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Abstract

In this work higher order models of elastic shells of revolution are developed using the
generalized elastodynamic variational principle. Following the Unified Carrera Formula (CUF),
the stress and strain tensors, as well as the displacement vector, were expanded into series
in terms of the coordinates of the shell thickness. As a result, all the equations of the
elastodynamics were transformed into the corresponding equations for the expansion
coefficients in a series in terms of the coordinates of the shell thickness. The resulting
equations have been used for theoretical analysis and calculation of the eigenvalues and
eigenmodes of the higher order shells of revolution.

1. Introduction

Shell models are important structural elements that are widely used in aviation and airspace
engineering and technology. There are many books and thousands of articles on the
theoretical analysis and modeling of the shells of revolution. Below, we will mention only a few
of them that we used in preparing this article. The milestone book by Timoshenko and
Woinowsky-Krieger [19] is a standard reference to the classical plate shells theory.
Composited and laminated shells were considered in Ambartsumyan [2], Jin et al. [13], Qatu
[17], Reddy [18].

In most of the publications mentioned above classical shell theories based on the Kirchhoff-
Love and Timoshenko-Midlin hypotheses are used. There is another approach to the theory
of shells, which consists in expanding the components of the stress-strain field into series of
polynomials in thickness. This approach was first proposed by Cauchy and Poisson in the
nineteenth century. Significant extensions and developments of this approach for shells of
arbitrary geometry were made by Kilchevskiy [15]. He created the so-called generalized tensor
series for the expansion of three-dimensional equations of elasticity in terms of the thickness
of the shell. Then the Legendre polynomials were proposed for the development of new
theories of higher orders. This approach has significant advantages, since the Legendre
polynomials are orthogonal and, as a result, simpler equations are obtained. There are many
books and research papers devoted to the application of the polynomial series to the
development of higher order theories of bars, plates, and shells. Among others, the books of
Khoma [14], Pelekh and Lazko [18] and the papers of Czekanski and Zozulya [11], Zozulya
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[21, 22]. Carrera's Unified Formulations (CUF) approach can be viewed as a generalization of
the polynomial decomposition method for beams, plates and shells, including sandwich
structures and multi-field loads. Hundreds of articles are available at (CUF) on the various
extensions and applications of Carrera and many more. Among them, the following are
mentioned here: review papers Carrera [1-3] deals with multilayer anisotropic plates and
shells, plates, and shells, shells of revolution are considered in Carrera and Zozulya [6-10].
For more information and references related to the polynomial series approach for developing
models of multilayer anisotropic composite plates and shells and their thermal and finite
element analysis, see Carrera et al. [4, 5], as well as the works mentioned above.

In this work, 2-D models of higher order shells of revolution are developed based on the 3-D
equations of the dynamic theory of elasticity. Proposed models are based on the generalized
variational principle and expansion of the 3-D equations of elasticity into generalized series in
terms of cross-sectional coordinates in thickness. Numerical calculations of the eigenvalues
and eigenmodes were performed using the computer algebra software Mathematica, and the
results of calculation are presented in the form of tables and plots. These numerical results
can be used as a benchmark example for finite element dynamic analysis of the elastic higher
order shells.

2. Statement of the problem.

Let an elastic shell of revolution occupy a region V =Qx[—h,h] in a 3-D Euclidian space, where

Q is the middle surface and 2h is the thickness of the shell. The classical theory of elasticity
assumes that the body consists of interconnected points and continuously fills the occupied
volume. The position of a point during deformation is determined by the displacements vector
u(x,t) =u.(x,t)e, as functions of their coordinates and time. The stress-strain state of the shell

as elastic continua is defined in terms of the symmetrical stress 6(x,t) =o; (x,t)e; ®e; and
strain &(x,t) = ¢;(x,t)e; ®e; tensors. Boundary of the shell is piece-wise smooth and consists

of sections &V, and ¢V, to which the vectors of traction p(x,t) = p;(x,t)e; and displacements

u(x,t) respectively, are assigned. The elastic shell may be subjected to volume forces b(x,t).

Following our previous publications, here we introduce vector notations and represent the
above functions that determine the stress-strain state of elastic media in the vector form.

