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Abstract

Prandtl’s Lifting-Line theory is applied to predict the aerodynamic characteristics of wings with various distrib-
utions of circulation. Expressions for induced upwash distribution, lift, drag, bending moment, adverse/proverse
yawing moment and center-of-vorticity have been derived for numerically-computed or prescribed distributions
of the circulation. The distributions include the classical elliptic distribution and a number of bell-shaped dis-
tributions. For a specified wing planform, solving Prandtl’s integro-differential equation, analytically, or
numerically, is more or less standard practice. Prandtl’'s methodology for minimization of induced drag for given
lift and integrated section-bending-moment, requires finding the circulation distribution for a prescribed qua-
dratic distribution of the upwash. For the minimization also involving the root-bending moment, the required
distribution of the upwash contains a linear term. Determining the corresponding circulation distribution is less
standard. However, for many upwash distributions the inverted Biot-Savart law between vortex distribution and
upwash distribution yields a closed-form circulation distribution. In literature, the prescribed span-integrated
section-bending-moment and the prescribed root-bending-moment are taken as the value of these moments
for the wing with elliptic circulation distribution giving the prescribed lift. Here the generalization is considered
to prescribe any value of span-integrated section-bending-moment and root-bending-moment. The results of
the generalization reveal that an increase in each of the prescribed moments gives a reduction of the induced
drag, facilitating a trade-off during wing design.

In the present study the upwash is determined along the span, as well as along the extension of the span from
the tip outwards to infinity. This provides insight into the singular behavior of the upwash distribution in the tip
region. This knowledge is used to assess the initial roll-up of the wake vortex sheet.
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1. Introduction

The flying wing is an aircraft that does not have vertical nor horizontal tail surfaces: a wing-alone
aircraft. Without the tail surfaces the (parasite) drag of the aircraft is smaller, while also the radar-
cross-section (RCS) is smaller. Blended wing-body (BWB’s) configurations might also be counted as
belonging to the class of flying wings. However, without tail surfaces the controllability of flying-wing
aircraft forms a challenge. Designs of flying-wing aircraft have been around for a long time, one might
think of the hang-glider type of gliders that Lilienthal [1] experimented with, until his fatal flight accident
in 1896. The 1920’s saw a number of flying-wing gliders, notably those of the Horten brothers [2], [3].
During WW2 the Horten Brothers also developed military aircraft of flying-wing type, in Germany,
such as the Horten Ho 229 V3 jet fighter-bomber, that was under construction at the end of WW?2.

= . = o -
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(a) Horten Ho 229 V3 Northrop-Grumman (b) Northrop YB 49. National Museum US Air Force
built replica [4]
Figure 1 a, b — Flying wing configurations of the 1940’s.
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After WW2 the prototype was shipped to the USA. Presently, this prototype is at the Steven F. Udvar-
Hazy Center of the Smithsonian National Air and Space Museum at Washington’s Dulles Interna-
tional Airport, USA, for preservation/restoration. Figure 1a shows a replica [4] of the Ho 229 V3, built
by Northrop-Grumman for the National Geographic documentary “Hitler's Stealth Fighter” (2009),
used for Radar-Cross-Section (RCS) measurements. The replica (no elevons, no engines) is on
display at the San Diego Air and Space Museum.

Figure 1b shows the Northrop YB-49 prototype flying-wing jet bomber, in development between 1945
and 1950 [5]. It experienced severe control problems and the project was cancelled after some acci-
dents. Figure 1c shows a 1990’s example of a flying wing, the US Air Force B-2 Spirit stealth bomber
[5]. The absence of tail surfaces contributes to reducing the RCS of such aircraft. Figure 1d shows
a Prandtl-D flying-wing Radio-Controlled configuration (2010’s) [6], designed to feature, like the Ho
229, a so-called bell-shaped spanwise distribution of the wing loading. The latter is proportional to
the spanwise distribution of the section circulation. Such a circulation distribution generates an
induced drag that is about 10% lower than the distribution that most aeronautical engineers consider
to be the optimal distribution: the elliptic distribution. The bell-shaped distribution is the distribution
that the Horten’s implemented in their designs of gliders and other aircraft [2], [3].

(c) B-2 Spirit. US Air Force (d) Prandtl-D RC flying wing. [6], Figure 5.
Figure 1 c, d — Flying wings of the 1990’s and 2010’s.

There are numerous other wing planforms around, in aeronautical and maritime technology, as well
as in nature and applied in robotic configurations to mimic their natural counterparts. The Gannet
shown in Figure le, features a very slender thin wing with interesting wing tips. Figure 1f shows the
Robird, an ornithopter type of drone mimicking the Peregrine Falcon.

(e) Northern Gannet [7]. () Robotic bird Robird [8], [9].
Figure 1 e, f — Example from nature (left) and example of robotic bird (right).

The Gannet (“Albatross of the Northern Atlantic”, also known as Jan van Gent) [7], see Figure le,
exemplifies an aerodynamically very efficient bird that can stay aloft for a long time and can cover
large distances. Its wing planform is a prime example of a high-aspect-ratio wing featuring special
wing tips. Presumably because of the geometry of these wing tips, this bird, like all birds, does not
require a vertical control surface.

The Robird, see Figure 1f, is an ornithopter-type of drone developed by Clear Flight Solutions (CFS),
that was designed to appear and fly like a Peregrine Falcon [8]. The wing of the Robird has an aspect
ratio of about 7.5. The drone has the same dimensions and weight as the real falcon, and produces
lift and thrust by flapping/pitching its wings [9]. Real birds instinctively sense that a falcon in flapping
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flight is on the hunt, making the Robird very suitable for bird control at airports, garbage dumps, crop
fields, etc.

Figure 1g shows the “On the Wing” movie (1986) replica Quetzalcoatus-Northropi of the extinct giant
pterodactyl, which had a wing span of more than 10m. It was designed by Paul MacCready of Aero-
Vironment [10]. MacCready’s model of this pterosaur, is another drone shaped after a flying animal.
The wing planform shows the same type of features as that of the Albatross.

Figure 1h is a photograph of a wind-tunnel model of a crescent-moon shaped wing design, investi-
gated by van Dam et al. [11], [12]. Its elliptic distribution of the chord has been shifted in streamwise
direction (flow is from bottom to top) in order to create an interaction between the vortex wake from
the trailing edge and flow about the wing tip. Such an interaction is hypothesized to change the
spanwise circulation distribution such that the induced drag is reduced

(g) Ornithopter of extinct giant pterodactyl [10]. (h) , [12].
Figure 1 g, h — Example from movie (left) and example of unconventional shape wing or fin.

At the University of Twente, a model B747-8, span about 0.35 m, see Figure 1i, has been used in
demonstrations on aircraft aerodynamics in the (aero-acoustic) wind tunnel [13]. One of the goals of
the demonstration is to show the tip vortices in the wake of aircraft. In these down-to-earth experi-
ments for aspirant students and visitors of the facilities, it became clear that the tip vortex of the
model B747-8, with its raked wing tip, i.e., integrated winglet, does not start at the wing tip, but at a
location more inboard, see Figure 1j. This phenomenon triggered the present study.

(i) Top view of B747-8 model aircraft. () Flow visualization with tuft, B747-8 model aircraft.
Figure 1 i, j — Example slender wing transport aircraft in UT wind-tunnel [13].

Figure 1liis a top view of the B747-8 model aircraft, showing the wing planform with unloaded raked
wing tips. Figure 1j presents a top view of the same model in the (low-speed) wind tunnel of the
University of Twente. The flow, visualized with a tuft, indicates the presence of a vortex that forms
quite a bit inboard of the wing tip. The way in which a vortex wake rolls up is determined by the
spanwise distribution of the section-circulation, or rather its derivative: the wake vortex distribution,
as will be addressed in chapter 6.
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In the present study the (Lanchester-)Prandtl lifting-line theory is used to investigate various circula-
tion distributions that follow from minimising the induced drag, subject to different constraints. The
lifting-line theory is a basic tool to investigate wing aerodynamics in concept design studies, to explore
the effect on aerodynamic performance of different circulation distributions and their effect on the
formation of wake vortices. Lifting-line theory allows an analytic approach to find insightful answers
to research questions, even 100 years after its introduction by Prandtl’s group in Géttingen, Germany.

The present paper is structured as follows:

Section 2 introduces the essentials of Prandtl’s Lifting-Line Theory, including the not very well-known

inverted Biot-Savart law which gives the vortex distribution for given upwash distribution. Three ana-

lysis/design approaches to using Prandtl’s theory are discussed;

Section 3 describes the way the Lifting-Line methodology is used to obtain wing designs for minimum

induced drag. Four scenarios are considered:

(i) prescribed lift and span;

(i) prescribed lift and span-integrated section-bending-moment;

(iii) prescribed lift and root-bending moment, and;

(iv) prescribed lift, span-integrated section-shear-force (equivalent to root-bending moment) and
span-integrated section-bending-moment.

Detailed expressions are derived for circulation distributions and vortex distributions, as well as dis-

tributions of upwash along the lifting line and its extension in outward direction. Furthermore, for

assessment of aerodynamic performance, expressions are derived for overall lift, drag, bending mo-

ments and yawing moment, as well as location of the center of the vortex distribution;

Section 4 presents verification of the methodology via the application of the developed expressions

to the Prandtl-D(rag) wing pursued by Bowers et al. [6], based on a bell-shaped circulation distribution.

Present results are compared with results found in [6].

Section 5 presents the results of the application of the present lifting-line methodology to the wing

planform of the Robird robotic bird;

Section 6 presents upwash distributions on lifting line and its outward extensions, as well as some

results for the initial roll-up of the vortex wake of wings with bell-shaped distributions of the circulation.

Section 7 provides the conclusions of the present investigation.

2. Prandtl’s Lifting-Line Theory

In the first half of the twentieth century, Prandtl’s group in Géttingen derived the lifting-line theory [14],
[15] for determining the aerodynamic characteristics of slender (high aspect-ratio), thin, mildly-cam-
bered, nonelastic, non-swept, 3D wings positioned in a uniform free stream of velocity U, in steady,
incompressible, inviscid, irrotational (potential) flow. In this theory the wing is represented by a line-
vortex along its quarter-chord line, of strength equal to the circulation I'(y) of the airfoil sections
making up the wing. In order to obey Kelvin-Helmholtz’s vortex laws, a planar vortex sheet is added,
which trails from the lifting-line to infinity downstream, see Figure 2.

dar
Y=(y) = _d—y(y)

Figure 2 — Mathematical model Prandtl’s lifting-line method for incompressible potential flow about
high-aspect-ratio wing at small angle-of-attack.

