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Abstract 

In this work higher order models of elastic shells of revolution are developed using the 
generalized elastodynamic variational principle. Following the Unified Carrera Formula (CUF), 
the stress and strain tensors, as well as the displacement vector, were expanded into series 
in terms of the coordinates of the shell thickness. As a result, all the equations of the 
elastodynamics were transformed into the corresponding equations for the expansion 
coefficients in a series in terms of the coordinates of the shell thickness. The resulting 
equations have been used for theoretical analysis and calculation of the eigenvalues and 
eigenmodes of the higher order shells of revolution.  
 

1. Introduction 

Shell models are important structural elements that are widely used in aviation and airspace 
engineering and technology. There are many books and thousands of articles on the 
theoretical analysis and modeling of the shells of revolution. Below, we will mention only a few 
of them that we used in preparing this article. The milestone book by Timoshenko and 
Woinowsky-Krieger [19] is a standard reference to the classical plate shells theory. 
Composited and laminated shells were considered in Ambartsumyan [2], Jin et al. [13], Qatu 
[17], Reddy [18].  
In most of the publications mentioned above classical shell theories based on the Kirchhoff-
Love and Timoshenko-Midlin hypotheses are used. There is another approach to the theory 
of shells, which consists in expanding the components of the stress-strain field into series of 
polynomials in thickness. This approach was first proposed by Cauchy and Poisson in the 
nineteenth century. Significant extensions and developments of this approach for shells of 
arbitrary geometry were made by Kilchevskiy [15]. He created the so-called generalized tensor 
series for the expansion of three-dimensional equations of elasticity in terms of the thickness 
of the shell. Then the Legendre polynomials were proposed for the development of new 
theories of higher orders. This approach has significant advantages, since the Legendre 
polynomials are orthogonal and, as a result, simpler equations are obtained. There are many 
books and research papers devoted to the application of the polynomial series to the 
development of higher order theories of bars, plates, and shells. Among others, the books of 
Khoma [14], Pelekh and Lazko [18] and the papers of Czekanski and Zozulya [11], Zozulya 
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[21, 22]. Carrera's Unified Formulations (CUF) approach can be viewed as a generalization of 
the polynomial decomposition method for beams, plates and shells, including sandwich 
structures and multi-field loads. Hundreds of articles are available at (CUF) on the various 
extensions and applications of Carrera and many more. Among them, the following are 
mentioned here: review papers Carrera [1-3] deals with multilayer anisotropic plates and 
shells, plates, and shells, shells of revolution are considered in Carrera and Zozulya [6-10].  
For more information and references related to the polynomial series approach for developing 
models of multilayer anisotropic composite plates and shells and their thermal and finite 
element analysis, see Carrera et al. [4, 5], as well as the works mentioned above.  
In this work, 2-D models of higher order shells of revolution are developed based on the 3-D 
equations of the dynamic theory of elasticity. Proposed models are based on the generalized 
variational principle and expansion of the 3-D equations of elasticity into generalized series in 
terms of cross-sectional coordinates in thickness. Numerical calculations of the eigenvalues 
and eigenmodes were performed using the computer algebra software Mathematica, and the 
results of calculation are presented in the form of tables and plots. These numerical results 
can be used as a benchmark example for finite element dynamic analysis of the elastic higher 
order shells.   

2. Statement of the problem.  

Let an elastic shell of revolution occupy a region [ , ]V h h= −  in a 3-D Euclidian space, where 

  is the middle surface and 2h  is the thickness of the shell. The classical theory of elasticity 

assumes that the body consists of interconnected points and continuously fills the occupied 
volume. The position of a point during deformation is determined by the displacements vector 

( , ) ( , )i it u t=u x x e as functions of their coordinates and time. The stress-strain state of the shell 

as elastic continua is defined in terms of the symmetrical stress ( , ) ( , )ij i jt t= σ x x e e  and 

strain ( , ) ( , )ij i jt t= ε x x e e  tensors. Boundary of the shell is piece-wise smooth and consists 

of sections pV and 
uV  to which the vectors of traction ( , ) ( , )i it p t=p x x e  and displacements 

( , )tu x respectively, are assigned. The elastic shell may be subjected to volume forces ( , )tb x . 