T T T

U=[u, U, U] . p=|p, P, ps| . b=lb,b,bs|,
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These quantities are not independent, they are related by the equations of linear elasticity.
Here we will show that all the equations of linear elastodynamics including boundary
conditions can be obtained from the generalized variational principle (see Gurtin [12]). For this
purpose, let us introduce the generalized functional, that depends on the functions u,g,6

defined above in the form
]
dD=J{J‘(c.(D.u—a)+W(s)—b.u+§6tu.atujdv— J.p'udS— Ic-n-(u—(p)dS dt (2)
H\V iy &,

Here D is a matrix differential operator, whose form depends on chosen coordinate system
(see Carrera and Zozulya [6] for references), p is a material density, W(g) is a potential

energy function.

Let us consider a variation of the functional (2), taking into account that all the above functions
are independent. The variational principles of elastodynamics and the details of the
corresponding functionals variation are considered in Gurtin [12]

After some transformations and simplifications, we get
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Here we take into account that

ImD-é‘udV: Io-5u~nd5+JG'5u-ndS—ID-6-5udV (4)
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Variation of the kinetic energy of a linear elastic media
_P .
K= 2J a,u-a,udv (5)
presented by the equation, see Gurtin [12]
t t
j Kdt=—p j dt j o%u - sudV (6)
t t, V
In view of variations su, 66 and o¢ are independent, all equations of elastodynamics and
the corresponding boundary conditions follow from the equation (3), they have the form:
D-c-b=pii, €=D-u,
7
c:aﬂ, o-n—y=0, u-¢@=0. 7
oe

In the case of linear orthotropic elastic media, potential energy function can be presented in
the following general form

W(e)=¢'-C-¢ (8)
where C is the 6x6 matrix of elasticity moduli of the form
c, C, C, 0 0 O
c, ¢, C, 0 0 O
Co c, C, C, 0 0 O ©)
o o o ¢, 0 O
0 0 0 o0 C, O
0 0 0O 0 0 Cg4

In the case of isotropic material, the corresponding classical moduli of elasticity presented in
(9) have the form

Cy=Cy=Cyu=A4+2u, C,=C3=Cu=21, C,=C3=Cy=pn (10)

where 1 and ¢ are Lamé constants of classical elasticity.

In the general case of inhomogeneous anisotropic body coefficients of the matrix of elastic
properties depend on coordinates C;(x) and orientation in the space. In the case of multilayer
composite shells, it is possible to use layers of different materials, therefore the elastic moduli
are piecewise constant over the thickness and depend only on the coordinate perpendicular
to the middle surface X, .

For the case of a multilayer composite shell consisting of K laminas the dependence of the
elastic moduli on the stiffness coordinate can be mathematically expressed as follows



C; (%)= icif (H(X; =X, —h)—H(X; = X, +h,)) (11)

Here C; is the value of the elastic moduli of the k lamina, h, is the coordinate of the lower
surface of the k lamina and H(x) is the Heaviside unit step function.

The individual layers generally are orthotropic with principal properties in orthogonal
directions. Their mechanical properties depend on fibers orientation. The values of elastic
moduli along the fibers much higher than in perpendicular direction. An orthotropic material
behavior is characterized by three symmetry planes that are mutually orthogonal. Matrix of
elastic moduli has the form

Clkl ClkZ C1k3 0
ClkZ CZkZ CZkB 0
Chi Cx Cyu O
0 0 0 CY 0
0 0 0 0 C& 0
0o 0 0 0 o0 Cck

o O O

c* (12)

o O O O

Laminate composite shells usually have layers with different fiber orientation, therefore, when
setting problems for laminate structures, it is necessary to calculate mechanical properties
with a change of the coordinate system. Let us consider the reference coordinate system
Xx=(X,X,,%) and rotate it around axis x, by an angle . Matrix operator of such

transformation has the form

cos(@) sin(@) O
L(0) =|-sin(@) cos(@) 0 (13)
0 0 1

The stress ¢ and strain € vectors under such a transformation of coordinates are transformed
as follows

o' =T)o, £=T (O)e (14)

Matrix operators T(#) and it transposed operator T (d) can be obtained from the operator
L(#) by comparing the transformation rules of tensors and vectors, see [9,10] for details.
Taking the derivative of the potential energy density function with respect to the strain € tensor

and substituting the kinematic relations into the obtained result, the classical stress vector in
the case of linear orthotropic elastic media can be presented in the following forms

c=ﬂ=C'S=C-D-u (15)
oe
Substituting the equations for the matrix of material constants (9), and the stress vector (15),
into the equations of motion (7) the differential in the form of displacements can be represented
in a compact form as follows