2.1 Formulation lifting-line theory
Prandtl’s integro-differential equation solves for the distribution of the circulation I'(y) along the span
of the lifting line. The lifting line is situated along the y-axis for |y| < b/2 in the plane z = 0. The wake
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vortex sheet (x > 0), also in the plane z = 0, is attached to the lifting line and extends to infinity (x —
). In the present paper it is assumed that the problem features starboard-side/port-side symmetry.
Prandtl’'s equation is obtained by equating the expression for the section lift #(y) in terms of the
section circulation T'(y), obtained through Kutta-Joukowsky’s Theorem, and the expression of the
section lift £(y) in terms of the lift coefficient c,(y) and the section chord c(y):

() = poUoT(¥) @nd £(y) = - pos UL c(y)ce(¥), respectively, (1a)
with, the slope a, of the section-lift curve assumed constant:

() = aotters () = ag (B () +22) = ap (@ - ao () + ) +222). (1b)
This exercise yields Prandtl’s integro-differential equation for I'(y):

) = 3 UncOagla — @) + BG) + WU"—;”] for [yl <b/2 and I'(ly| = b/2) = 0. (1c)

The upwash wy, (¥), induced at the lifting line by the wake vortex sheet downstream of the lifting line,
expressed as Cauchy-Principle-Value integral, equals (Biot-Savart’s law):

win(Iy] < b/2) = -CPV [} 1 0 2, (1d)
with the x-component of the vortex distribution on the wake vortex sheet y, (y') = —— (y ).

The relation given in Eq. (1d) between the distribution of the upwash w;, (y) and that of the strength
¥ (¥) of the wake vortex sheet can be inverted into
b/2 (/2)*-y""V/?
() = nmCPVf by2 Win(V D) - dy', for |y| < b/2, (2a)
which might be called the inverted Biot-Savart law. Following the evaluation of Eqg. (2a), the distribution
of the circulation I'(y) is found by substituting Eq. (2a) in

() = [ 1(3)dg, for Iyl < b/2. (2b)
In literature the inverted relation Eq. (2a), between w;,(y) and y,(y), does not appear to be widely
known. Jones [17], Egs. (11, 12), based on Munk [18], provides a very brief account on the derivation
of a relation similar to Eq. (2a) above. Klein and Viswanathan [19], also present a similar relation,
derived from airfoil theory. Nickel [20], [21] presents the inverted relation in the form of Eq. (2b) with
Eq. (2a) substituted. Nickel derived this expression considering Eq. (1d) as a Fredholm integral equa-
tion of the first kind for y, (y) = —(d/dy)T'(y) with w;,,(|y| < 1) specified. Nickel's result would read, in
the present notation:

rGy) = fb/z2 win (¥)In ((b/Z)Z_yZ)l/Z(((Z//?)Ty y|)1/2+(b/z)2—yyd ' (2¢c)
To verify Eq. (2(:) differentiate Eg. (2¢) with respect to y, which yields

b/2 i~ ((b/2)2=y' /2
5T0) =~ 2 CPV [ winy ) QR

Since yx(y) = —(d/dy)T(y), indeed this expression is equal to the expression for the vortex distribution
v.(¥) in EQ. (2a). Nickel [20], [21] presents the circulation distribution for a number of port-side/star-
board-side symmetric and nonsymmetric distributions of the upwash.
In the present study, the inversion of Eq. (1d), given in Eq. (2a), has been inspired by the treatise of
Ashley & Landahl ([22], section 5.3) on the inversion of the formulation of thin-airfoil theory in the
complex plane.

Finally, for the velocity induced at points on the outward extensions of the span Eq. (1d) is a regular

integral, not requiring the CPV-evaluation:
b/2

win(lyl > b/2) = 7)) () 72 (2d)

2.2 Analysis and design/optimization formulations

For specified free-stream density p., and free-stream velocity U,, parallel to the x-axis, Prandtl’s lifting-

line (integro-differential) equation, given in Eq. (1c-d), can be utilised in three ways:

1. Aerodynamic performance analysis: Given the planform of the wing, i.e., span b and distribution
section-chord c(y), as well as Aa(y) = a — ay(y) + B(v), with a the wing angle of attack, a,(y) the
section-zero-lift angle-of-attack and g(y) the section-twist-angle, the integro-differential equation
Eq. (1c) can be solved approximately for I'(y) by expanding the spanwise circulation distribution
I'(y) as a Fourier series and solving analytically for the coefficients in the series. This is the ap-
proach followed by Prandtl’s group. Alternatively, as in the present research, the integro-differential
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eqguation can be discretised employing local polynomial-type of expansions of the circulation dis-
tribution T'(y) and determining the parameters in the local expansions by solving the resulting sys-
tem of linear algebraic equations, e.g., [23].

Once the circulation distribution T'(y) has been computed, the wing’s aerodynamic performance is
obtained in terms of the components of the overall forces and moments: lift L, induced drag D, star-
board-side span-integrated section-shear-force F,, starboard-side root-bending moment M,,, span-
integrated section-bending-moment M, , and starboard-side yawing moment M,. Furthermore, also
computed are the section lift £(y), drag d(y), section shear force f,(y), the section-starboard-root-
bending-moment m,(y), section-span-integrated-bending-moment m,,(y) and yawing-moment
m,(y), see Appendix A and Table 1.

Section forces and moments Integrated along span Conversion fromyton =y /(2)
2
4 =p U,T _ 1 Ir(m
) = poUal(y) L=pale [’ o ry)dy Gub® [, 5l
= — . F( mn )

d(}’) Poon(Y)r()’) D= —poof b/2 I‘(y)wm(y)dy = —qoobz f_ll U:; WU:I drl

b/2 , , 2 r(n)
f. = fy/ £(y)dy E = poUs [} T(3)ydy = qoob? lfoll,—"l,ndn
my(y) = y€(y) My = pooUss fy* T yely = qub?3 [y ,F](n; dn

b/2 5 N / b

my2(y) = fy/ LN - ydy My =3 pleo [ " TO)Y?dy | = qub*2 [ ,F,(";nzdn
m,(y) = ~d(¥)y My = poo ;PO )ydy | = qub 2 [o 78" ndn

Table 1 Formula aerodynamic performance quantities. q,, = —meZ is free-stream dynamic pressure.

Note that in the derivation of the expression for F, and that for M, , in Table 1, use has been made of
partial integration and of Leibniz’s rule of dlfferentlatmg integrals. For example, for the span-integrated
section-bending-moment M, ,:

Iy sy = yme, 1) = [ 2y ome,dy = - | { 7% e(y)dy'} dy
=[Py ey )dy]dy—[lyz [ ey | + 172y e dy.

b/
= [/ 2y?0()dy = 1 puUss [, y* T ()dy

An additional quantity considered is y.oy, the location of the center of the x-component of the wake
vortex distribution y, (y). The center-of-vorticity (COV) of the starboard side of the x- (and only) com-
ponent of the wake vortex distribution y, (y), follows from:

_ (b/2 b/2 1 b/2
Yeov = Jy vOydy / [ veWdy = 155 0 TONdy 3)

In the present study the focus is on the design/optimisation problem of prescribing specific distribu-
tions of the circulation I'(y) that follow from minimising the induced drag. This leads to the next two
problem formulations, for given I'(y):

2. For prescribed distribution of the circulation I'(y), the upwash distribution w;,, (v) is computed from
Eq. (1d). Then, if for given a, and Uy, Aa(y) = a — ay(y) + f () is specified, the spanwise distrib-
ution of the chord c(y) required to generate the prescribed circulation distribution, follows from Eq.
(1c) as:

2I'(y)
c(y) = — for |y| < b/2. 4a
Y o Ua(a-a )+ B+ Hin 0y’ yi=b/ (42)

3. If for given a, and U, c(y) and a — a,(y) are specified, the geometric twist distribution g(y)
required for generating the prescribed spanwise distribution of the circulation I'(y), follows from
Eq. (1c) as:

r in
Ba(y) = a - ap(y) + B() = o = 0D for |y| < b/2. (4b)

b/2

3 Minimization Induced Drag
The task considered is to determine the distribution of the circulation I'(y) that minimises the induced
drag D. For this purpose, upon introducing an arbitrary infinitesimal variation 6T'(y) of the circulation
I'(y), accounting for the resulting variation of the upwash, Prandtl (and Betz) [14] set the ensuing
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variation 6D of the induced drag D equal to zero. Using the expression for the induced drag listed in

Table 1 and the analysis in Appendix B, gives for §D:

b
5D = —2p [1]?, win(M)ST()dy = 0, (5)

for positive I'(y).

In this section, four scenarios have been investigated for minimising the induced drag D:

(a) Section 3.1: prescribed lift L, for given span b;

(b) Section 3.2: prescribed lift L, prescribed starboard-span-integrated section-bending-moment M, ,,
which is some measure for the structural weight of the wing. The span b of the wing is a free
parameter, it will be determined as part of the outcome;

(c) Section 3.3: prescribed lift L, prescribed starboard root-bending-moment M,,, which is another
measure for the wing structural weight. The span b of the wing is free, it will be part of the outcome.

(d) Section 3.4: prescribed lift L, prescribed starboard root-bending-moment M, (equal to span-inte-
grated section-shear-force E,) in combination with the starboard-span-integrated section-bending-
moment M, ,. The combination of M, and M, , represents a more comprehensive measure for the
wing structural weight. The span b of the wing is free, it will be determined as part of the outcome.

Note that: scenario (a) was considered by Prandtl [14]; scenario (b) by Prandtl [15]; scenario (c) by

Jones [17] and Nickel [21] and; scenario (d) by Klein and Viswanathan [24].

Further note that there are many more practical relevant scenarios, such as:

- scenario (b) with span-integrated section-bending-moment divided by section thickness,
e.g., Lobert [25] and McGeer [26];

- either scenario coupled to the Breguet range formula for mission-performance analysis
Iglesias & Mason [27] and Bragado-Aldana & Riaz [28].

