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Abstract

The present investigation assesses a novel family of flux limiter formulations to be used with high-order
flux reconstruction or correction procedure via reconstruction (FR/CPR) schemes to simulate supersonic flows
typical of aerospace applications. A modification to the original formulation is also presented such that un-
wanted limiter activations in smooth regions of the flow are reduced. Solutions obtained with such limiters
are compared to other well-established formulations currently available in the literature by employing a two-
dimensional, inviscid, supersonic flow within a convergent nozzle with a ramp test case. The modified limiter
formulation is observed to perform better than the reference schemes, but unwanted oscillations can still de-
velop in the solution, becoming more prominent with the increase of the order of the spatial discretization.
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1. Introduction
Among the different types of numerical methods currently used to solve the gas dynamics equa-

tions, compact, high-order schemes have been identified over the past few decades to be particularly
well suited for performing high-fidelity numerical simulations [1]. Due to the low dissipative nature of
high-order schemes, aeroacoustic analysis and high-lift prediction are among the many aeronautical
applications that benefit from their use. Furthermore, the compact stencil of these schemes allows
for efficient parallel implementations on distributed memory computer architectures by reducing the
amount of cross-node communication calls required to compute them. Essentially, all the required
information exchange between computer nodes happens over a well-defined surface of the compu-
tational domain. This is in stark contrast to wide-stencil, high-order formulations, such as the essen-
tially non-oscillatory (ENO) [2] and weighted essentially non-oscillatory (WENO) class of schemes
[3], which may require the synchronization of many layers of ghost-cells, or similar constructs, in
order to effectively implement them in massively parallel computer clusters.

When it comes to the simulation of compressible flows in the presence of shock waves, however,
a major shortcoming of compact, high-order schemes becomes apparent. Similar to what happens to
other types of numerical methods, compact, high-order schemes are susceptible to the development
of spurious oscillations in regions near discontinuities, such as shock waves [4, 5]. In order to avoid
such behavior, general shock-capturing schemes adopt one of two different strategies. The first one
is the explicit addition of artificial dissipation terms to the original equations. In the present context,
a well-known approach was introduced by Persson and Peraire in Ref. [6], which included not only
an artificial dissipation model, but also a sensor for the detection of solution discontinuities. The
second approach is to employ a limiter formulation which, together with a discontinuity sensor, should
decrease the high-order scheme to a highly dissipative, first-order formulation, effectively reducing
the spurious oscillations. For high-order schemes applied to unstructured meshes, examples of such
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limiter formulations were introduced by Michalak and Ollivier-Gooch in Ref. [7], as well as by Li and
Wang in Ref. [8]. Yet, both strategies rely on the same underlying mechanism in order to keep the
numerical solution oscillation-free. That is, additional numerical dissipation is added to the solution
in regions that contain discontinuities.

Unfortunately, if the computational cells that contain a discontinuity carry any meaningful amounts
of information that require a high-order formulation in order to correctly represent the local solution
behavior, the introduction of additional numerical dissipation can be a destructive process. This ef-
fectively removes one of the main advantages of this class of schemes, which is their low dissipative
nature. Recently, a new family of limiters has been proposed by Nishikawa [9], entitled the “R” family
of limiters, which allows for the construction of limiter formulations whose dissipative properties are
compatible with high-order schemes of arbitrary order. However, to the best of the authors’ knowl-
edge, practical numerical experiments with these schemes have been constrained to an edge-based
numerical formulation [9] using the flux and solution reconstruction (FSR) high-order scheme [10].
Hence, it is important to assess the limiter behavior when used in conjunction with other compact,
high-order schemes. The present effort is inserted exactly in this context, and focus on analyzing the
numerical characteristics of three different limiters from the R family, namely the R3, R4 and R5, when
applied to the solution of the Euler equations in the presence of strong shock waves.

The current analysis uses the flux reconstruction / correction procedure via reconstruction (FR/CPR)
framework [11, 12, 13, 14, 15] in order to develop unstructured, high-order numerical schemes for the
solution of the Euler equations. This framework has been chosen due to its ability to recover other
well-known, high-order schemes for the solution of hyperbolic equations, such as the discontinuous
Galerkin (DG) [16] and the spectral difference (SD) [17, 18] methods, thus allowing for a broader anal-
ysis of the new limiters. An in-house implementation of the second-, third- and forth-order FR/CPR
schemes [19], coupled with Roe’s numerical flux [20] and the BDF1 implicit time-march [21], is used
to solve supersonic flow problems of aeronautical interest. A two-dimensional, inviscid, supersonic
flow within a convergent nozzle with a ramp case is used to assess the differences between each
limiter formulation. In this test case, a strong shock wave is developed at the compression corner of
the ramp, followed by a sequence of strong shock-wave reflections, thus creating a well-suited test
case for assessing the performance of each limiter. Results obtained using a modified version of
the Michalak and Ollivier-Gooch limiter [7], as proposed by Li and Wang [8], are also added to the
analysis for comparison.