Following our previous publications, here we introduce vector notations and represent the 
above functions that determine the stress-strain state of elastic media in the vector form.  
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These quantities are not independent, they are related by the equations of linear elasticity. 
Here we will show that all the equations of linear elastodynamics including boundary 
conditions can be obtained from the generalized variational principle (see Gurtin [12]). For this 
purpose, let us introduce the generalized functional, that depends on the functions  , ,u ε σ  

defined above in the form 
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Here D  is a matrix differential operator, whose form depends on chosen coordinate system 

(see Carrera and Zozulya [6] for references),   is a material density, ( )W ε  is a potential 

energy function.  
Let us consider a variation of the functional (2), taking into account that all the above functions 
are independent. The variational principles of elastodynamics and the details of the 
corresponding functionals variation are considered in Gurtin [12] 
After some transformations and simplifications, we get 
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Here we take into account that   
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Variation of the kinetic energy of a linear elastic media  
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presented by the equation, see Gurtin [12] 
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In view of variations u , σ  and ε  are independent, all equations of elastodynamics and 

the corresponding boundary conditions follow from the equation (3), they have the form: 
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In the case of linear orthotropic elastic media, potential energy function can be presented in 
the following general form 

( ) TW =  ε ε C ε                                                              (8) 

where C  is the 6 6  matrix of elasticity moduli of the form  
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In the case of isotropic material, the corresponding classical moduli of elasticity presented in 
(9) have the form 

 
11 22 33 12 13 23 44 55 662 , ,C C C C C C C C C   = = = + = = = = = =                       (10) 

where   and   are Lamé constants of classical elasticity.   

In the general case of inhomogeneous anisotropic body coefficients of the matrix of elastic 
properties depend on coordinates ( )ijC x  and orientation in the space. In the case of multilayer 

composite shells, it is possible to use layers of different materials, therefore the elastic moduli 
are piecewise constant over the thickness and depend only on the coordinate perpendicular 

to the middle surface 3x . 

For the case of a multilayer composite shell consisting of K  laminas the dependence of the 
elastic moduli on the stiffness coordinate can be mathematically expressed as follows  
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Here k

ijC  is the value of the elastic moduli of the k  lamina, 
kh  is the coordinate of the lower 

surface of the k  lamina and ( )H x  is the Heaviside unit step function.  

The individual layers generally are orthotropic with principal properties in orthogonal 
directions. Their mechanical properties depend on fibers orientation. The values of elastic 
moduli along the fibers much higher than in perpendicular direction. An orthotropic material 
behavior is characterized by three symmetry planes that are mutually orthogonal. Matrix of 
elastic moduli has the form 
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Laminate composite shells usually have layers with different fiber orientation, therefore, when 
setting problems for laminate structures, it is necessary to calculate mechanical properties 
with a change of the coordinate system. Let us consider the reference coordinate system 

1 2 3( , , )x x x=x  and rotate it around axis 
3x  by an angle  . Matrix operator of such 

transformation has the form 

cos( ) sin( ) 0

( ) sin( ) cos( ) 0

0 0 1
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  = −L                                     (13) 

The stress σ  and strain ε  vectors under such a transformation of coordinates are transformed 

as follows  

 
*( ) , ( )  = =σ T σ ε T ε   (14) 

Matrix operators ( )T  and it transposed operator *( )T  can be obtained from the operator 

( )L  by comparing the transformation rules of tensors and vectors, see [9,10] for details. 