3.1 Minimization Induced Drag for prescribed Lift and prescribed Wing Span

The classic scenario of minimizing the induced drag is to prescribe lift L = L, in combination with the
span b, of the wing. Therefore, the variation §L due to an infinitesimal variation 6T (y) of the circulation
I'(y) should be zero, i.e., using the expression for the lift in terms of the circulation distribution TI'(y),
given in Table 1, Appendix B lists the optimalisation problem: as

8D = =2p [/, win(¥)ST(¥)dy = 0 subject to (5)
be/2
8L = poolUeo [2/7, 8T ()dy = 0. (6)

So, it is found from Eqg. (5), that, in order to minimise induced drag D, for constant span b,, w;,(y)
should be constant, here chosen as: w;, (y) = —UxA,, With A, an arbitrary constant.
For specified w;,(y) the vortex distribution y, (y) follows from the inverted Biot-Savart relation, Eq.
(2a), as:

2_.12\1/2 _12\1/2
with n = y/(b./2). It then follows from Eq. (2b) that the distribution of the circulation is indeed the
elliptic distribution, found in any textbook on aircraft aerodynamics, e.g., [29]:

. be
IF'(y) = 4UAp\/ (be/2)? — y2 =Ty /1 — 12, With Ty, = 4Ux Ay - (7b)

e 2 1, Toe
Therefore, y, (1) = Us ;2 \/1177 and win (1) = = 3 oo 322 (7¢)

The aerodynamic performance, calculated using the formulas in Table 1, is presented in Table 2
below. The table includes the expressions for the induced upwash w;,(n)/U.,, both at the lifting line
(Inl < 1) and at its outboard-directed extensions (|n| > 1). The upwash at the latter points is obtained
by evaluating Eq. (1d) for |[n| > 1, as a regular integral, see Appendix C for the integrals. The table
also includes the location of the center-of-gravity y..y ./(0.5b,) of the vortex distribution y, ().

In Table 2 the forces and moments are expressed in dimensionless form, using q., and powers of the
(full) span b,. These dimensionless quantities are a function of dimensionless amplitude Iy . /Uc b, Of
the circulation distribution, or equivalently, of dimensionless lift L./q_bZ, only. The results indeed
show that the induced drag D, is quadratic in the prescribed lift L, and that the induced drag D, de-
creases quadratically with span b,: the classic result for the elliptic circulation distribution. The two
bending moments are linear in the prescribed lift L., while the yawing moment is quadratic in the lift
L.
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Table 2 - Aerodynamic performance for scenario (a) minimisation of induced drag D,, for prescribed free-stream
conditions (Uy, 4), lift L, as L./q.,b2 and span b,.: yielding elliptic distribution circulation T'(n) = [y ./1 — 72, with
n =[y/0.5b.]/0; 0 =b/b, = 1.

As shown in Figure 3, at the wing tip n = 1, the circulation distribution has zero function value and
infinite first and higher derivatives. At the wing tip the vortex distribution y, (n) features a square-root
singularity and is therefore infinite. The induced upwash w;, (n), the requirement that followed from
the optimisation formulation, Egs. (5) and (6), is a negative constant all along the lifting line. Along
the outward extension of the lifting line, the upwash is positive featuring a discontinuity atn = 1, the
wing tip, where the upwash has a square-root singularity forn { 1.
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Figure 3 — Left: Elliptic distribution circulation I'() = I, /1 — n?; Right-upper: Vortex distribution y, (17); Right-
lower: Distribution upwash w;, () on starboard-side lifting line and its outward extension. Dashed line: location
COV.n =[y/0.5b,]/0; 0 =b/b, = 1.

In case the spanwise distribution of the section chord c(y) of the wing is given, Eq. (4b), derived from
Prandtl’s integro-differential equation, provides the section angle-of-attack combination Aa(y) = a —
ay,(y) + B(y), consisting of wing angle-of-attack a, section zero-lift angle-of-attack a,(y) and section
geometric twist-angle B(y) of the wing. Alternatively, in case Aa(y) is given, Eq. (4a), also derived
from Prandtl’s integro-differential equation, provides the spanwise distribution of section chord c(y).

3.2 Minimization Induced Drag for prescribed Lift and Span-integrated Section-Bending-
Moment

For scenario (b), the optimisation is for constant lift L, and for constant starboard-side-integrated

section-bending-moment M, ,, with circulation distribution I'(n) and the span b of the wing to be de-

termined. Now not only the variation 6L of the lift L, but also the variation 6M, , of M, ,, due to an

infinitesimal variation 8T'(y), should be zero, i.e., the formulation of the optimalisation problem reads,

see Appendix B:
b/2

8D = —2pg, f—b/z wi, ()8 (y)dy = 0, subject to (5)
SL = poyUs f_bszz §T(y)dy = 0 and (8a)
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My = 5 PooUe [/ y28T()dy = PeoUoo | ,,/zyZSF(y)dy = 0. (8b)
In order to force 6D in Eq. (5) to be equal to zero, it is to be prescribed that

Win () = —Uu[A; + 3 B, (y/0.5b)?], for |yl < b/2 , (92)
with A, and B, arbitrary dimensionless constants. To get more insight, w;, (y) is expressed as

wi, () = _Uoo[Az + 32{1 — (y/0.5b)?*}] = _Uoo[Az + Bz(l -], (9b)

with 4, and B, another set of arbitrary dimensionless constants. Substitution in Eq. (2a), the inverted
Biot-Savart law, gives, with the CPV integrals listed in the Appendlx C:

Vx(y) nWCPVf [AZ +BZ{1 (y /O Sb) }] —y' dy
1 -y )/2  _ 4Ucol

= 1A, cpvfludn + ByCPY [1 T dn = T (A + By (G- 2. (9c)
It then follows from Eq. (2b), that the corresponding dlstrlbution of the circulation equals:

ry) = 4V, AZN/(b/Z)Z—y2+éZ{ (B/2) = y7 + 5 ((b/2)* — y*)*/2)], so that
I(n) = 4Uu[d, 2 T=7 +Bz{——\/—+__(1 122

With T, , and T , deflned as T = 4Us - (4, +5 B,) and T, = 4U., 1 B,, respectively, it follows
T =oy1—n*+ 10— 2)3/2, fOI‘ Inl <1. (9d)
In this notation y, (1) = >[I, JL_ +3,,m1 — 17 (9€)
I20—5T2,2 3T . H .
Since it follows that 4, = e (2/2) and B = e D the induced upwash w;, (n) can be rewritten as:
Wi (1) = _E[Fz,o + 30, {— E + (1 -1}, for n| < 1. (9f)

In Eq. (9d), the first term in the expression for I'(n) is the elliptic distribution that gives a constant
contribution to the upwash w;,, (), i.e., the first term in Eq. (9f). The term inside the curly brackets in
Eq. (9f) is the quadratic distribution of the upwash generated by the I, ,(1 — ?)%/2 term in Eq. (9d). This
part of the circulation distribution is the so-called bell-shaped (as coined by Reimar Horten [2], [3])
circulation distribution. At the wing tips the bell-shaped distribution has zero function value as well as
zero first derivative, resulting in a wing loaded lighter near the wing tips and more heavily near the
wing root. At the wing tip, circulation distribution Eq. (9d) generates an upwash distribution that is
continuous at the wing tip, with a square-root singularity in its first derivative, see Figure 4. Using the
expression for the circulation distribution, Eq. (9d), the lift, induced drag, root-bending- moment, etc.,
have been computed and collected in Table 3.

3/2
(1) = Tp0/1— 7% + (1 —12)
win(Inl<1) 1 [Fz,o l"2,2 ( 1 2
U 4+ (- 2)]
Uso Uoob
win(In|>1) _1.T |71| r
BT S (-2 + 32 (o + (L—n?) + Inlyn? - D)
L E[ﬁ EFZ_Z]
qoob? Usob = 4 Ugb
Db F20)\?  3T20 T2z | 3 (T2 2
qoob? [( ) 2 Usob Usob *i (wa) ]
My [on 3 l“22]
qoob3 b = 5 Usb
My2 L I, lrzz]
qoob* 128 Uoob 2 Usob
MZ3 -1 [( T20 )2 9 Ty Iz Z (Fz.z )2]
qoob 12 \Ueob 10 Ugob Usob Ueob
Ycov E[Fz,o 3F22]/ 20 I‘22]
0.5b 4 lUeh  4Ub Uoob Ueob

Table 3 — Aerodynamic performance scenario (b) minimisation of induced drag D, for prescribed free-stream
conditions (U, 9-), lift L and starboard-integrated-bending-moment M, ,: yielding circulation distribution I'(y) =

Lo/ 1 =12+ (1 =132 = [y/0.5b,]/0;, 0 = b/b,

The minimisation of the induced drag D, for prescribed lift L and prescribed starboard-span-integrated
section-bending-moment M, ,, comprises to consider, with wing span b some function of L and M, ,:

2
inimi — 2 (Fz,o) 3 T30 T2 |, 3, T2242
Minimize D =qub [ Usob +2U°°b. Uoob.+4(U°ob.) 1.

for prescribed L = qob? 7 z 52 Tz >+ %%] and (10)

9
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) _ 4 © (T20 | 1Ty
prescribed M, > = qeb 128 [Uoob + 2 Uoob]’

with T'(n) > 0, for || < 1.
The lift L is prescribed as L = L,. Rather than prescribing M, ,, arbitrarily, Prandtl and Betz [15] pre-
scribed the radius r, associated with the radius of gyration, i.e., the inertial moment of the circulation
distribution I'(y). The radius of gyration is defined as:

b b

r? [2T(y)dy = [2T(y)y*dy,

. . 2 _ b_z Ta0 | 115, I'20 3 o
resulting in % = 16 [Uoob 2 Uoob]/[Uoob + 4 Ugb.
present study it turned out to be more insightful, and less cumbersome algebraically, to follow Klein

and Viswanathan ([19], [24]), in prescribing alongside L = L,, M, , interms of M,., . as My, = tM,,.,

with % = 1’2’—8U O'Z , see Table 2. This results in expressions in terms of the dimensionless geometric
ocole cole

variable ¢ = b/b,, directly related to the yet unknown span of the wing. In the present derivation, a
system of linear equations is constructed for I'; , and I; ,, the two parameters in the circulation dis-
tribution, Eq. (9d). With lek = I /Toe EQ. (10) yields:

0+ 3/40,, =1/0 and

T0+1/20,, =1/0%1
which keeps the dimensionless wing span ¢ = b/b, as geometric parameter in the optimalisation.
The solution of the above system of linear equations for I, and [, , is:

[0 =-2/0+3t/c%and [, = 4/0 — 41/5° (11a)
Substitution of Eq. (11a) in the expressions given in Table 3 results in the expressions listed in Table
4. Specifically, the induced drag D/q_b%n Table 3, divided by the induced drag D./q..b? = E(i)z of

], which is equivalent to r* = 4M, , /L. However, for the

4 \Ugb,
the wing with elliptic circulation distribution and the same lift L = L,, yields, upon some algebra:
D£=%[4a4—6102 + 372]. (11b)

The induced drag is a function of variable ¢ = b/b, and parameter 7. The value of the relative span o
for which the first derivative with respect to o, of the induced drag D/D, equals zero, is the value
oopt = b/b, for which the induced drag is at a local minimum. The first derivative of Eq. (11b) with
respect to o equals:

d D 2
ED_e = —?(20'2 - 3'[)2. (11C)
3/2
= — n2 — n2 - 3
T() =T20v1— 0% +T2(1 - 0?) Optimum:o,,, = |+
win(Inl<1) _ 1T T2p 1 a2
v 2oy P30t @ —n9)]
win(In|>1) _1:To0 o _Iml Lo 1 2 2 _
Voo 2y M= 77 T35, (5t A =—n) +inlyn® - D]
20 R g 0
o 03[ 20 + 37]
22 1 2
== = [40° — 41 42
Toe =1 ] 3432
L T loe _ _Le_
goob’ 2 Usbe  qoob?
DE % [40* — 6T0% + 377] g%
My 1rzg243 2
™ 0[50' + 5‘r] . 61
Mx2 T T
M ’2’
;’Ze Z1p104 4 74 2 +E 2 24 |2
|Mgze| a5 [35 g 5 0 35 ¢ ] ~3s5+l3e
Ycov ol o3
cov ™ 3 [3
0.5b¢ 4 [202—1'] %Z\/;

Table 4 — Aerodynamic performance scenario (b) minimisation of induced drag D, for prescribed free-stream
conditions (U, 9.), lift L = L, and starboard-integrated section-bending-moment M,,, = tM, ,,, as function of

o = b/b,: yielding circulation distribution T'(57) = I0y/1— 1%+ (1 —n?)%2. n =[y/0.5b,]/0; o =b/b,. Third
column lists performance for the optimal solution of the minimisation problem at 6,,; = bop¢/be = /37/2.

10
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The optimum is obtained for %Dﬂ = 0, which yields:

De 91

From Eq. (11c) it follows that at the optimum span g,,,,,, not only the first derivative, but also the second
derivative of D(o; 7) equals zero. Therefore, the minimum of D (o; 7). is at an inflection point of D (o; 7).
From Eg. (11d) and the expressions listed in Table 4, it becomes clear that the distribution of the
circulation I'(n) that minimizes the induced drag D, for prescribed lift L = L, and prescribed starboard
span-integrated section-bending-moment M, , = T, , . is the one for which: I'(y) = I, ,(1 — n?)%?, i.e.,
the bell-shaped circulation distribution, for any value of . For T = 1, analysis shows that this particular
bell-shaped distribution generates a factor 8/9 lower induced drag than the elliptic distribution of the
circulation. This is partly due to the longer span o,,; = b,,:/b, = \/3/2 =~ 1.225 of the wing featuring the
bell-shaped distribution of the circulation and partly due to the differences in the induced upwash
combined with differences in the circulation distribution. For T > 1 the minimum induced drag de-
creases further like D,,;/D, = 8/97, while the span increases slower like g,,; = byp./b. = J3/2+.
The aerodynamic performance of wings with circulation distribution I'(n) = I, 4/1 — 12 + [, (1 — n?)3/2
is presented in Figure 4 as function of o = b/b,.

opt = \E for which 2ozt = 81 (11d)

1 1.2 |
: (52760
) Rl S :
I Nyt S i SOSRS
-S | \\_ * ...................................
y e
A A BRSPPRTR T
=1
0.9
1 1.1 1.2 1.3 1.4 15 6
0.5 — XY
!_?Q{ ?'0-6 Te=1 3 - -“.-
; RS 7/ L
: = 0.9 //// N
; -1 /// ( 5% ﬁ)
J ///
N 11
'— [/
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o=h/b,

Figure 4 — Results of optimisation scenario (b): minimisation induced drag D, for prescribed free-stream condi-
tions (Uo, 9-0), lift L = L, and starboard span-integrated section-bending-moment M, , = tM, ,,: yielding two-
term circulation distribution T'(n) = I, 0y/1 — 7% + I, (1 —n?)%2. Results are shown for v = 1.0(0.05)1.2, from
black-to-red-to-green-to-blue-to-ochre coloured curves. Left-top: dimensionless induced drag D/D, vs. dimen-
sionless span o = b/b,; Left-bottom: Amplitude two contributions circulation distribution T, ,(¢)/I, . (solid lines)
and I, ,(0)/T, . (dashed lines); Right-top: dimensionless root-bending-moment M, /M, . vs. o and; Right-bottom:
dimensionless starboard-yawing-moment M, /M, ., vs. o. Dotted lines: invalid solutions for which I'(s) not positive
for all |n| < 1. Coloured round solid circles: optimum solution of minimum induced drag.

From Figure 4 it becomes clear that, with increasing T = M,.,/M,, .> 1, the semi-span required for

the minimisation of the induced drag, increases slowly as ¢ = b/b,~+/t, from 22.5% for 7 = 1 to 34.2%
for ¢ = 1.2. The optimal induced drag decreases from D,,;/D. = 8/9 = 0.8889 for T = 1 to D,,./D,
=8/(9 *1.2) = 0.7407 for t = 1.2. This indicates that a relatively small increase in starboard-span-
integrated section-bending-moment yields a substantial decrease in minimum induced drag.

Also clear from Figure 4 is that the optimal condition requires that the amplitude Iy, /T . of the elliptic
part of the distribution drops to zero, while the amplitude I, /I, . of the bell-shaped part rises to its

ultimate value (4/3)+/2/3z. This optimal value decreases slowly with z, because of the with t increasing
optimal span allows a lower amplitude of the circulation distribution in order to achieve the same lift.
For fixed 7, the starboard-root-bending moment M, decreases with increasing values of ¢ = b/b,, in
spite of the larger span of the wing. For T = 1, the decrease in M,, of 2.2%, for a wing with the optimal
bell-shaped circulation distribution, is due to the lower wing loading in the tip portion of the wing.

For higher values of r = M, ,/M, , ., the root-bending moment M, /M, . also increases, but for any value

11



FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP

of 7, the root-bending-moment is at its minimum when the induced drag is at its minimum.

For any value of 7, the starboard-yawing moment MZ/|MZ_e| remains negative, though its magnitude
decreases quite rapidly with increasing o = b/b,, attaining its minimum when the induced drag is at
its minimum. For increasing values of z, the magnitude of MZ/|MZ,E| decreases to increasingly smaller
values. The reason is that in the wing-tip region the section drag becomes negative (thrust rather than
drag), which gives a positive (proverse) contribution to the yawing moment. This is advantageous for
turning flight, since this leads to a smaller vertical tail surface, or even elimination of the vertical tail.

Figure 5 presents results for three values of © = M, ,/M,,.: T = 1.0, 1.1 and 1.2, values in the same
range as the ones used in Figure 4. Furthermore, for the dimensionless wing span ¢ = b/b,, we
choose, for each value of 7, the value at which the induced drag is minimal: 6,,; = bop¢/b. = /37/2.
This implies that the corresponding circulation distributions have I, = 0, corresponding to bell-
shaped distributions T, (1) = (4/3)4/2/37(1 — n*)*/?. Results are compared with results for the elliptic
circulation distribution. Figure 5 shows that with increasing © = M, ,/M,, . the dimensionless section
circulation T,,.(y /0.5b.)/T, ., which is proportional to the dimensionless section lift: ¢ (y/0.5b,)/q b, =
2I' (y/0.5b,)/q_b,, see Table 1, decreases near the wing root, which is due to the increase in dimen-
sionless span ¢ = b,,./b, at constant total lift, i.e., the lift for the elliptic distribution.

Figure 5 confirms that the bell-shaped circulation distribution generates a quadratic distribution of the
upwash wy, (y/0.5b,)/U, on the lifting line, negative in the wing-root portion of the wing, positive in
about 30-percent of the outboard part of the semi-span. The elliptic circulation distribution generates

a constant (negative) upwash. As will be clear later on, this difference in upwash distribution has
implications for the roll-up of the wake of the wing.

1.2
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Figure 5 - Results optimisation scenario (b): minimisation of induced drag D, for prescribed free-stream condi-
tions (Us, 9-), lift L = L, and starboard-integrated section-bending moment M, , = T, ,.: Yielding two-term cir-
culation distribution T'(n) = T0/1— 1%+ [,,(1 —n?)%/2. Results are shown for 7 = 1.0(0.1)1.2, from black-to-
green-ochre coloured curves. n = (y/0.5b,)/0;, Minimum drag: ¢ = 0, = bope/be = 4/37/2, T, = 0. Top-left:
spanwise distributions dimensionless circulation T,,.(y/0.5b.) /T, vs. y/0.5b,; Bottom-left: spanwise distribu-
tions dimensionless upwash velocity [w;, (¥/0.5b,)/Us]/[Te/Usxbe] VS. y/0.5b,; Top-right: spanwise dimen-
sionless vortex distribution [y, (¥/0.5b,)/Usx]/[Toe/Uxsbe] VS. y/0.5b,; Bottom-right: spanwise distributions di-
mensionless upwash velocity [w;, (¥/0.5b.)/Us]/[Toe/Usbe] VS. ¥/0.5b, on lifting line and its extension y > b.
Vertical dashed lines: location COV. Results for elliptic circulation distribution: black dotted curves.

The vortex distribution along the lifting line decreases in peak value with increasing value of . The
location of the peak, at y,eq/0.5b, = 0oy /V2 = v/37/2, as well as the location of the center-of-vorticity
(COV) at ycoy/0.5b, = (3m/16) Gopr = (31/16) y/37/2 < Ypear/0.5b,, both move outboard with increasing
7. For0.823 = n%/12 < 7 < 32/27 = 1.185. the COV for the elliptic distribution, at ycoy ./0.5b, = /4,
is situated between ycqy /0.5b, and ypeqi/0.5b,. For T > 32/27 = 1.185, ycoy,e/0.5be < Ycoy/0.5b,, SO
inboard of both y¢oy,/0.5b, and yy.qi/0.5b,. Figure 5, bottom-right presents the upwash distribution

for y > b, along the extension of the lifting line. It shows that, characteristic for bell-shaped circulation
distributions, the upwash distribution:
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(i) is continuous in function value across the wing tip;
(ii) is slope-discontinuous across the wing tip: the slope is finite at the inboard side of the wing tip,
but has a square-root singularity at the outboard side;
(iii) tends to zero for points far outboard of the wing tip, as should be the case for any circulation
distribution.