L-u-b=piu (16)
In the same way, substituting the expressions for the stress vector from (15), one obtains the

natural boundary conditions for the linear theory of elasticity in the form of a displacement
vector

B-u=p a7



where L and B are the matrix differential operators, U is the vector of unknown functions
and band p are the vectors of external load and surface traction, respectively. They have the

following form

LU1vU1 LUlnuz LUan:s ul bl BUlvul BU1vU2 Bul,u3 pl
L= Luz,ul LUQ,Uz Luz,ug , u=ju, b= b2 , B= Buz,ul Buz,uz BUZ,U3 , p=|p, (18)
LUs Uy LUs Uz Lus Uz Us b3 Bu3 Uy Bu3 Uy Bu3 Ug Ps

In the case of free vibration with circular (natural) frequency @ vector of displacements can
be presented in the form

u(x,t) = U(x)e'" (19)

Then substituting (19) in the equation of motion (16) we obtain the equation of free vibration
in the form

L-U+pa’U=0 (20)

This equation is used to model free vibration of elastic systems and analysis of the eigenvalue.
For the purpose of the theory of shells of a higher order developed here, in the same way as

in our previous publications, we introduce curvilinear coordinates X=(X;,X,,X;) related to the
middle surface of the shell. The coordinates (X;,X,) are related to the principal curvatures k,
and k, whereas coordinate x, is perpendicular to the middle surface of the shell. Then position
of any material point of the shell in the domain V may be presented by the position vector R(x)
in the form

R(X)=I’(X1,X2)+X3n(X1,X2) (21)

where r(x,X,)is the position vector of the points located in the middle surface of the shell,
and n(x;, x,)is a unit vector perpendicular to the middle surface of the shell.

Since the introduced coordinates are orthogonal, the Lamé coefficients and their derivatives
can be represented as

H,=A ([1+k,x%) fora=12 and H, =1,

oH, OA oH 22
s _ ’3(1+kax3), ﬂZKﬂAﬂ,aHBZO ( )
oX, OX, OXy oX;

or (%, %,) Or(x,%,)
oX, OX

a

Here A, (X,X,) =\/ are the coefficients of the first quadratic form of a

surface, k, are the principal curvatures and a=1,2.

The CUF approach to the development of the theory of plates and shells of higher order
consists in the following. The displacement u(x;,X%,,%;) vector and its variation Su(x,,X,,X,),
which are functions of curvilinear coordinates (x;,X,,X,) are represented as series of functions
of coordinate x, orthogonal to the middle surface of the shell, in the form

u(Xl,XZ,X3)=FU’T(X3)~UT(X1,X2), 5U(X11X2vx3)=Fu,z(X3)'5u7(X11X2)’ r=12,..,M (23)

Here, according to Einstein’s notation, the repeated subscript 7 indicates summation from 0
to M.
In the equations (23) the basic functions of the thickness coordinates F, . (x;) and vector of

displacement u_(x,X,) have the form



Ful,‘r(x3) 0 O ul,z’(xl’ XZ)
Fu,r (Xa) = 0 Fuz,r (Xs) 0 ) u‘r(xl’XZ) =Uy, (Xl,Xz) (24)
0 0 F.(x) Uy, (% %,)

In the general case, the choice of the number M and functions F, . (x,) is arbitrary, i.e., to

model the displacements field of shell over its thickness, one can consider various basis
functions of any order. The final equation becomes simple if functions F,, are polynomials,

especially orthogonal polynomials. The expansions coefficients u_(x,,X,) are functions of the
coordinates x, and x, which belong to the middle surface of the shell. The first subscript in
the basis functions F, . indicates the displacement vector component, the second index

indicates the number of the function in the series expansion.
Substituting the displacement vector represented by series expansion (23) to the kinematic
Cauchy relations (7), one can obtain the strain vector in the form

e=D,, u, (25)
where D, . is a matrix operator of the form
ii _F“N oA, 0 ﬂﬂ__F“N oA 0 F, -F k
A O AR X A, % AA, OX, ox
F F F F oF 26
or [Fer A Fued o Fuoo Room R oo 0 (26)
AR OX, A 0% A O AR O 0%
oF F F
F, .k F, ok, —== 0 Nur 0 Dy 0
: & 0%, A, 0OX, A O