Taking the derivative of the potential energy density function with respect to the strain ε  tensor 

and substituting the kinematic relations into the obtained result, the classical stress vector in 
the case of linear orthotropic elastic media can be presented in the following forms  
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

σ C ε C D u
ε

                                                      (15) 

Substituting the equations for the matrix of material constants (9), and the stress vector (15), 
into the equations of motion (7) the differential in the form of displacements can be represented 
in a compact form as follows 

  − =L u b u   (16) 

In the same way, substituting the expressions for the stress vector from (15), one obtains the 
natural boundary conditions for the linear theory of elasticity in the form of a displacement 
vector  

 =B u p                                                               (17) 



where L  and  B  are the matrix differential operators, u  is the vector of unknown functions 

and b and p  are the vectors of external load and surface traction, respectively. They have the 

following form  
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In the case of free vibration with circular (natural) frequency   vector of displacements can 

be presented in the form  

 ( , ) ( ) i tt e =u x U x  (19) 

Then substituting (19) in the equation of motion (16) we obtain the equation of free vibration 
in the form 

 2 0 + =L U U  (20) 

This equation is used to model free vibration of elastic systems and analysis of the eigenvalue.   
For the purpose of the theory of shells of a higher order developed here, in the same way as 

in our previous publications, we introduce curvilinear coordinates 1 2 3( , , )x x x=x  related to the 

middle surface of the shell. The coordinates 1 2( , )x x  are related to the principal curvatures 
1k  

and 
2k  whereas coordinate 

3x  is perpendicular to the middle surface of the shell. Then position 

of any material point of the shell in the domain V may be presented by the position vector )(xR  

in the form 

1 2 3 1 2( ) ( , ) ( , )x x x x x= +R x r n                                                    (21) 

where 1 2( , )x xr is the position vector of the points located in the middle surface of the shell, 

and 1 2( , )x xn is a unit vector perpendicular to the middle surface of the shell. 

Since the introduced coordinates are orthogonal, the Lamé coefficients and their derivatives 
can be represented as  
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Here 
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surface, k are the principal curvatures and 1,2 = . 

The CUF approach to the development of the theory of plates and shells of higher order 

consists in the following. The displacement 1 2 3( , , )x x xu  vector and its variation 
1 2 3( , , )x x xu , 

which are functions of curvilinear coordinates 1 2 3( , , )x x x  are represented as series of functions 

of coordinate 
3x  orthogonal to the middle surface of the shell, in the form   
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Here, according to Einstein’s notation, the repeated subscript   indicates summation from 0  

to M . 

In the equations (23) the basic functions of the thickness coordinates , 3( )xuF  and vector of 

displacement 1 2( , )x xu  have the form 
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In the general case, the choice of the number M  and functions 
, 3( )xuF  is arbitrary, i.e., to 

model the displacements field of shell over its thickness, one can consider various basis 

functions of any order. The final equation becomes simple if functions 
,uF  are polynomials, 

especially orthogonal polynomials. The expansions coefficients 
1 2( , )x xu  are functions of the 

coordinates 
1x  and 

2x  which belong to the middle surface of the shell.  The first subscript in 

the basis functions ,uF  indicates the displacement vector component, the second index 

indicates the number of the function in the series expansion.  
Substituting the displacement vector represented by series expansion (23) to the kinematic 
Cauchy relations (7), one can obtain the strain vector in the form 

 ,u  = ε D u   (25) 

where ,a D  is a matrix operator of the form 
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Substituting kinematic Cauchy relations (25) into the generalized Hooke’s law (15) the stress 
vector can be presented as 

,u  =  σ C D u                                                              (27)  

Substituting the expressions for the strain vectors represented by equations  (25), the stress 
vectors represented by equations  (27) into (8), we obtain the variation of the potential energy 
density in the form  
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The variation of the work of the external body and surface forces can be represented as 
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Substituting representations (23) for vector of the displacements and its variation, the variation 
of the potential energy density (28) and the variation of the work of the external body and 
surface forces (29) in general variation principle (2) and using the matrix analogy of Gauss-
Ostrogradsky divergence theorem in the form     
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where ,

,
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n D  is the matrix analogy of the vector normal to the boundary, which has the form  
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we obtain differential equations of motion for high-order elastic shells in the form of 
displacements. They can be represented in matrix form 
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Matrices 
,
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sL are the fundamental nuclei of the differential equations of equilibrium of elastic 

shells of higher orders. They, as well as the vectors of local unknown functions loc

su  and local 

expression for external body and surface loads loc

sb have the form  
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For free vibration and eigenvalue analysis similarly to (20) from (32) we obtain  