Figure 6 shows that for the elliptic distribution I,.,/1 —n? of the circulation, the distribution of the
section- drag d(y/0.5b.)/q.b. Of the wing is positive along the whole span of the wing, while for the
bell-shaped circulation distribution T, ,(1 — 7%)3/2 the tip portion of the wing features much lower and
even negative section-drag (section-thrust). In the root portion of the wing, the bell-shaped circulation
distribution generates a higher section-drag, however, for the wing as a whole the net effect is a
decrease in overall induced drag, like 1/z.
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Figure 6 - Results optimisation scenario (b): minimisation of induced drag D, for prescribed free-stream condi-
tions (U, q-.), lift L = L, and starboard-integrated section-bending-moment M, , = tM,,.: yielding two-term cir-
culation distribution T'(5) = T04/1 — 12 + Iy, (1 — 7%)3/2, with. Results are shown for = = 1.0(0.1)1.2, from black-to-
green-to-ochre coloured curves. n = (y/0.5b,)/0; 6 = dopt = bope/be = 4/37/2. Left-top: spanwise distributions di-
mensionless section drag [dy:(¥/0.5b,)/qwbel/(Toe/Uswbe)? VS. y/0.5b,; Left-bottom: spanwise distributions
dimensionless section yawing moment [m o, (¥/0.5b.)/qebZ]/(Toe/Ucbe)? VS. y/0.5b,. Right-top: spanwise dis-
tributions dimensionless root-bending-moment [m, ,,: (¥/0.5b,)/qebZ]/(To./Usb.). Right-bottom: spanwise dis-
tributions dimensionless integrated-bending-moment [my, 2ot (¥/0.5b,)/qbZ]/(To../Uxb.). Results for elliptic cir-
culation distribution: black dotted curves.
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It is also clear that increasing T does not change the section-thrust in the tip region very much, while
in the wing-root portion of the wing the section-drag decreases substantially. This is the reason that
for the optimal case, the overall drag decreases for increasing .

Since m,(y) = —d(y)y, the section contribution m,(y/0.5b,)/q.b? to the starboard-yawing moment
M,/q. b3, itis clear that for the bell-shaped distributions the yawing moment is much smaller than for
the elliptic circulation distribution. For increasing T = M, , /M, , ., the yawing moment quite drastically
decreases the magnitude of the negative, adverse, yawing moment, see Figure 4.

The plot of the distributions of the section contribution to the root-bending-moment m, (y), indicates
that the root-bending moment due to the bell-shaped distributions and that due to the elliptic circula-
tion distribution behave about the same. For t = M, , /M, ,, = 1, M,,/M, . =~ 0.98, while for r = 1.1
and 1.2, M,./M, ., ~ 1.03 and 1.07, respectively, slowly increasing like vz. As far as the distributions
of the contribution to the integrated-bending-moment m, ,(y), is concerned, it is seen that:

(i) for T = 1 and for the elliptic distribution, the corresponding integrated-bending-moments are
equal: My 5 opt /My =T =1and M, ,./M,,. = 1. Therefore, since the span of the optimal wing
is longer, the distribution is less peaky.

(i) For t > 1 My 5 opt /My 2. = T > 1 increases, so that the distribution of m, ,(y) shifts towards the
wing tip and simultaneously its amplitude increases.
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Comparison with results of Prandtl [15]
The results presented in the present section agree with the results presented by Prandtl [15], though
the present study considers further details on aerodynamic performance. Note that there is a diffe-
rence in choice of the form of the expression for the circulation distribution: in our case I'(n) =
001 — 1% 4+ I,,(1 —n?)%2; in Prandtl’s case I'(n) = T, p[1 — un?]{/1 — n%. Here u is the aerodynamic pa-
rameter that Prandtl varied in the optimisation. The relation between the two formulations is:

Top =Too+p and p=T,,/ (T + ).

Substituting Egs. (11a) results in Ty p = T (% — %) and u = 4(c* —1)/(20% — 7).

The optimal values are found for ¢ = 6,,; = bope/be = +/37/2,1.€., Topopt = Tpe ,/2/31 and p,,, = 1. This
means that I, = 0: the circulation distribution is the bell-shaped dlstrlbutlon T(m) = Top(1—n?)3/2.
Clearly, u,,. = 1 agrees with the value found by Prandtl [15], resulting in D/D, = 8/9 and b,,./b, =

\3/2. In other words, a decrease in induced drag of 11.1% and an optimal span 22.5% longer than
the span of the wing with elliptic distribution of the wing load at the same lift L = L,.

A remarkable difference is found in the circulation distributions, which in Figure 1 of [15] appears to
have the same value of I'(n = 0) for the three distributions shown, while in our Figure 5 upper-left,
I'(n = 0) is larger for T = 1 than for the elliptic distribution. Also, there is a typo in the formula heading
the most-right column in the table above Figure 1 in [15]: the power 2 should be within the brackets.

3.3 Minimization Induced Drag for prescribed Lift and prescribed Root-Bending-Moment
For scenario (c), the optimisation is for constant lift L, and for constant starboard-side root-bending
moment M,.. Now the variation &L of the lift L in combination with zero variation §M,. of M, ,due to the
variation in I'(y) should be zero, i.e., see Appendix B:

8D = prf b2 Win()8T(¥)dy = 0, subject to (5)
5L = poUs, [ ”Iffz §T(y)dy = 0 and (13a)
SM = poUss [, yST )y = 0. (13b)
In order to force D in Eqg. (5) to be equal to zero, it is to be prescribed that for the present case
b
win(¥) = Us[A+ B Inl], for [yl <b/2 (14a)
Substitution in the inverted Biot-Savart law, Eq (2a) gives, using the integrals listed in Appendix C:
V() = —4U,, Jl’z— Heo b{J— nln = m 3, (14b)
It then follows from Eqg. (2b), that the corresponding distribution of the circulation equals:
_ b 4 b I 1+y1-72
F(y)__4UooEA 1_772_;[]00(;)23( 1_772+7721n Il )1
which upon defining T, = —4U,, 74 and Iy = —2U,,(3)*B, is re-expressed as
T(n) = FO,/l — 72 +0L,G/1T=1%+7n%n 1“1 %y, for nl < 1, (14c)
while 22 = — 555 [To + Tuminl], for Inl < 1. (14d)
1 B/
In this notation y,(n) = [FOJ_ + zrl(m o )] (14e)

Note: in the present study Eq. (14e) has been derived independently. However, in 1950, R.T. Jones
([27], EqQ. (13)) derived an expression similar to Eq. (14c) for the circulation distribution that solves
the present minimisation problem. Rather than using the natural-logarithmic term, Jones used the
A — cosh™1(1/InD),
Jones’ formulation and the present one are fully equivalent. Also, Klein and Viswanathan [19] pre-

sented the expression for the bell-shaped solution for scenario (c) with lnﬂ—w

1l an?
2 n1+\/1—r]2'
From the expression for the distribution of the circulation, Eq. (14c), the lift, induced drag, root-bending

moment, etc., have been determined, see Table 5.

inverse-hyperbolic-cosine cosh™1(1/|n]|) in his formulation. However, since In

expressed as

The minimisation of the induced drag D, at prescribed lift L and prescribed root-bending moment M,,
requires to consider b as some function of L and M,,:

14
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.. . _ ZE FO 2 § FO Fl
Minimize D =qwb [(—U b) 3 Ueob Ueab
. _ 2 Vs FO 4 Fl
for prescribed L = qo.b [ " +3 UL b] and
_ 3 1 I‘ 3 ry
prescribed M, = qob [U > Z—wa].

Ty

26221,

(15)

Similar to scenario (b), rather than working directly with L and M,., one could consider the radius r;,

associated with the center-of-gravity of the circulation distribution I'(y):

r JZT)dy = [ZT()ydy.

However, in the present study the span b is used as the optimisation parameter in the formulation,

which is less cumbersome algebraically.

2
I(1) =TI — 72 + T (J1 — 32 + p2ln 221 VI:IH) Function of —> wb 7 and b
win(lnl<1) _1[ To
Uso 2 Wb ' Ug b
Win(Inl>1) 1. Ty ., Il 2ry . I . (1)
e [ (1= 7 + 2% (L paresin (1))
L mrlo 4T
qoob? 2 [Uoob + 3 Uoob]
b T (To\2 8T, I r; \?
oo b? 4 [(uwb) + 3 Uoob Uoob +2 (Uoob) ]
My l[ Ty , 31y :
qoob3 6 'Uxb 2 Uxb
M2 rTo 8T ]
qoob? 128 'Uobh = 5Ucb
M, —1.( To \? 3 _o(T1)?
oo b3 _[(wa) +3 (1+ 8 Uoob Uoob+ﬁn (Uoob) ]
Ncov = Ycov/0.5b wa+:ul;ib)
* Gty

Table 5 — Aerodynamic performance for scenario (c): minimisation of induced drag D, for prescribed free-stream
conditions (U, ), lift L and root-bending moment M, yielding circulation distribution T'(n) = [Hy/1—n? +

I{J1— +r;21n1+V1 Lvionty

Remark: Evaluating the upwash for |n| > 1 is not trivial. The integral is not found in Integral Tables.
However, expanding 1/(n — ") in the integrand in Eq. (2d) for large values of n, the evaluation of the
sub-integrals is obtained, in closed form, as an infinite series that appears to converge. The resulting
series is then recognised as the expansion of narcsin(1/7).