In the paper, the introduction section is followed by a presentation of the numerical formulation
used in the present work. Then, a brief description of the test case is performed, followed by the
obtained results. Finally, concluding remarks are presented.

2. Numerical Formulation
2.1 The FR/CPR Framework
In order to properly introduce the formulation of the three limiters, it is important to first briefly

describe the FR/CPR framework [22]. Consider the following generic system of nonlinear, hyperbolic
conservation laws written in the Cartesian coordinate system:

∂QQQ
∂ t

+ ∇⃗ · F⃗ (QQQ) = 0 , (1)

where QQQ is a vector of conserved variables, F⃗ is a nonlinear flux vector and t is the time variable.
By dividing the computational domain into a finite number of non-overlaping cells, a suitable weak
form of the above equation can be obtained by multiplying both of its members by an arbitrary test
function, w(x,y,z), and then integrating the resulting equation over the i-th cell of volume V, as follows∫

Vi

w
(

∂QQQ
∂ t

+ ∇⃗ · F⃗
)

dV= 0 . (2)

The overall solution to the above equation is approximated by a piecewise continuous function, where
the solution is continuous inside each cell and discontinuous across its faces. In this particular formu-
lation, the solution inside each cell is approximated by a polynomial, Qi, that belongs to the space of
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all polynomials of κ-degree or less, Pκ . Considering a nodal formulation, this polynomial can be fully
described by a finite number of solution values evaluated at well-defined points located inside the
cell, referred to as solution points (SPs), together with an appropriate set of Lagrange interpolating
polynomials, which compose the basis of Pκ . The SPs are usually placed in the same location as
a set of quadrature points, which enhances the overall numerical behavior of the scheme and also
avoids the need for extra interpolations when performing certain operations. By applying Eq. (2) to
the i-th cell, integrating by parts its second term, making use of the Gauss theorem, defining a com-
mon numerical flux across the cell interface, Fk, and applying integration by parts once again, the
following weak-form of Eq. (1) is obtained∫

Vi

w
∂QQQi

∂ t
dV+

∫
Vi

w
(

∇⃗ · F⃗i

)
dV+

∮
Si

w
[
Fk − F⃗i · n̂k

]
dS= 0 . (3)

In Eq. (3), Si is the boundary surface of the current cell, i.e., the union of its faces, and F⃗i ≡ F⃗ (QQQi).
The common discrete fluxes across cell interfaces are defined at another set of points, referred to as
flux points (FP), which are located at the cell boundaries and are typically computed by employing
a numerical flux definition, such as a Riemann solver or similar construct. In the present effort,
the authors have chosen to use Roe’s numerical flux [20], which assumes the following form when
evaluated at the k-th flux point

Fk =FRoek(QQQ
+
k ,QQQ

−
k , n̂k) , (4)

where n̂k is the outward-pointing, face unitary normal vector, evaluated at the k-th FP, while QQQ+
k and

QQQ−
k are the reconstructed conserved variable values evaluated immediately to the left and right sides

of the current interface k-th FP. Similarly to solution points, flux points are also typically located at
quadrature locations for improved robustness and computational efficiency. The last term of Eq. (3)
is essentially a correction term, that measures the difference between the common numerical flux,
Fk, and the internal, continuous flux across the cell interface, F⃗i · n̂k. By defining [F ]k ≡Fk − F⃗i · n̂k,
the surface integral can be cast into a volume integral by a collocation-like procedure [13]∮

Si

w[F ]kdS=
∫
Vi

wδδδ i dV , (5)

where δδδ i is the FR/CPR correction function. Substituting Eq. (5) in Eq. (3) and remembering that the
weak form should be true for all w, the corrected, discrete form of the original conservation laws is
obtained

∂QQQi

∂ t
+ ∇⃗ · F⃗i +δδδ i = 0 . (6)

In general, the flux vector is a non-polynomial function of QQQi. As such, it is necessary to project
it into Pκ in order to allow its divergent to be computed efficiently. Thus, the above equation, when
evaluated at the j-th SP of the current i-ith cell, becomes