 2 0G G G G
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When developing differential equations of motion for high-order elastic shells in the form of 
displacements, we take into account that the integrals over volume and surface in the equation 
(3) can be represented as     
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Similarly, by performing the mathematical transformations described in the article Carrera and 
Zozulya [9, 10], the natural boundary conditions for higher order elastic shells can be 
represented in the matrix form 
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The matrices 
,

loc

sB are the fundamental nuclei for the natural boundary conditions for higher 

order elastic shells and loc

sp  represent an expression for the vectors of the external load applied 

to the ends of the shells. They can be presented as 
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The essential boundary conditions for higher order elastic shells can be represented in matrix 
form  
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where I is the identity matrix and therefore the global matrix operator ,E G

MB  is the identity 

matrix operator. 
Equations (40)-(41) are valid for the theory of shells of any order. The classical theory of shells 
based on Timoshenko-Mindlin hypothesis can be obtained from these equations as a special 

case if we take  in the equations (32) the basic functions of the thickness coordinates , 3( )xuF  

and vector of displacement 1 2( , )x xu  (24) in the form 
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In the following sections, based on the equations presented here, we consider in more 
detail shells of revolution of various geometries and solve problems free vibration numerically 
using build-in functions NDEigensystem and NDEigenvalues of the computer algebra 
software Mathematica. 
 

3. Analysis of eigenvalues and natural frequencies of shells of revolution  

In this section, based on the approach developed here, we consider in more detail composite 
laminate axisymmetric shells of revolution of various geometries and solve free vibration 
problems and eigenvalue analysis. For that purpose  we will use system of differential 
equations (35) and the corresponding essential boundary conditions (40).  
Usually, such problems are solved using the FEM or other numerical methods. Many 
commercial and free open software programs can be used to solve considered here problems. 
In this study, we use the computer algebra software Mathematica, namely the build-in 
functions NDEigensystem and NDEigenvalues. As an introduction to the Mathematica and 
its programming language, one can refer the books by Wolfram [20] and the Wolfram 
Language documentation may also be useful. 
Here we consider as special cases of shells of revolution a laminate composite axisymmetric 
circular plate, cylindrical, and conical shells with three layers and angle-ply layup (0 / 90 / 0)  

under uniform symmetrical loading applied to the upper surface of the shell. The layers have 

the same thickness 
1 0.33h h= , 

2 0.33h h=  and 
3 0.33h h= . The shells are fixed at the ends and 

the mechanical properties of the laminas are taken as in [9, 10]. The following mechanical 
properties of lamina are used: 

 
1 2 12 13 23 12 13 2325,  1, 0.5, 0.25, 1E E G G G    = = = = = = = = =  (43) 



Here 
1 2,E E are Young’s moduli, 

12 13 23, ,G G G  are the shear moduli, 
12 13,   are Poisson’s ratios 

and   is a density of material. 

Due to the fact that we consider axisymmetric shells of revolution, all functions describing the 
stress-strain state of the shell do not depend on rotational coordinate, all derivatives with 
respect to it vanish, and the displacement in the circumferential direction is zero. Therefore, 

tensors of stress ( , )x rσ  and strain ( , )x rε  tensors, as well as the displacements ( , )x ru , forces 

vectors  introduced in (1) the form   

 ,, , , , , , , ,
T T T

xx rr xr xx rr xr x ru u        = = =σ ε u  (44) 

The resulting differential equations can be easily obtained from the general case presented 
above, using the values of the coefficients of the first quadratic form of the surface and the 
principal curvatures. More details for the case of the homogeneous shells can be found in 
Carrera and Zozulya [6-10].  
 