Substituting kinematic Cauchy relations (25) into the generalized Hooke’s law (15) the stress
vector can be presented as
6=C-D,, -u, 27)

Substituting the expressions for the strain vectors represented by equations (25), the stress
vectors represented by equations (27) into (8), we obtain the variation of the potential energy
density in the form

oW = DIT : Fu,r (XS) ' 5UT(X1, XZ) -C- (Du,s : Fu,s (XS) : us(X11 XZ) (28)
The variation of the work of the external body and surface forces can be represented as

Lo (0,p) = [F,, (%) -8U, (%, %) F, (%) b, , (%, 3%,)dV + [ F, () 8U. (%, %) -p(x,%)dS  (29)

Substituting representations (23) for vector of the displacements and its variation, the variation
of the potential energy density (28) and the variation of the work of the external body and
surface forces (29) in general variation principle (2) and using the matrix analogy of Gauss-
Ostrogradsky divergence theorem in the form

[Dl,-C-Dy,-F, (%) U (%, %,) - 8U, (%, %, )aV =
\Y

(30)
= [DAT-C-D, ,+F, (%) U, (%) 8U, (X, %,)dS
oV

where D, is the matrix analogy of the vector normal to the boundary, which has the form



nF, 0 n,F, 0 0 0

U, 7 20 Ut

DT={ 0 nF_. nF, 0 O 0 (31)

27 Uy,7 1% uy,7

0 0 0 0 nF,, nF,

27 u,7

we obtain differential equations of motion for high-order elastic shells in the form of
displacements. They can be represented in matrix form

Ly -uy by =My iy, (32)
where the global matrix operator L?] , the vectors of unknown functions ug, and the right hand
b side have the form

Ly - L MIT - M, up* by
LS, =| : . L M =] . ol,oug =], b =] (33)
I—I(r\)/?,l I—Il?/(I:M MII\(/JIC,I MIISIC,M ull\(jlc blr\(jlc

Matrices L', are the fundamental nuclei of the differential equations of equilibrium of elastic

shells of higher orders. They, as well as the vectors of local unknown functions u's°C and local
expression for external body and surface loads b'sOC have the form

LT'SUN& LTYSUivUZ LT'SULU3 M T’SU1VU1 0 0 ul,s U,
ngf:s = I‘Tysuz,u1 I‘rvsuz,uz I‘Tysuz,u3 ' MITOE = 0 M Tysuz,uz 0 ' ulsoc = uz,s ’ blsoc = 6uz,r (34)

Lrysuavul LT’SUavUZ LT'SUSYUB O O M Tvs“s:“a US'S E)‘u T
For free vibration and eigenvalue analysis similarly to (20) from (32) we obtain

G G 2 G |G
L, -Uy +o°M, Uy, =0 (35)

When developing differential equations of motion for high-order elastic shells in the form of
displacements, we take into account that the integrals over volume and surface in the equation
(3) can be represented as

[edv =] jl(-)dxsdQ, j Oav = | }(-)dx3ds (36)

oQ—-h

Similarly, by performing the mathematical transformations described in the article Carrera and
Zozulya [9, 10], the natural boundary conditions for higher order elastic shells can be
represented in the matrix form

By Uy =Py (37)

where the global matrix operator BY¢, the vectors of unknown functions u;, and the right-
hand side p;, have the form

B - Bl pi*
B“N,,'G =| : Co, pfA = : (38)
BI|3|C,1 Bll\c}IC,M ploc
The matrices B' are the fundamental nuclei for the natural boundary conditions for higher
: y g

,S
loc

order elastic shells and p,~ represent an expression for the vectors of the external load applied
to the ends of the shells. They can be presented as



7,8 7,8 7,8 Up,Up
B B B JOP,

Uy, Uy Uy, U Uy ,Ug

B =[87,, B, BU.|. pE=nUR, 9

Uz Uy Uz Uz

BT,S Bz’,S Bz’,S JU3,U3P

Us, Uy Uz, Uy Uz, U3 7,5 ' Ug,S

The essential boundary conditions for higher order elastic shells can be represented in matrix
form
L
By® Uy, =uy’ (40)
Here the global matrix operator BfA'G, the vectors of the right-hand side have the form

Il .- 0 u'e
BLe =l . i, uyl=| (41)
0 --- 1 u&'oc

where 1is the identity matrix and therefore the global matrix operator B;® is the identity

matrix operator.