∂QQQi, j

∂ t
+∏

j

(
∇⃗ · F⃗i

)
+δδδ i, j = 0 , (7)

where the second term is the projection of the flux divergent on Pκ , evaluated at the j-th SP. Here, it
is computed by evaluating the flux vectors at each SP, interpolating them using the current Lagrange
polynomial basis and then analytically computing the divergent of the resulting function. Equation (7)
is the final form of the FR/CPR scheme applied to a system of hyperbolic conservation laws. Further-
more, in this particular implementation, Eq. (7) is time-integrated by using the BDF1 (implicit Euler)
first-order scheme, which is well suited for the present application since only the steady-state solution
is desired, coupled with a Newton-Krylov type solver [23].
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2.2 High-Order Limiter Formulation
The limiter formulation acts directly over the solution reconstruction inside a cell. If qi is a generic,

scalar conserved variable evaluated at the i-th cell, then by defining qHOi as the high-order polynomial
representation of qi in the absence of a limiter, the limited reconstruction becomes

qi = qi +φi (qHOi −qi) (8)

in which the overbar indicates average cell values and φi is the limiter value associated with the i-th
cell. From Eq. (8), it becomes clear that if the reconstruction is fully limited, that is φi = 0, then the
overall solution becomes piecewise constant in the affected regions, thus decreasing the scheme to
first-order in terms of spatial discretization accuracy.

Nishikawa’s R3, R4 and R5 limiters, referred here as φ R3 , φ R4 and φ R5 , respectively, are first evalu-
ated at each FP using the following equations applied to each one of the conserved variables

∆− ≡ qHOi, j −qi , (9)

∆+ ≡
{

qmax −qi, if qHOi,j ≥ qi,
qmin −qi, if qHOi,j < qi,

(10)

φ
Rp
i, j =

{
(ap+ε p)+aSp

(ap+ε p)+b(∆
p−1
+ +Sp)

, if a ≤ 2b,

1, if a > 2b,
(11)

where p = 3, 4, 5 and

S3 = 4b2 , (12)

S4 = 2b
[
a2 −2b(a−2b)

]
, (13)

S5 = 8b2 [a2 −2b(a−b)
]

, (14)

with

a ≡ |∆+| , (15)

b ≡ |∆−| , (16)

ε
p = (K∆xi)

p+1 . (17)

In the limiter formulation, qmax and qmin are the maximum and minimum cell-averaged conserved
variable values among the current cell and all of its face-sharing neighbors. Furthermore, ∆xi is a
characteristic length of the cell, which here is taken as ∆xi = Vi

1
3 . Finally, K is a control constant that

allows the scheme to achieve better convergence properties, with values typically taken to be within
the interval K ∈ [0.01,10], provided the equations being solved are properly made dimensionless. The
actual cell limiter is simply the minimum value among those computed at each flux point of the current
cell. That is

φ
Rp
i = min

(
φ

Rp
i, j

)
. (18)

Ideally, the R3 limiter should be able to keep the truncation error of the limited scheme compatible with
a third-order formulation. Similar interpretation is also true for the R4 and R5 limiters, which should be
compatible with forth and fifth-order formulations, respectively.

In the present work, the aforementioned limiter is compared with the well-known Michalak and
Ollivier-Gooch limiter [7], but with the smoothing process performed by employing Persson and
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Peraire discontinuity sensor [6], as described by Li and Wang in Ref. [8]. For completeness, this
limiter formulation, referred here as φ S, is also described.

Similar to what has been previously done, first φ S is evaluated at each FP of the i-th cell using the
function below [7, 8]

φ
S
i, j =

{
− 4

27

(
∆+

∆−

)3
+ ∆+

∆−
, if ∆+

∆−
< 1.5,

1 , otherwise.
(19)

In situations in which the term ∆+/∆− would result in a division by zero, it is made equal to 1. A
preliminary cell value for the limiter can, then, be computed by using the following expression

φ̃
S
i = min

(
φ

S
i, j
)

. (20)

In order to avoid the possible effects that the limiter can have on uniform regions of the solution
and near smooth extrema, a smoothness indicator, Si, associated with the current i-cell is introduced
[6, 8]