3.1 Circular axisymmetric plate 

Let us consider circular plate as special case of the shell of revolution. In order to obtain 
equations that describe mechanical behaviour of the higher order composite multilayer circular 

plate, let us introduce polar coordinates, where 
1x = , 2x =  and 

3x z= , [ , ]z h h − . The 

middle surface of the circular plate is the circle of radius 
1R  with hole of radius 

2R  shown in 

the Fig. 1. Coefficients of the first quadratic form of a surface and principal curvatures are 

equal to 
1 21, ,A A = =  and 

1 0,k =  
2 0k = , respectively. 

 

Fig.1. Circular plate as special case of the shell of revolution 

Here we present some results of numerical simulation of the higher order three layers 
composite laminate circular plate based on CUF. Calculations are made for the following data: 
mechanical loading is axisymmetric, uniform and applied to the upper surface of the plate, 

2 1L L L= − , in the axial direction 
3x . Here 

2L  and 
1L  are outer and inner radius of the plate, 

2 1/ 2L L =  and / 0.1h L =  

Since the external load is applied axisymmentricaly, the situation becomes simpler. In this 
case, all functions describing the stress-strain state of the plate are one-dimensional, and the 
resulting equations are much simpler. 
The resulting differential equations have the same structure as (35), but the local matrices 

,

loc

sL  

of the fundamental nuclei  of differential equations of equilibrium for the higher order 

axisymmetric spherical elastic shells, as well as the vectors of local unknown functions loc

sU  

have the form  

 

, ,

, , ,

, , ,
,, ,

,
z

z z z

s s

u u u u sloc loc

s ss s
z su u u u

L L U

UL L

  



 



  
= =L U                                          (45) 



The coefficients of the fundamental nuclei  
,

loc

sL  can be easily calculated using the equations 

presented in our previous publications [6-10]. 

In Table 1, the lowest eight frequency parameters 0,0

,/ u uL
 

  =  for the there-layered 

composite axisymmetric circular fixed at the ends are presented for the Timoshenko’s shear 
deformation, the first, second,  third, fourth  and fifth order models.   

Table 1. Frequency parameter 0,0

,/ u uL
 

  = of the axisymmetric circular plate 

 

Fig. 2 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the radial 
direction for the fifth-order model 5 =  for a there-layered composite axisymmetric circular 

plate fixed at the ends.  

 

Fig. 2. First eight axisymmetric eigenmodes for circular plate in axial direction for fifth order 
model. 

Fig. 3 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the axial 
direction for the fifth-order model 5 =  for a there-layered composite axisymmetric circular 

plate fixed at the ends.  

 

Fig. 3. First eight axisymmetric eigenmodes for circular plate in radial direction for fifth order 
model.  

The data presented in Table 1 and Fig 2, 3 gives qualitative and quantitative information about 
the behavior of the first eight axisymmetric eigenvalues and eigenvectors of the the fixed at 
the ends circular plate within the framework of the CUF for the first, second,  third, fourth  and 

fifth order 1,...,5 =  models and a comparison with the classical Timoshenko model. The 
reported data are in good agreement; indeed, for models of the third order and higher, the 
results are the same. Table 1 follows that the third order and higher models give more accurate 



results and better models the free vibration  of circular axisymmetric plates. These results can 
be used as benchmark examples for finite element analysis of elastic composite multilayers 
circular plates in the case of axisymmetric loading. 

 

3.2. Axisymmetric cylindrical shell 

Let us consider a cylindrical shell formed by rotation around an axis 
3x  of a straight line that 

parallel to it and located at a distance R  from it. The middle surface of the shell is a cylinder, 

the analytical representation of which in Cartesian coordinates 
1 2 3, ,x x x  is given by the 

equation 

 22 2

1 2x Rx + =  (46) 

We introduce cylindrical coordinates, such that 
1x x= , 

2x =  and 
3x r= , [ , ]r R h R h − + . 

Then parametric equations of the surface of revolution (50) can be represented in the following 
vector form  

1 2 3( , ) cos( ) sin( )x R R x  = + +r e e e                                  (47) 

If the cylindrical coordinates x  and    belong to the intervals [0, ]x H , [0,2 ]  , then we 

have a closed in Fig. 4. 