Following Klein and Viswanathan ([19], [24]), the prescribed lift L is expressed in terms of the lift
L, generated by the elliptic distribution of the circulation, at the same free-stream conditions, of a wing
with given span b,. With T, the amplitude of the circulation of this imaginary wing, the circulation

distribution equals I'(n) = I,/ 1 — n%. Using the expression in Table 2 for the lift of such a distribution,
Le T Toe
‘Icobg - ;ﬁ’be,
subsequently defines I, .. The prescribed root-bending moment M, is expressed as a factor 4 times
the root-bending moment M, , of the elliptic distribution: M, = AM, ., see Table 2:
My e 1 Toe
ab 5 Uoby
Then a system of linear equations is constructed for the two parameters (I, and I;) in the expression,
Eq. (14c), for the circulation distribution. This gives, with [}, = Iv/Toeand o = b/b,:
fo+4/3f, =1/0and
o +3/2f, = 1 /o?
The solution of this system of linear equations for [, and [} is:
[y =9/0-81/c%and [} = —6/0 + 61/0>
Substitution of Eq. (16a) in the expression for the induced drag

(16a)
~in Table 5, divided by the induced

—(U%) of the wing with elliptic circulation dlstr|but|on, ylelds, upon some algebra:

D__F0+ F0F1+2F1

Substitution of Eq. (16a) gives:

(16b)

15



FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP
2 = —[90% — 1640 + 827]. (16c)
The induced drag is a function of the variable ¢ = b/b,, i.€., the relative span and of the parameter A.
The value of the relative span o for which the first derivative, with respect to o, of the induced drag
D/D, equals zero, is the value o = g,,; = b,y /b, for which the induced drag is at a local minimum.

The first derivative of Eq. (16c) equals:

%%: — 2 (30 — 42)?. (16d)
The optimum is obtained for =2 = 0, which yields: a,,,. = =2, for which 22t = 27 1 (16€)
do De 3 D 322

Eq. (16d) reveals that at the optimum span o,,,, the first derivative and also the second derivative of
the induced drag equals zero. Therefore, the minimum of D(g; 1) is at an inflection point of D(o; 1).
Now the aerodynamics performance of the wing can be expressed in terms of the prescribed variables
L, M, and of the unknown wing span b, or equivalently ¢ and A, see Table 6 below.

1+/1-92 ; . _4
I(m) =T /1—n? +T4[{y1—n% + nzlnT Optimum:g,,, = ;4
win(In<1) 1. To Iy
Uso 2o T T b7T|77|]

Win(In|>1) 1. T Il 2r —Inl :
T | 3 [Uc,:b 1- n2—1) + Uoolb <m + narcsm(l/lnl))]

To 1 _ i
a ; [90' 8/1] Py

1 1 9
oo —[—60 + 64] -

Le T Toe
qeobZ 2 Ugbg

D 1 2 2 271
. —[90° — 1640 + 817] 7

M, A 1
Mx,e

M2 1 16 .5
Y o [—30 + 84] EA

x2.e

My -t - 27 205 — _8 _¥ 3.t
] p [A(90 —84) + 0T (0= Do -] (=)
Ycov 7l o2 2m
05b. - =21
05b, 4 [3:7—21] 9

Table 6 — Aerodynamic performance for scenario (c) minimisation of induced drag D, for prescribed free-stream
conditions (U, q), lift L =L, and root-bending moment M, = AM, ., yielding circulation distribution I'(n) =

Tov/I =172 + T{y/1 — 72 + n2ln 2020 VIJI_"Z}.

From Figure 7 it becomes clear that, with increasing A = M,./M, ., the semi-span required for the
minimisation of the induced drag, increases linearly as ¢ = b/b,~4, from 27.6% for A = 0.95 to 46.7%
for 2 = 1.1. The optimal induced drag decreases quadratically with A from D,,./D, = 0.934 for A =
0.95 to Dyy:/D, =0.697 for A = 1.1. The latter is a decrease in induced drag by almost 30%, for a
span increase of 46.7%. This indicates that a small increase in root-bending moment M, = AM, .
yields a substantial decrease in minimum induced drag.

Also clear from Figure 7 is that the optimal condition requires that the amplitude I, /T, . of the elliptic
part of the distribution and the amplitude I’ /T . of the natural-logarithmic part of the circulation dis-
tribution should be related as T, = —I};/2. Therefore, the optimal circulation distribution follows from
Eq. (14c) as:

Tope ) = 3Ty T =17 = P 2], (17a)
The corresponding optimal vortex distribution then reads, see Eq. (14e):

Vaope () = = Tonin ““l;l_" , (17b)

which shows that the vortex distribution is zero at the wing tip, i.e., the circulation distribution features
not only zero function value, but also zero derivative at the wing tip, i.e., EqQ. (17a) is our second bell-
shaped distribution.

The associated distribution of the upwash follows from Eq. (14d) as:
Winopt®W _ 1 Loy _ g 5ip|], for |n| < 1, (17¢)

Uso 2 Uob
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which is indeed a linear distribution of the upwash along the lifting line. For points at the outward
extension of the lifting line, the distribution of the upwash follows, with I; = —0.5I}, from Table 6 as:

Winope™) _ — 1T 11 —parcsin(1/[3D)], for || > 1. (17d)

Ueo 2 Ub
Evaluation of Egs. (17¢) and (17d) at the wing tip |n| = 1, shows that in the optimal case, the distrib-
ution of the upwash is continuous at the wing tip.

o
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Ros N N ) A
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e

4 271
GrP)

|Dopf4De = (31/2)/0334

o =b/b,

o =b/b,

Figure 7 — Results of optimisation scenario (c): minimisation induced drag D, for prescribed free-stream condi-
tions (Uw, ), lift L = L, and root-bending-moment M, = AM, .: yielding two-term circulation distribution I'(n) =
le—nﬂ+nw1—nlwfmﬁﬁff}ReaMsmeshmw1hrl=095®05ﬂi,ﬁmngmemmhbd+m¢mH&
blue coloured curves. Left-top: dimensionless induced drag D /D, vs. dimensionless span ¢ = b/b,; Left-bottom:
amplitude two contributions circulation distribution I;(¢) /T, (solid lines) and Iy (0) /T, . (dashed lines); Right-top:
dimensionless starboard-integrated bending moment M, ,/M, , . vs. o and; Right-bottom: dimensionless star-
board-yawing-moment M, /M, . vs. . Dotted lines: invalid solutions for which I'(s) not positive for all || < 1.
Coloured round solid circles: optimum solution of minimum induced drag.

The optimal value of amplitude I, /T, . of the bell-shaped distribution Eq. (17b) decreases slowly with
increasing 4 like 9/44. This optimal value decreases slowly with A, because the optimal span g,,; =
bopt/b. increases linearly with 4, in order to force the lift to remain equal to: L = L,.

The optimal starboard-integrated bending-moment M, , ,,,. /M, , . increases quadratically with increas-
ing A. For A = My ope /My e = 1, My 5 ope/ My 2 . INCreases a mere 6.7%, for a wing with the optimal bell-
shaped circulation distribution, which has an optimal span that is 33.3% longer than the wing with an
elliptic circulation distribution. The induced drag for the optimal design equals D,,;/D, = 0.84, 16%
lower than the corresponding value of the elliptically-loaded wing.

For any value of 4, the starboard-yawing moment M, ,./|M,.| remains negative, at —% (1 - %nz) ~

—0.4384at A = 1 and -0.3985 at 4 = 1.1 a reduction by 56% and 60%, respectively, in magnitude com-
pared to the wing with elliptic circulation distribution. The reason for this is that in the wing-tip region
the section drag becomes negative (thrust rather than drag), which gives a positive (proverse) con-
tribution to the yawing moment. This is advantageous for turning flight, since this leads to a smaller
vertical tail surface, or even elimination of the vertical tail. Note that the optimisation scenario (b),
minimizing induced drag for prescribed lift and starboard-span-integrated section-bending-moment,
that resulted in the bell-shaped circulation distribution (1 —7?)3/2, featured a starboard-yawing mo-
ment, for t = 1, equal to Mz,opt/|Mz,e| ~ —0.5599, i.e.,10% less favourably in terms of amplitude.

Figure 8 presents results for three values of 1 = M, /M, .: 2 = 1.0, 1.05 and 1.1, values in the same range
as the ones used in Figure 7. Furthermore, for the dimensionless wing span o = b/b,,, we choose,
for each value of 4, the value for which the induced drag is minimal: 6,,; = byt /b, = (4/3)A. This
implies that the corresponding circulation distributions satisfy I'; = —0.5I}, corresponding to bell-
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shaped distributions T, (n) = 2, [y/T - n? — r)zlnH—Vl;l_nz], with - = 2. Results are compared with re-
0,e

sults for the elliptic circulation distribution I'(n) = T, ./1 — n%. Figure 8 shows that with increasing 1 =
M, /M, . the dimensionless section circulation T,,.(y /0.5b,.)/T,., Which is proportional to the dimen-
sionless section lift: ¢ (y/0.5b,)/q_b. = 2T (y/0.5b,)/q_b., See Table 1, decreases near the wing root,

which is due to the increase in dimensionless span ¢ = b,,./b, at constant total lift L, distribution.
1.2
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Figure 8 - Results optimisation scenario (c): minimisation of induced drag D, for prescribed free-stream condi-
tions (Uw, 9-), lift L = L, and root-bending-moment M, = AM, . yielding two-term circulation distribution I'(n) =
Tov1-—n2+ {1 —n%+ nzlnﬁ—m}- Results are shown for A = 1.0(0.05)1.1, from black-to-red-to-blue coloured
curves. n = (y/0.5b.)/a; Minimum drag: 0 = dop¢ = bope/be = (4/3)A, Ty = —0.5I,,. Top-left: spanwise distribu-
tions dimensionless circulation I, (y/0.5b,) /T, . VS. y/0.5b,; Bottom-left: spanwise distributions dimensionless
upwash velocity [wy, (¥/0.5b,)/Usx]/[To,e/Uxbe] Vs. ¥/0.5b,; Top-right: spanwise dimensionless vortex distrib-
ution [y, (¥/0.5b.)/Us]/[Tye/Usxb.] Vs. y/0.5b,; Bottom-right: spanwise distributions dimensionless upwash

velocity [wi, (¥/0.5b,)/Ux]/[Toe/Usxbe] Vs. ¥/0.5b, on lifting line and its extension y > b/2. Vertical dashed
lines: location COV. Results for elliptic circulation distribution: black dotted curves.

Figure 8 illustrates that the present bell-shaped distribution of the circulation gives a linear distribution
of the upwash w;, (y/0.5b,)/U, along the lifting line, negative in the wing-root portion of the wing,
positive in about 40-percent of the outboard part of the semi-span. The elliptic circulation distribution
generates a constant (negative) upwash. As will be clear later on, this difference in upwash distribu-
tion has implications for the roll-up of the wake of the wing.