Equations (40)-(41) are valid for the theory of shells of any order. The classical theory of shells
based on Timoshenko-Mindlin hypothesis can be obtained from these equations as a special
case if we take in the equations (32) the basic functions of the thickness coordinates F, (x;)

and vector of displacement u_(x,X,) (24) in the form

100 ul,l(xl’xz) X, 00 Ul,z(xvxz)
Fu,l(x3) =0 1 0, ul(xl'xz) = u2,1(xfl.'x2) ) Fu,z(xa) =0 X3 0, U2(X1,X2) = uz,o(xv Xz) (42)
0 01 Us, (X, %) 0 0 O 0

In the following sections, based on the equations presented here, we consider in more
detail shells of revolution of various geometries and solve problems free vibration numerically
using build-in functions NDEigensystem and NDEigenvalues of the computer algebra
software Mathematica.

3. Analysis of eigenvalues and natural frequencies of shells of revolution

In this section, based on the approach developed here, we consider in more detail composite
laminate axisymmetric shells of revolution of various geometries and solve free vibration
problems and eigenvalue analysis. For that purpose we will use system of differential
equations (35) and the corresponding essential boundary conditions (40).

Usually, such problems are solved using the FEM or other numerical methods. Many
commercial and free open software programs can be used to solve considered here problems.
In this study, we use the computer algebra software Mathematica, namely the build-in
functions NDEigensystem and NDEigenvalues. As an introduction to the Mathematica and
its programming language, one can refer the books by Wolfram [20] and the Wolfram
Language documentation may also be useful.

Here we consider as special cases of shells of revolution a laminate composite axisymmetric
circular plate, cylindrical, and conical shells with three layers and angle-ply layup (0/90/0)

under uniform symmetrical loading applied to the upper surface of the shell. The layers have
the same thickness h =0.33h, h, =0.33h and h, =0.33h. The shells are fixed at the ends and

the mechanical properties of the laminas are taken as in [9, 10]. The following mechanical
properties of lamina are used:

E, =25 E,=1,G, =G, =G,, =0.5,1,, =v;, =v,, =0.25, p=1 (43)



Here E , E,are Young's moduli, G,,,G,,,G,; are the shear moduli, v,,,v,; are Poisson’s ratios
and p is a density of material.

Due to the fact that we consider axisymmetric shells of revolution, all functions describing the
stress-strain state of the shell do not depend on rotational coordinate, all derivatives with
respect to it vanish, and the displacement in the circumferential direction is zero. Therefore,
tensors of stress 6(x,r) and strain &(x,r) tensors, as well as the displacements u(x,r), forces

vectors introduced in (1) the form

-
&=

-
y U=

T

G = |0y Uq)q)’o-rr 10y gxx'g(p(p’g e Exr (44)

uX,uI'

The resulting differential equations can be easily obtained from the general case presented
above, using the values of the coefficients of the first quadratic form of the surface and the
principal curvatures. More details for the case of the homogeneous shells can be found in
Carrera and Zozulya [6-10].

3.1 Circular axisymmetric plate

Let us consider circular plate as special case of the shell of revolution. In order to obtain
equations that describe mechanical behaviour of the higher order composite multilayer circular
plate, let us introduce polar coordinates, where x, =p, X, =¢ and x,=z, ze€[-h,h]. The
middle surface of the circular plate is the circle of radius R, with hole of radius R, shown in

the Fig. 1. Coefficients of the first quadratic form of a surface and principal curvatures are
equalto A =1, A =p, and k =0, k, =0, respectively.

Fig.1. Circular plate as special case of the shell of revolution

Here we present some results of numerical simulation of the higher order three layers
composite laminate circular plate based on CUF. Calculations are made for the following data:
mechanical loading is axisymmetric, uniform and applied to the upper surface of the plate,
L=L, —L,, in the axial direction x,. Here L, and L, are outer and inner radius of the plate,
L,/L =2 and h/L=0.1

Since the external load is applied axisymmentricaly, the situation becomes simpler. In this
case, all functions describing the stress-strain state of the plate are one-dimensional, and the
resulting equations are much simpler.

