

Total % 3.6 4.0 

 
Table 13 - Must-not-alert performance using SUM and Mode C test-vectors 

 False alerts 

Caution Warning Caution & 
Warning 

Alerts 3 10 11 

Percentage 3.6 11.9 13.1 

Total % 28.6 

 

4.4 Discussion 

For ADSB targets, just moving the threshold from the HAZ to the NHZ reduces missed / late alerts 

from 11.9 to 3.6% at the cost of an increase from 0 to 19.2% early alerts. The percentage of incorrect 

alerts stays at 4.8%. 

Applying SUM reduces missed / late alerts from 11.9 to 0.7%, while increasing early alerts from 0 to 

0.7% and maintaining incorrect alerts at 4.8%. 

For Mode C targets, just moving the threshold from the HAZ to the NHZ reduces missed / late alerts 
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from 10.6 to 5.3% at the cost of an increase from 7.9 to 23.5% early alerts and from 27.3 to 35.7% 

incorrect alerts. 

Applying SUM reduces missed / late alerts from 10.6 to 4.0%, while also reducing early alerts from 

7.9 to 3.6% at the cost of an increase in incorrect alerts from 27.3 to 28.6%. 

Thus, for must-alert situations, SUM achieves better performance than the best baseline with the 

HMD threshold at the NHZ (all TCPA-DCPA points in the may-alert zone considered as alerting). 

And for must-not alert situations, SUM performance is not worse than the baseline with the HMD 

threshold at the HAZ (all TCPA-DCPA points in the may-alert zone considered as non-alerting). 

Unfortunately, a comparison with the performance of the reference implementation from [2] is not 

possible, since only the performance on the ‘must-alert’ test vectors is reported. The ‘cost’ of using 

that approach to SUM is not quantified in terms of incorrect alerts for the must-not alert test-vectors. 

5. Conclusion 

In [2], the Minimum Operations Performance Standards for UAS DAA systems are provided and it is 

indicated that “Implementing an alerting and guidance scheme using simple predictions and the HAZ 

values directly from the requirements will result in unacceptable performance”. 

This unacceptable performance is characterized by a too high percentage of late- and/or missed 

alerts, a too high percentage of nuisance alerts and too many intermittent alerts. SUM is intended to 

achieve the required performance by addressing all three issues. 

SUM uses information about the measurement uncertainty to determine whether TCPA-DCPA 

estimates that lie in the area between the HAZ and the NHZ can be considered as a potential alert 

state. SUM also comprises filtering (e.g. m-out-of-n) to limit the number of incorrect alerts. 

Besides the design of SUM algorithms, the many degrees of freedom resulting from the SUM design 

parameters provide the designer with a challenge concerning the quantification of these parameters. 

By analyzing the impact of sensor-uncertainty in the TCPA-DCPA domain using the test-vectors from 

[2] that are both available in truth- and degraded form, designers can tune the quantification based 

on an understanding of the expected impact on the alerting performance and an understanding of 

fundamental limitations caused by the magnitude of the sensor-noise. If a tracker different than the 

reference tracker is used, the test-vectors with the raw sensor data can be used as an input to such 

a tracker. This may result in differences in the reported standard deviations and possibly require a 

different SUM configuration. 
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