The vortex distribution along the lifting line decreases in peak value with increasing value of 1. The
location of the peak, at y,../0.5b, = 0.55243(4/3)4, as well as the location of the center-of-vorticity
(COV) at ycoy/0.5b, = (21/9) A < Ypear/0.5b,, mMove outboard with increasing A. For 1.0663 =
3m/(16 x 0.552434) < 1 < 9/8 = 1.125. the COV for the elliptic distribution, at y.oy ./0.5b, = /4, iS
situated between y,,y/0.5b, and y,eq/0.5b,. For A > 9/8 = 1.125, ycoy./0.5b, < ycov/0.5b,, S0 inboard
of both y¢,y /0.5b, and y,qy /0.5b,.

Figure 8 also presents the upwash distribution for y > b/2, the outward extension of the lifting line. It
shows that, characteristic for bell-shaped circulation distributions, the upwash distribution:

(i) is continuous in function value across the wing tip;

(i) is slope-discontinuous across the wing tip: the slope is finite at the inboard side of the wing tip, but
has a square-root singularity at the outboard side of the wing tip;

(i) tends to zero for points far outboard of the wing tip, as should be the case for any circulation
distribution.

Figure 9 shows that for the elliptic distribution I .,/1 —n? of the circulation, the distribution of the

section-drag d(y/0.5b.)/q.b. Of the wing is positive along the whole span of the wing, while for the

bell-shaped circulation distribution T, (1) = ilo[y1 —n% —n*In (1 + /1 —1n2/InD], with T,/ T, = 9/(44),

the tip portion of the wing features much lower and even negative section-drag (section-thrust). In the
18
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root portion of the wing, the bell-shaped circulation distribution generates a considerably higher
section-drag, however, for the wing as a whole the net effect is a decrease in overall induced drag,
like 1/22. It is also clear that increasing A does not change the section-thrust in the tip region very
much, while in the wing-root portion of the wing the section-drag decreases quite a bit. This is the
reason that the overall induced drag decreases quadratically with increasing A.
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Figure 9 - Results optimisation scenario (c): minimisation of induced drag D, for prescribed free-stream condi-
tions (Us, 9-), lift L = L, and root-bending-moment M, = AM, . yielding two-term circulation distribution T'(n) =

Tov1—1%2 + {1 —n% +7n%ln 1+V|;|"”2}. Results are shown for A = 1.0(0.05)1.1, from black-to-red-to-blue coloured

curves. n = (¥/0.5b,)/0; 0 = Gopr = bope/be = (4/3)4, I} = —0.5I. Left-top: spanwise distributions dimensionless
section drag [d . (¥/0.5b,)/qwbel/ (Toe/Ussbe)? VS. y/0.5b,; Left-bottom: spanwise distributions dimensionless
section yawing moment [my o, (¥/0.5b,)/qob21/(Toe/Ussbe)? VS. y/0.5b,. Right-top: spanwise distributions dimen-
sionless root-bending-moment [m, o (¥/0.5b.)/qeb2]/(Toe/Usbe). Right-bottom: spanwise distributions dimen-
sionless integrated-bending-moment [m, ;,,: (v/0.5b.)/qeb2]/(To. /Usbe). Results for elliptic circulation distribu-
tion: black dotted curves.

As far as the section contribution m,(y/0.5b,)/q.b? to the starboard-yawing moment M,/q., b3 is
concerned, it is clear that for the bell-shaped distributions the yawing moment is much smaller in
magnitude than that of the elliptic distribution of the circulation. For increasing A = M, /M, ., the yaw-
ing moment quite drastically decreases in magnitude, like 1/4 because the contribution of the root
portion of the wing, with negative, adverse, yawing moment, decreases.

The plot of the distributions of the section contribution m, (y/0.5b,) to the root-bending-moment M,
indicates that the root-bending moment due to the bell-shaped distributions and that due to the elliptic
circulation distribution differ in amplitude and in shaped. For A = M,./M,. . = 1, the elliptic circulation
distribution has the same M, /M, . = 1, while the distribution m, (y/0.5b,) is quite different.

For A = M, /M, . > 1 the distribution m, (y/0.5b,) keeps about the same amplitude, which moves
slowly in the direction of the wing tip, which itself moves outward, while the prescribed M, /M, in-
creases linearly with A. With increasing A the distribution m,, ,(y/0.5b,) of the section-contribution to
the starboard-side integrated-bending-moment M, , .., increases in amplitude, while simultaneously
the distribution stretches in outboard direction because of the increasing span. This causes M, , to
increase quadratically with increasing A: for A =1, My ot /My = 1.0667, for 2 = 1.1, My ; ot/
M, .. =~ 1.2907 an increase by 21%.

Therefore, increasing A = M, /M, ., in optimisation scenario (c), results in a quadratic increase with A
in the integrated section-bending-moment M, ,/M, , ., while increasing the prescribed t = M, ,/M,., . in
optimisation scenario (b) results in a modest square-root increase with t in the root-bending moment
M, /M, .. Note: Jones [17] Figure 5, presents a plot similar to Figure 6 (upper-left) above, though
using a different notation for the parameter A used in the present study. Furthermore, the specific
condition at the wing tip, of a bell-shaped circulation distribution is not discussed.
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Comparison with results of Drela [23]

In [23], the minimum-induced-drag problem is described in a form similar to that of scenario (c),
though for more general configurations. The solution of the optimisation problem is obtained by nu-
merically through a panel method which approximates the integral that provides the upwash w;, (y)
as function of the vortex distribution y,(y), i.e., the Biot-Savart law Eg. (1d). In effect the relation
between upwash and vortex distribution is inverted numerically, rather than analytically as in Eq. (2a).
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Figure 10 — Minimisation of induced drag D, for prescribed free-stream conditions (U, q-), lift L = L, and root-
bending moment M, =AM, ., here 1 =1, yielding circulation distribution T'(n) =Toy/1—n2 + L {y/1—n%+
nzln“TW}. Comparison present results with results obtained in [23]. Left-top: circulation distributions for 3
values of dimensionless span: ¢ = b/b, = 1.0, 0 = 1.1 and ¢ = g,,, = 4/3. Left-bottom: distributions induced

upwash for same dimensionless spans, for 0 < y/0.5b, < b/b, and for y/0.5b, = b/b,. Right-bottom: Com-
parison induced drag D /D, derived in present study with data (open circles) from [23].

'
=y

In [23], the scaled induced drag D/D, is given for three discrete values of the scaled span ¢ = b/b,,
see table in above Figure 10, with b, the span of the wing carrying lift L = L., generated by the elliptic
distribution of the circulation T'(y) = I, .(1 — n?)%/2, with n = y/0.5b. In the optimisation problem the lift
is fixed at L, and the root-bending-moment at M, = M, ., i.e., in terms of the present formulation 1 = 1.
The expressions in Table 6 are used to calculate, for A = 1, the value of the induced drag for the three
discrete dimensionless wing spans ¢ = b/b, used in [23], see table in Figure 10 above. Note, that
the value o = b/b, = 1.3 is close to the optimal value of the span, which is equal to b/b, = 4/3 =
1.3333 ...

Comparison of the circulation distributions obtained in the present study, presented in Figure 10, with
the ones presented in [23] Figure 5.16, page 120, shows a very good correlation. The three distribu-
tions shown are the elliptic distribution o = 1, the distribution ¢ = 1.3 that is quite close to the bell-
shaped distribution for ¢ = b/b, = 0,,. = 4/3 and a distribution at an intermediate o = 1.1. At the wing
tip, each of the three distributions has zero function value I'(c) =0 and a square-root singularity
dr/dy — oo for y/0.5b, T 0. Only in case ¢ = b,, /b, = d,, the derivative and therewith the vortex
distribution, equals zero at the wing tip.

Comparison of the distributions of the upwash, linear for 0 < y/0.5b < 1, obtained in the present
study, presented in Figure 10, with the ones presented in [23], Figure 5.16, page 120, shows a very
good correlation. In [23] the upwash distribution outboard of the wing tip has not been provided.
Except the distribution for o = b,,./b, = 0,,., the upwash is discontinuous at the wing tip: finite for
y/0.5b, T ¢ and a square-root singularity for y/0.5b, 1 ¢. So, also for ¢ = 1.3 the upwash distribution
features this singularity.

Figure 10 presents the closed-form expression for induced drag D /D, as function of ¢ = b/b,, derived
in the present study, in comparison with the numerical data given in [23], Figure 5.17, p. 120. The
discrete data are in close agreement with the analytic results. Included in the plot for D(0)/D, is the
envelope of the optimal (minimum) values of D,,.(¢)/D,, proportional to 1/03pt, with o, = (4/3)4,
with here 4 = 1.
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Also included in Figure 10 above, as well as in [23], in the plot D(o)/D, is the curve corresponding to
the induced drag of the wing of span b and lift L., with elliptic circulation distribution. The induced
drag of a wing of span b = b,,, with elliptic circulation distribution I'(y) = I, .(1 — n?)*/? has, according
to Table 2, lift L=1L, =§(qw/Uw)beF0,e, induced drag D, =%(qw/U§o)F02,e and root-bending-moment
My, = %(qm/um)bgroie. The wing with span b and elliptic circulation distribution I'(y) = I[,(1 — n?)'/2? has
lift L =7 (qe/Us)bTy, induced drag D =7 (q./U2)I and root-bending-moment M, =%(qm/Uoo)b2F0.
Therefore, the amplitude T, of the elliptic distribution on wing with span b and lift L, equals T, =
(be/b)Ty ., SO that its induced drag equals D = g(qw/ug)rge(bg/bﬁ = D,(b2/b?), see plot in Figure 10
above, and its root-bending-moment M, = %(qm/Uoo)bgl"o_e (b/b,) = M. (b/b,). The analysis shows that
the induced drag of a wing with elliptic circulation distribution r(;) = r,,/1 —»?2 of fixed lift L, and uncon-

strained root-bending-moment M,, decreases quadratically with wing span, while its root-bending-
moment increases, unbounded, linearly with wing span. In contrast, the induced drag of a wing with

circulation distribution T'(y) = [,/I =72 + L{/1 -2 + n%n 1+V|;|_n2} of fixed lift L, and constrained root-
bending-moment AM, ., decreases increasingly slower with increasing wing span, up to wing span
0 = 0ope = (4/3)A: the wing span for which the circulation distribution is the bell-shaped distribution,
@) = Tol/1—n2 —n?l “Vl %1, with Ty = 9/(44). For wing spans beyond the optimal one, the present

solution is invalid because the circulation distribution is not positive along its whole span.