 

Fig. 4. Straight circular cylinder. 

The coefficients of the first quadratic form of a conical surface and the principal curvatures are  

1 2 1 20
1

1, ,A A
R

R  == ==                                             (48) 

respectively. 
Here we present some numerical simulation results for the higher order CUF-based composite 
three layers cylindrical laminate. Calculations are made for the following data: the thickness 
to length ratio is / 10R h =  and the length to radius ratio is / 3H R = , mechanical load is 

axisymmetric, uniform and applied to the upper surface of the shell, in the radial direction r . 
Since the external load is applied axisymmentricaly, the situation becomes simpler. In this 
case, all functions describing the stress-strain state of the shell are one-dimensional, and the 
resulting equations are much simpler. 
The resulting differential equations have the same structure as (35), but the local matrices 

,

loc

sL  of the fundamental nuclei  of differential equations of equilibrium for the higher order 

axisymmetric spherical elastic shells, as well as the vectors of local unknown functions loc

sU  

have the form  



 

, ,

, , ,

, , ,
,, ,

,x x x r

r x r r

s s

u u u u x sloc loc

s ss s
r su u u u

L L U

UL L

 

  
= =L U                                          (49) 

The coefficients of the fundamental nuclei  
,

loc

sL  can be easily calculated using the equations 

presented in our previous publications [6-10]. 

In Table 2, the lowest eight frequency parameters 0,0

,/
x xu uL  =  for the there-layered 

composite cylindrical axisymmetric shell fixed at the ends are presented for the Timoshenko’s 
shear deformation, the first, second,  third, fourth  and fifth order models.   

Table 2. Frequency parameter 0,0

,/
x xu uL  = of the axisymmetric cylindrical shell 

 

In Fig. 5 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the 
axial direction for the fifth-order model for a there-layered composite axisymmetric cylindrical 
shell fixed at the ends. 

 

Fig. 5. First eight axisymmetric eigenmodes for cylindrical shell in axial direction for fifth 
order model. 

In Fig. 5 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the 
radial direction for the fifth-order model for a there-layered composite axisymmetric cylindrical 
shell fixed at the ends. 

 
 

Fig. 6. First eight axisymmetric eigenmodes for cylindrical shell in radial direction for fifth 
order model. 



The data presented in Table 2 and Fig 5, 6 gives qualitative and quantitative information about 
the behavior of the first eight axisymmetric eigenvalues and eigenvectors of the the fixed at 
the ends cylindrical shell within the framework of the CUF for the first, second,  third, fourth  

and fifth order 1,...,5 =  models and a comparison with the classical Timoshenko model. The 
reported data are in good agreement; indeed, for models of the third order and higher, the 
results are the same. Table 2 follows that the third order and higher models give more accurate 
results and better models the free vibration  of axisymmetric cylindrical shell. These results 
can be used as benchmark examples for finite element analysis of elastic composite 
multilayers cylindrical shell in the case of axisymmetric loading. 

 

3.3 Conical axisymmetric shell 

Let us consider a truncated conical shell formed by rotation around an axis 
3x  of a straight 

line that formed constant angle   with it. The middle surface of the shell is a cone, the 

analytical representation of which in Cartesian coordinates 
1 2 3, ,x x x  is given by the equation 

 22 2 2

1 2 3 cos( )x x x + =  (50) 

We introduce cylindrical coordinates, such that 1x x= , 2x =  and 3x r= , ]si[ n ), (r x hxh  − + . 

Then parametric equations of the surface of revolution (50) can be represented in the following 
vector form  

1 2 3( , ) sin( )cos( ) sin( )sin( ) cos( )x x x x     = + +r e e e                            (51) 

If the cylindrical coordinates x  and    belong to the intervals 1 2[ , ]x H H , [0,2 ]  , then 

we have a closed in Fig. 3. 

 

Fig. 6. Truncated circular cone. 