The resulting differential equations have the same structure as (35), but the local matrices L',
of the fundamental nuclei of differential equations of equilibrium for the higher order
axisymmetric spherical elastic shells, as well as the vectors of local unknown functions U

have the form
LZ',S Lr,S
Lz',SUZIu LT,S

p.s

U

z,8

L = Ut = (#5)




The coefficients of the fundamental nuclei L'* can be easily calculated using the equations
presented in our previous publications [6-10].

In Table 1, the lowest eight frequency parameters Q=w,/p/ LO'OUWUP for the there-layered
composite axisymmetric circular fixed at the ends are presented for the Timoshenko’s shear
deformation, the first, second, third, fourth and fifth order models.

Table 1. Frequency parameter Q=w /p/ LO'OUWUP of the axisymmetric circular plate

Models, h/L=0.1 Eigenmode 1 Eigenmode 2 Eigenmode 3 Eigenmode 4 Eigenmode 5 Eigenmode 6 Eigenmode 7 Eigenmode 8
Timoshenko 1.8518 3.67503 5.66747 7.62113 9.58899 10.8162 11,5651 12,5857

First order 1.8518 3.67503 5.66747 7.62113 9.58899 10.8162 11.5651 13.4973
Second order 1.85109 3.67079 5.65776 7.60014 9.54887 10.7954 11.4945 13.359

Third order 1.6599 3.37149 5.25001 7.16241 9.11536 9.67998 11.0734 13.0143
Fourth order 1.6591 3.3705 5.24915 7.16035 9.10677 9.67162 11.0398 12.8773

Fifth order 1.6471 3.34141 5.21079 7.11638 8.88799 9.05891 10.9812 12,7899

Fig. 2 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the radial
direction for the fifth-order model =5 for a there-layered composite axisymmetric circular
plate fixed at the ends.

Up 2(p)

Fig. 2. First eight axisymmetric eigenmodes for circular plate in axial direction for fifth order
model.

Fig. 3 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the axial
direction for the fifth-order model =5 for a there-layered composite axisymmetric circular
plate fixed at the ends.

Uz 1(p) Uz 2(p)
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Fig. 3. First eight axisymmetric eigenmodes for circular plate in radial direction for fifth order
model.

The data presented in Table 1 and Fig 2, 3 gives qualitative and quantitative information about
the behavior of the first eight axisymmetric eigenvalues and eigenvectors of the the fixed at
the ends circular plate within the framework of the CUF for the first, second, third, fourth and

fith order Z=L-+° models and a comparison with the classical Timoshenko model. The
reported data are in good agreement; indeed, for models of the third order and higher, the
results are the same. Table 1 follows that the third order and higher models give more accurate



results and better models the free vibration of circular axisymmetric plates. These results can
be used as benchmark examples for finite element analysis of elastic composite multilayers
circular plates in the case of axisymmetric loading.

3.2. Axisymmetric cylindrical shell

Let us consider a cylindrical shell formed by rotation around an axis X, of a straight line that

parallel to it and located at a distance R from it. The middle surface of the shell is a cylinder,
the analytical representation of which in Cartesian coordinates x,x,,x, is given by the

equation
X2 +x2 =R? (46)
We introduce cylindrical coordinates, such that x =x, x,=¢ and x,=r, re[R—h,R+h].
Then parametric equations of the surface of revolution (50) can be represented in the following
vector form
r(x, ) = Rcos(p)e, + Rsin(p)e, + xe, 47

If the cylindrical coordinates x and ¢ belong to the intervals x€[0,H], ¢ €[0,27], then we
have a closed in Fig. 4.

Fig. 4. Straight circular cylinder.