Si = log10

(
⟨qi − q̂i,qi − q̂i⟩i

⟨qi,qi⟩i

)
, (21)

in which ⟨·, ·⟩i is the standard polynomial inner product applied to the i-th cell. The term q̂i is the
orthogonal projection of qi on Pκ−1. In regions in which the solution would be oscillatory, such as
near discontinuities, the numerator of Eq. (21) is expected to become large. In contrast, smooth
regions of the flow should not result in such large values, therefore allowing discontinuities to be
identified. Next, Si is rescaled to lie in the [0,1] interval by computing

σi =


1 , if Si ≤ S0 −ω ,

1
2

[
1− sin

(
π(Si−S0)

2ω

)]
, if S0 −ω < Si < S0 +ω ,

0 , if Si ≥ S0 +ω .
(22)

In this implementation, S0 and ω are constants and equal to −3.7 and 1.0, respectively. Finally, a
linear blend between φ̃ S

i and a constant function equal to 1 is performed using σi, thus allowing the
cell limiter value to be computed

φ
S
i = σi +(1−σi)φ̃

S
i . (23)

It is important to emphasize that the limiter value is computed for each one of the conserved variables,
separately.

The authors observed that the introduction of this particular smoothness indicator can substan-
tially improve the quality of the results. Therefore, a modified version of the φ Rp limiters is also
considered here, called φ RpS, in which the same process defined by Eqs. (21) and (22) is performed,
allowing φ RpS to be defined as

φ
RpS
i = σi +(1−σi)φ

Rp
i , (24)

for, once again, p equal to 3, 4 and 5. Since the introduction of the ε p term in Eq. (11) aims to address
the same problem tackled by the smoothness indicator, there is no need to use it when computing
φ

Rp
i in Eq. (24). Hence, the limiter value used in the right-hand side of Eq. (24) is computed using a

constant ε p value equal to 10−25, employed exclusively to avoid a division by zero.

3. Test Case Setup and Results
The test case considered in this paper is a two-dimensional, supersonic flow in a convergent

nozzle with a ramp [7, 8]. The domain is modeled as a channel with an included 15 deg. compression
ramp, followed by a 15 deg. expansion corner. The domain is extended further on both the upstream
and downstream directions in relation to the ramp in order to allow the development of the flowfield
and avoid possible numerical problems, as shown in Fig. 1. To better highlight the diffusive properties
of each scheme, a single coarse mesh consisting of 96×32 quadrilateral cells is considered, as also
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shown in Fig. 1. The left boundary is taken to be a supersonic inlet, in which atmospheric air enters
the domain perpendicular to the boundary surface with a Mach number M∞ = 2.0. The right boundary
is a supersonic outlet, the bottom boundary is an inviscid wall and the top one is a symmetry plane.

Figure 1 – Computational domain for the two-dimensional, supersonic flow in a convergent nozzle
with a ramp test case.

First, the original φ Rp limiters are compared to their smoothed counterparts, φ RpS. Figure 2 shows
the steady-state contour plots of the limiter value, with respect to the total energy per unit of volume,
computed using φ Rp and φ RpS with a fourth-order FR/CPR scheme (P3). Values related to φ Rp were
computed by taking K = 5, which was found by the authors to be a good compromise between avoid-
ing limiter activation in smooth regions of the flow and keeping a reasonably oscillation-free solution.
In the present implementation, no formal convergence of the steady-state residue to machine zero is
obtained with any of the limiters considered here. Still, macro-properties of the solution, such as the
aerodynamic forces that act upon the inviscid wall boundary, do fully converge, exhibiting a similar
behavior to the one described in Ref. [8].

From Fig. 2, it becomes immediately clear that the results associated with φ RpS assume values
different from 1 in regions of the domain which are better aligned with the expected location of the
shock wave. In contrast, limiter values computed using the three φ Rp limiters are prone to develop
seemingly random perturbations, particularly near the outflow boundary. As designed, none of the
limiters exhibit any type of spurious activations in the freestream region of the flow, located between
the inflow boundary and the first shock front. All limiters appear to be particularly sensitive to the
region near the expansion corner, where an expansion fan develops. However, except for the cells
that are located directly adjacent to the wall, limiter values obtained by employing all three φ RpS

formulations, when evaluated at the expansion fan region, always assume values that are higher
than 0.6. On the other hand, values computed using any of the three φ Rp limiters are seen to become
as low as 0.3 in the same region.