The coefficients of the first quadratic form of a conical surface and the principal curvatures are  

1 2 1 2

cot( )
1, si 0),n( ,A A x

x
 


== = =                                  (52) 

respectively. 
Here we present some numerical simulation results of a higher order CUF-based conical 
composite laminate. Calculations are made for the following data: angle / 6 = , mechanical 

load is axisymmetric, uniform and applied to the upper surface of the shell, in the radial 
direction r . 
Since the external load is applied axisymmentricaly, the situation becomes simpler. In this 



case, all functions describing the stress-strain state of the shell are one-dimensional, and the 
resulting equations are much simpler. 
The resulting differential equations have the same structure as (35), but the local matrices 

,

loc

sL  of the fundamental nuclei  of differential equations of equilibrium for the higher order 

axisymmetric spherical elastic shells, as well as the vectors of local unknown functions loc

sU

have the form (53). 

The coefficients of the fundamental nuclei ,

loc

sL  can be easily calculated using the equations 

presented in our previous publications [6-10]. 

In Table 3, the lowest eight frequency parameters 0,0

,/
x xu uL  =  for the there-layered 

composite cylindrical axisymmetric shell fixed at the ends are presented for the Timoshenko’s 
shear deformation, the first, second, third, fourth  and fifth order models.   

Table 3. Frequency parameter 0,0

,/
x xu uL  =  of the axisymmetric cylindrical shell 

 

In Fig. 7 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the 
axial direction for the fifth-order model for a there-layered composite axisymmetric conical 
shell fixed at the ends. 
 

 

Fig. 7. First eight axisymmetric eigenmodes for conical shell in axial direction for fifth 
order model. 

In Fig. 8 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the 
radial direction for the fifth-order model for a there-layered composite axisymmetric conical 
shell fixed at the ends. 
 



 

Fig. 8. First eight axisymmetric eigenmodes for conical shell in radial direction for fifth 
order model. 

The data presented in Table 3 and Fig 7, 8 gives qualitative and quantitative information about 
the behavior of the first eight axisymmetric eigenvalues and eigenvectors of the fixed at the 
ends conical shell within the framework of the CUF for the first, second, third, fourth and fifth 
order 1,...,5 =  models and a comparison with the classical Timoshenko model. The reported 

data are in good agreement; indeed, for models of the third order and higher, the results are 
the same. Table 3 follows that the third order and higher models give more accurate results 
and better models the free vibration of axisymmetric conical shell. These results can be used 
as benchmark examples for finite element analysis of elastic composite multilayers conical 
shell in the case of axisymmetric loading. 

 

4. Conclusion 

Higher-order theories for composite multilayered elastic shells of revolution have been 
developed here using the CUF approach which is based on the series expansion of general 
3-D equations of linear theory of elasticity into a series expansion with respect to shell 
thickness. The 2-D higher order theory of composite multilayered shells of revolution is 
developed from general 3-D equations of linear anisotropic theory of elasticity using the 
principle of virtual power. All the functions that determinate the stress-strain state of the shell, 
such as stress and strain tensors, vectors of displacements and body forces are expressed in 
terms of the coefficients of the series expansion with respect to the thickness coordinate of 
the shell. Thus, all equations of the linear theory of elasticity, including generalized Hooke’s 
law, were transformed to the corresponding equations for the coefficients of the series 
expansion in accordance with the (CUF) approach. A system of the equations of motion in 
terms of the series expansion of displacement vectors coefficients and essential boundary 
conditions is obtained. 
The equations of 2-D models of higher orders of shells of revolution are developed and 
presented here, for  the cases the middle surfaces of which can be represented analytically. 
More specifically, we represent here a higher order theory for plates in polar coordinates, 
cylindrical, conical shells. The First eight axisymmetric eigen vectors and eigen values are 
calculated numerically using the built-in functions NDEigensystem and NDEigenvalues. Of 
the computer algebra software Mathematica. 
The resulting equations can be used for theoretical analysis and calculation of the stress-strain 
state, as well as for modeling thin-walled structures used in science, engineering, and 
technology. The results of calculation can be used as benchmark examples for finite element 
analysis of the higher order elastic shells. 
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