The coefficients of the first quadratic form of a conical surface and the principal curvatures are

A=1 A =R k=0, KZ:% (48)
respectively.
Here we present some numerical simulation results for the higher order CUF-based composite
three layers cylindrical laminate. Calculations are made for the following data: the thickness
to length ratio is R/h=10 and the length to radius ratio is H/R=3, mechanical load is
axisymmetric, uniform and applied to the upper surface of the shell, in the radial direction r.
Since the external load is applied axisymmentricaly, the situation becomes simpler. In this
case, all functions describing the stress-strain state of the shell are one-dimensional, and the
resulting equations are much simpler.
The resulting differential equations have the same structure as (35), but the local matrices
L', of the fundamental nuclei of differential equations of equilibrium for the higher order

axisymmetric spherical elastic shells, as well as the vectors of local unknown functions U
have the form



7,8 7,8
Uy Uy Uy, Uy

7,8 7,8
L - L

L = U= (49)

rs

Uy, up

The coefficients of the fundamental nuclei L', can be easily calculated using the equations
presented in our previous publications [6-10].

In Table 2, the lowest eight frequency parameters Q=w,/p/ LO’Oux,ux for the there-layered
composite cylindrical axisymmetric shell fixed at the ends are presented for the Timoshenko’s
shear deformation, the first, second, third, fourth and fifth order models.

Table 2. Frequency parameter Q=w,/p/ LO'OUX,UX of the axisymmetric cylindrical shell

Models, h/L=0.1 Eigenmode 1 Eigenmode 2 Eigenmode 3 Eigenmode 4 Eigenmode 5 Eigenmode 6 Eigenmode 7 Eigenmode 8
Timoshenko 3.32075 3.43172 3.7414 4.08202 4.13005 4.33649 4.54281 5.02811
First order 3.30118 3.41463 3.72242 4.06603 4.10299 4.33284 4.52184 5.00347
Second order 3.26682 3.39041 3.70004 3.98507 4.05172 4.32076 4.50789 4.98911
Third order 3.25193 3.343 3.6002 3.70578 3.93018 3.97619 4.31543 4.67986
Fourth order 3.21479 3.30968 3.5617 3.69857 3.71752 3.89378 4.28017 4.39163
Fifth order 3.2123 3.2993 3.48052 3.55386 3.71728 3.87652 4.27397 4.38675

In Fig. 5 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the
axial direction for the fifth-order model for a there-layered composite axisymmetric cylindrical
shell fixed at the ends.
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Fig. 5. First eight axisymmetric eigenmodes for cylindrical shell in axial direction for fifth
order model.

In Fig. 5 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the
radial direction for the fifth-order model for a there-layered composite axisymmetric cylindrical
shell fixed at the ends.
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The data presented in Table 2 and Fig 5, 6 gives qualitative and quantitative information about
the behavior of the first eight axisymmetric eigenvalues and eigenvectors of the the fixed at
the ends cylindrical shell within the framework of the CUF for the first, second, third, fourth

and fifth order =13 models and a comparison with the classical Timoshenko model. The
reported data are in good agreement; indeed, for models of the third order and higher, the
results are the same. Table 2 follows that the third order and higher models give more accurate
results and better models the free vibration of axisymmetric cylindrical shell. These results
can be used as benchmark examples for finite element analysis of elastic composite
multilayers cylindrical shell in the case of axisymmetric loading.

3.3 Conical axisymmetric shell

Let us consider a truncated conical shell formed by rotation around an axis x, of a straight
line that formed constant angle y with it. The middle surface of the shell is a cone, the
analytical representation of which in Cartesian coordinates x;,X,,X, is given by the equation

X +X; =X; Cos(y)* (50)

We introduce cylindrical coordinates, such that x, =x, x,=¢ and x, =r, re[x—h,xsin(y)+h].

Then parametric equations of the surface of revolution (50) can be represented in the following
vector form

r(x, ) = xsin(y) cos(p)e, + xsin(y)sin(p)e, + xcos(y)e, (51)

If the cylindrical coordinates x and ¢ belong to the intervals xe[H,,H,], ¢<[0,27], then
we have a closed in Fig. 3.

Fig. 6. Truncated circular cone.