Another important solution feature to consider lies in the region between the first and the second
shock reflection, near the symmetry plane. There, it is possible to observe a horizontal and a vertical
region in which all limiters wrongly deviate from 1. The horizontal line spans a single cell in its width
direction, and probably originates from small perturbations that arise from the interaction between
the first incident shock and the symmetry plane, where all limiters assume a value that is virtually
zero, and then get advected throughout the domain. The vertical line spans two cells in its width
direction and is particularly critical in the results shown for the φ Rp limiters, since the scheme decays
completely to a piecewise constant solution representation, thus becoming first-order accurate. From
the limiter values alone it is already possible to assess the improvements achieved by the introduction
of a smoothness indicator to the original φ Rp limiter formulation.

To better visualize the impact that the limiter values shown in Fig. 2 have on the actual property
values, Mach number contour plots related to the same solution are shown in Fig. 3. In an effort to
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(a) φ R3 , P3 (b) φ R3S, P3

(c) φ R4 , P3 (d) φ R4S, P3

(e) φ R5 , P3 ( f ) φ R5S, P3

Figure 2 – Contours of limiter value, with respect to total energy per unit of volume, computed using
different limiter formulations with a fourth-order FR/CPR scheme (P3).

improve the readability of the data, the contour colors have been discretized in 20 different zones.
The main features of this inviscid flow appear to be well represented by all schemes. In particular,
the shock width is apparently fully contained within a single cell, although the shock surface itself is
not particularly well-defined due to the lack of resolution from the usage of a coarse mesh. It is also
promptly noticed that all solutions, which are supposed to be monotonic, are not free of oscillations.
Small oscillations can be seen in the expansion fan region, as well as in between the two shock
reflections. The misalignment between the shock surface and mesh lines, coupled with the usage of
a high-order, low-dissipation scheme, is a possible source of this problem.

Figure 4 shows the Mach number values evaluated along a reference horizontal line that is located
0.5 m away from the symmetry plane. For this particular plot, the internal solution polynomial of each
cell is fully represented. The oscillatory behavior is evident, but the overall shape of the solution
appears to agree well with each other. Based on the Mach number values achieved in the regions
that surround the shock waves, the R4 formulations, both the original and the smoothed one, appear
to be less dissipative than the R3, as expected, and perform as good as the R5. Since this solution is
constrained to a P3 polynomial space, the scheme is, at best, forth-order accurate and, thus, should
not be able to achieve sufficiently low amounts of artificial dissipation to allow the differences between
the R4 and R5 schemes to be visualized. Furthermore, when comparing the original formulations with
their smoothed counterparts, it is also possible to see that the smoothed ones do indeed lead to
a less dissipative solution, evidenced by the higher peak values in the regions that surround the
discontinuities.

It must be emphasized, though, that the oscillations are primarily visible due to the high-order
representation of the solution. By construction, the limiter formulations described in this work can
only guarantee that no local new extremum will be created with respect to the cell-averaged values of
the current cell and its direct neighbors. No restriction is imposed on the local values of the solution
polynomial, which leads to the oscillatory behavior described here. If cell-averaged property values
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(a)φ R3 , P3 (b)φ R3S, P3

(c)φ R4 , P3 (d)φ R4S, P3

(e)φ R5 , P3 ( f )φ R5S, P3

Figure 3 – Mach number contours computed using different limiter formulations with a fourth-order
FR/CPR scheme.

are plotted instead of the high-order polynomial representation, the oscillations disappear completely,
as shown in Fig. 5. Nevertheless, the same conclusion regarding the relative performance of each
limiter continues to be valid.

Figure 4 – High-order plot of the solution Mach
number evaluated along the horizontal

reference line computed using a 4th-order
FR/CPR scheme.

Figure 5 – Averaged-cell Mach number value
evaluated along the horizontal reference line

computed using a 4th-order FR/CPR scheme.

Since coupling the original φ Rp limiters with a smoothness indicator seems to produce better re-
sults for the particular case being studied here, from now on the R family of limiters is only considered
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in its φ RpS form. Figure 6 displays limiter values, with respect to density, computed using the φ RpS

and φ S limiters with second-, third- and fourth-order FR/CPR schemes, i.e., with P1, P2 and P3, re-
spectively. From a qualitative perspective, the results shown in Fig. 6 can be considered reasonably
“well-behaved”, but far from ideal. All limiters seem to deviate from 1 near the shock-wave, as they
should, close to the expansion fan and in the horizontal and vertical lines located between the first
and second shock reflections, near the symmetry plane, as previously discussed. Results obtained
with the second-order scheme display a more consistent limiter value distribution. In particular, the
data shown for the second-order formulation with the φ S limiter does not show any sensitivity to the
horizontal and vertical line regions, deviating from the unitary value only when directly adjacent to
the shock-waves and close to the geometrical discontinuity defined by the expansion corner. Another
trend evident from these data is that lower-order schemes tend to result in overall lower limiter val-
ues. Therefore, they more quickly restrict the solution polynomial representation inside a cell when
compared to the same limiters used in conjunction with discretization schemes of higher order. This
is an intended behavior, as it helps to maintain a low-level of artificial dissipation that is compatible
with a high-order formulation.