The coefficients of the first quadratic form of a conical surface and the principal curvatures are

A=1 A=xsin(y), x=0 «= COt)EV’) (52)

respectively.
Here we present some numerical simulation results of a higher order CUF-based conical
composite laminate. Calculations are made for the following data: angle v =z /6, mechanical

load is axisymmetric, uniform and applied to the upper surface of the shell, in the radial
direction r.
Since the external load is applied axisymmentricaly, the situation becomes simpler. In this



case, all functions describing the stress-strain state of the shell are one-dimensional, and the
resulting equations are much simpler.
The resulting differential equations have the same structure as (35), but the local matrices

L of the fundamental nuclei of differential equations of equilibrium for the higher order

axisymmetric spherical elastic shells, as well as the vectors of local unknown functions U!*

have the form (53).
The coefficients of the fundamental nuclei L'

7,8

presented in our previous publications [6-10].
In Table 3, the lowest eight frequency parameters Q=w,/p/ L°’°ux'ux for the there-layered

composite cylindrical axisymmetric shell fixed at the ends are presented for the Timoshenko’s
shear deformation, the first, second, third, fourth and fifth order models.

can be easily calculated using the equations

Table 3. Frequency parameter Q=w,/p/ LO'Oux,ux of the axisymmetric cylindrical shell

Models, h/L=0.1 Eigenmode 1 Eigenmode 2 Eigenmode 3 Eigenmode 4 Eigenmode 5 Eigenmode 6 Eigenmode 7 Eigenmode 8
Timoshenko 1.90761 3.40916 5.14379 6.86953 8.61787 10.0406 10.403 11.2587

First order 1.90571 3.40802 5.1429 6.86875 8.61709 10.0403 10.3797 10.4025
Second order 1.90267 3.40407 5.13582 6.8544 8.5904 9.88442 10.0187 10.2147
Third order 1.74996 3.13178 4.74505 6.41658 8.14213 8.93217 9.11417 9.1914
Fourth order 1.7458 3.12859 4.74288 6.41481 8.13853 8.44831 8.92537 8.93736

Fifth order 1.74007 3.12118 4.73208 6.4041 8.1225 8.29038 8.44015 8.91213

In Fig. 7 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the
axial direction for the fifth-order model for a there-layered composite axisymmetric conical
shell fixed at the ends.
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Fig. 7. First eight axisymmetric eigenmodes for conical shell in axial direction for fifth
order model.

In Fig. 8 shows graphs of the distribution of the first eight axisymmetric eigenmodes in the
radial direction for the fifth-order model for a there-layered composite axisymmetric conical
shell fixed at the ends.
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Fig. 8. First eight axisymmetric eigenmodes for conical shell in radial direction for fifth
order model.

The data presented in Table 3 and Fig 7, 8 gives qualitative and quantitative information about
the behavior of the first eight axisymmetric eigenvalues and eigenvectors of the fixed at the
ends conical shell within the framework of the CUF for the first, second, third, fourth and fifth
order 7 =1,...,5 models and a comparison with the classical Timoshenko model. The reported

data are in good agreement; indeed, for models of the third order and higher, the results are
the same. Table 3 follows that the third order and higher models give more accurate results
and better models the free vibration of axisymmetric conical shell. These results can be used
as benchmark examples for finite element analysis of elastic composite multilayers conical
shell in the case of axisymmetric loading.

4. Conclusion

Higher-order theories for composite multilayered elastic shells of revolution have been
developed here using the CUF approach which is based on the series expansion of general
3-D equations of linear theory of elasticity into a series expansion with respect to shell
thickness. The 2-D higher order theory of composite multilayered shells of revolution is
developed from general 3-D equations of linear anisotropic theory of elasticity using the
principle of virtual power. All the functions that determinate the stress-strain state of the shell,
such as stress and strain tensors, vectors of displacements and body forces are expressed in
terms of the coefficients of the series expansion with respect to the thickness coordinate of
the shell. Thus, all equations of the linear theory of elasticity, including generalized Hooke’s
law, were transformed to the corresponding equations for the coefficients of the series
expansion in accordance with the (CUF) approach. A system of the equations of motion in
terms of the series expansion of displacement vectors coefficients and essential boundary
conditions is obtained.

The equations of 2-D models of higher orders of shells of revolution are developed and
presented here, for the cases the middle surfaces of which can be represented analytically.
More specifically, we represent here a higher order theory for plates in polar coordinates,
cylindrical, conical shells. The First eight axisymmetric eigen vectors and eigen values are
calculated numerically using the built-in functions NDEigensystem and NDEigenvalues. Of
the computer algebra software Mathematica.

The resulting equations can be used for theoretical analysis and calculation of the stress-strain
state, as well as for modeling thin-walled structures used in science, engineering, and
technology. The results of calculation can be used as benchmark examples for finite element
analysis of the higher order elastic shells.
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