Lastly, pressure values evaluated along the horizontal reference line, located 0.5 m away from the
symmetry plane, are shown for φ RpS and φ S in Fig. 7, including the high-order polynomial represen-
tation, and in Fig. 8, including cell-averaged values. Results shown in Figs. 7 and 8 were computed
using second-, third- and fourth-order FR/CPR schemes. In regard to the cell-averaged data, the
overall tendency of all schemes to converge to the same solution as the order is increased is clearly
displayed, leading to well-defined peaks and valleys and demonstrating that the formulations em-
ployed are consistent. However, no major differences can be spotted between the results when the
analysis is constrained to cell-average data only. When the high-order representation is taken into
account, as shown in Fig. 7, that ceases to be the case. Calculations that use a P1 reconstruction
are particularly prone to create undershoots in the solution in regions located right upstream of the
shock, particularly before the second shock reflection. This effect gets less pronounced when the
order of the scheme is increased. Other types of oscillations, despite being small in amplitude, also
become increasingly more pronounced in regions where the flow is supposed to be free of significant
property gradients as the order of the discretization scheme increases. Despite being oscillatory,
the high-order representation of the solution permits a more precise assessment of the quality of the
limiter formulations. By taking the pressure peak located right after the first shock reflection as a
reference for the dissipative properties of each limiter, it is possible to state that all three φ RpS limiters
are able to capture a more well-defined, less-diffused, peak, especially when third- and forth-order
discretization schemes are used. The difference is small for this particular case, but still measurable.
Since the difference in computational cost between any of the φ RpS limiters and the φ S limiter is neg-
ligible, it is possible to conclude that, out of all the limiter formulations herein considered, it is overall
a better option to employ a limiter from the φ RpS family when simulating cases that are similar to the
one studied in this paper using higher than second-order schemes.

4. Concluding Remarks
The present paper assessed the quality of the flow solutions obtained by using the R family of

limiters, when compared with calculations that used the well-known Michalak and Ollivier-Gooch
limiter. The limiters were implemented in the context of a compact, high-order discretization scheme.
Two versions were considered for each limiter, namely, the original, unmodified formulation as stated
in the literature, as well as a modified formulation, in which the original limiter is augmented by using
a smoothness indicator function. The entire analysis was constrained to a single supersonic flow
in a convergent nozzle with a ramp test case. The current results show that coupling the original R
limiters with a smoothing function can significantly improve the behavior of those limiters, especially
by decreasing the size of the regions in which they incorrectly decay the order of the scheme without
any real need for it. Even in the presence of a smoothing function, however, the limiter behavior is not
free from imperfections, and can be observed to degrade the quality of the solution even in smooth
regions of the flow. When compared to the Michalak and Ollivier-Gooch limiter, the modified R limiters
displayed an overall similar behavior in smooth regions of the flow, but was seen to be able to better
define the solution peaks and valleys that surround a discontinuity. Since the computational cost of
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(a) φ R3S, P1 (b) φ R4S, P1

(c) φ R5S, P1 (d) φ S, P1

(e) φ R3S, P2 ( f ) φ R4S, P2

(g) φ R5S, P2 (h) φ S, P2

(i) φ R3S, P3 ( j) φ R4S, P3

(k) φ R5S, P3 (l) φ S, P3

Figure 6 – Contours of limiter value, with respect to density, computed using different limiter
formulations and FR/CPR orders.
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(a) P1 (b) P2

(c) P3

Figure 7 – High-order plot of pressure values evaluated along the horizontal reference line
computed using P1, P2 and P3 FR/CPR schemes.

(a) P1 (b) P2

(c) P3

Figure 8 – Averaged-cell pressure value evaluated along the horizontal reference line computed
using P1, P2 and P3 FR/CPR schemes.
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the modified R limiter is very similar to the Michalak and Ollivier-Gooch limiter, in situations involving
flows similar to the one studied here, employing a suitable limiter from the φ RpS family appears to be
the overall best choice in compact, high-order applications.
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