However, the present study does show that allowing a higher root-bending-moment than M, ., the one
associated with the wing with elliptic circulation distribution (1 > 1) constraint, translates into a lower
induced drag.

3.4 Minimization Induced Drag for prescribed Lift, prescribed Root-Bending Moment (Shear
Force) in Combination with prescribed Span-integrated Section-Bending-Moment

For scenario (d), the optimisation is for constant lift L, for constant starboard-side root-bending mo-

ment M, (equivalent to span-integrated section-shear-force F,) in combination with constant star-

board-side span-integrated section-bending-moment M, ,. In this case the variation 6L of the lift L in

combination with the variation §M, of M, and §M, , of M, ,, due to the variation of I'(y), i.e., the

optimisation comprises see Appendix B:

8D = —prf /2 wi, ()8 (y)dy = 0, subject to (5)
5L = poUs 2 b/2 8T (y)dy = 0, (18a)
M, = poUsq fo y8T'(y)dy = 0 and. (18b)
M, = %pono fob/z y28I'(y)dy = 0. (18c)

To force 6D = 0 in Eq. (5), for arbitrary 8I'(y) obeying Egs. (18a-c), it is to be prescribed that:
b
win(y) = Us[A + B3Il + Cn?], for Iyl < b/2. (18d)

From the analysis carried out for the preceding three optimisation scenarios, it follows that the dis-
tribution of the section-circulation I'(n) will be equal to

T() =Tp/1—n2+T, (./1 — 0%+ nzln1+V1 1 ) +T,(1 —n?)32, (19a)
while, in this notatlon the distribution of the upwash equals
HnIED = — [T + Tyl + 30, — 0], for n] < 1. (19b)
Furthermore, it foIIows that
_ 1+y1-7m —
Yx(Tl) [FO \/— + 21—‘1 <\/—"I Tll ) + 3F277v 1 (19C)

In terms of the expression for the C|rculat|on distribution F(n), the lift L, the starboard root-bending
moment M, (equal to the starboard span-integrated section-shear-force E,), the starboard span-inte-
grated section-bending-moment M, , and the induced drag D, have been listed in Table 7.

Following Klein and Viswanathan ([19], [24]), the prescribed lift L = L, is expressed in terms of the lift
L. generated by an elliptic distribution of the circulation at the same free-stream conditions of a wing
with given span b,. The amplitude I, . of the distribution of this imaginary Wing IS T() = Tyey/1 — 12

Using the expression for the lift of such a distribution, found in Table 2, i.e., p == EUFL; defines T ..
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The prescribed root-bending-moment M, is expressed as a factor A times the root-bending moment
Mxe l I‘0,43

M, . of the elliptic distribution as M, = AM, ., see Table 7: =

qoob3 6 Usobe’

() =Ty/1—n? +l“1(,/1 n? +nzln1+‘1 ">+I‘2(1—n2)3/2

win(Inl<1) i To ——
e > [U > n?)]

win(In|>1) -1, T |n| 2T Inl /
To ,4T; , 31T,
[ b ' 3Usb 4 Uoob]

L

qoob? 2 YU
D 2 2
i 8 o T 3T 8r, T 3(T
P _[( 0) —0 1 +__°_+2( ) +__1_2+_(_2)]
0 4 Uoob 3 Usob Usob | 2 Uoob Usb Usob 5 Uoob Usoh 4 \Ueob
My 1[ 3Ty 3 rz]
qeob3 6 "Uxob 2U°ob 5 Usob
Mx,Z L[F § Iy 1 l“2]
qoob? 128 "Usob SU b 2Uxb
M, —1.( To ry 9 Ty T,  3m2/T;)\2 1 3m2, I; T,  27( Ty \?
b3 —[ + (1+ ) 0 L4 -0 2z 4- (L +-1+—)——+=(—) ]
qoo 12 "\Uqgb 8 7 Usoh Usob 10 Usob Usob 10 \Ugob 4 8 7 Usob Usob 70 \Uoob

Yeov/0-5b [ Zlr 421, + ZFZ] J(To + Ty + 1)

Table 7 — Aerodynamic performance for scenario (d): minimisation of induced drag D, for prescribed free-stream
conditions (U, ), lift L, root-bending moment M,,, and span-integrated section-bending-moment M, ,, yielding

circulation distribution T'(n) = T[Hy/1 —n2 + Ty {,/1 —12+7n%ln 1+V Sl } + (1 — n?)3/2.

Similarly, the prescribed span-integrated section-bending-moment M, , is coupled to M, , ., of the el-
liptic distribution of circulation as M, , = tM, , ., with, see Table 7:

Mxze _ T Toe

Goobd ~ 128 Uoobe
Then a system of linear equations is constructed for the three parameters (I, I}, I,) in the expression,
Eqg. (19a), for the circulation distribution, with, [}, = I}, /Ty, and ¢ = b/b,:

1 4/3 3/4\ [T, 1/o fo 126 —320 195\/1/c
(1 3/2 3/5) fl =(2/0% ), sothat( 71 |= (—60 150 —90 ) A/a? ). (20a)
1 8/5 1/2/\r. /03 r, 60 160 —100 ‘r/cr
drag 2= - bz = Z(U%) of the wing with elliptic circulation dlstrlbutlon, ylelds, upon some algebra:
= % [90* — 40403 + (42—51 +504%)0? — 6010 + %Tz] (20c)

The relation presented in Eq. (20c) is identical to the relation presented by Klein & Viswanathan ([19],
16]), as Eq. (19), when substitutingA =1 and t = 1.

Pate & German [30] considered Klein & Viswanathan’s ([19], [24]) three-term circulation distribution
for the case that the span-integrated section bending-moment and the root-bending-moment are
parameters. In their notation &gy = Cigm/ Cigmleniptic @Nd ergm = Crem/ Crem | entiptic denote T and 4,
respectively, in the notation of the present study. Note that in their study the span of the wing is fixed
at the span of the wing with elliptic circulation distribution at the prescribed lift, i.e., 6 = b/b, = 1.
Therefore, substituting Eq. (20c) for ¢ = 1 in the so-called induced-drag parameter §, defined as § =
D/D, — 1, gives § = 5(7 — 321 + 18t + 401 + 1572 — 484r), which agrees with Eq. (16) in [30].

The choice of ¢ = 1 in [30] implies that bell-shaped circulation distributions, with zero first derivative
of the circulation distribution at the tip, do not show up in the analysis in [30].

To complete the optimisation, consider the first derivative of the induced drag, Eg. (20c), with respect
to variable g, With A and t parameters:

42 = 22[360* — 24040 + (1807 + 4004%)” — 60010 + 22577],
which can be re-expressed as:
2
dap. =~ (607 =2000 +157) =~ Zi(0-34) S (TA -7)F =0 (20d)
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The right-most expression in Eq. (20d) directly provides the two roots of %Dﬂ =0, i.e., the dimension-
less wing span ¢ at which D/D, is minimal:

Oopenz =A% [2(542—1) forr <222, (20e)

The condition 7 < 19—012 in Equation (20e) indicates the constraint on the choice of the value of t =
M, ,/M, , . inrelation to the value of A = M, /M, .. The relation for the induced drag D /D, in Eq. (20b)

can also be expressed in a form similar to the one in Eq. (20e), after some algebra involving partial
integration of Eq. (20d), it is found that:

2
b= (=30 G2 )] #2032 S (GE D)o (ro-F2) + 1o =5) + 3G )]
(20f)
The value of the relative span, g,yt1,2 = bopt1,2/be, for which the first derivative of the induced drag
with respect to dimensionless wing span o = b/b, equals zero, is the value for which the induced
drag is at a local minimum. Substituting Eqg. (20e) in Eq. (20f) yields:

Dopt,1,2 _ 12[E(§A _T)iga\JE(FA _T)]. (Zog)

Furthermore, it follows from Eq. (19c¢) that the vortex distribution y,.(n), which is proportional to the
first derivative of the circulation distribution I'(n), is zero at the wing tips if [, + 2I; = 0 and singular
otherwise. Substitution in Eqg. (19a) then reveals, since [, + 2[; = 662 — 2040 + 157, which is zero
according to Eqg. (20d), that for minimal induced drag at o = o,y,1,2, the circulation distribution is a
bell-shaped distribution: the one considered in section 3.3, but with the additional term TI,(1 — %)%/

M) = 3T(/T= 177 — P =y 4 (1 - )7, (20h)

at oope = byye/b,. This is the sum of the second and first bell-shaped distributions: /1 — 72 — 7°In

and (1 —n?)3/2, respectively, found in the present study.

For A=1 and 7 =1, i.e., the case considered in [19], [24], the analytic expression Eq. (20e) gives
Oopt,1 & 1.1396 and o, , = 2.1936, for which Eq. (209) gives Dy, /D, ~ 0.9292 and D, ,/D, = 0.7959,
respectively. Klein & Viswanathan’s ([19], [24]) values for their first optimum (o,,., =~ 1.160 and
(Dopt.1 /De) = 0.929) are slightly different, while the second optimum, at a much larger, probably non-
feasible, span, is not provided. As already clear from Eq. (20d), giving the first derivative of the in-
duced drag, the second derivative of the induced drag

L2 = 2 (602 — 2010 + 157)(1802 — 10020 + 1057)
_ 216 5.2 5(10 ., 25 ,\%  35(250 5 .
=20 -34) —3(F2 -l -T2) (52 -] (200
is also zero at g,4,1 2. This reveals that both (local) minima in the induced drag are, again, at inflection
points of the curve D/D, as function of ¢ = b/b,.

. 5 . .
From Eq. (20e) also surfaces that in case o,p¢1 = Oppr2 = 5/1, i.e., in case the two roots of %Dﬂ =0
e

1+/1-n2
nl

coincide, the parameters A and t, that govern the magnitude of the prescribed root-bending-moment
M, and the span-integrated section-bending-moment M, ,, respectively, are related through 7 = %/12.
Eq. (209) then yields:

Dopt,1,2 1081 (ZOj)

De nglz T 12522
which, for 2 =1 results in D,,.,/D, = D,,.,/D, = 0.8640, a value substantially lower than the 0.9292
for the case (4,7) = (1,1) of Klein & Viswanathan ([19], [24]).

Further analysis gives that in the case of coinciding optimal values of o,,;, the relation —2f; + 36, =
0, equivalent to I, + 3T, = 0, is valid, which results, with [, + 2I; = 0, in the circulation distribution:

ra) = LE{YT=72 - i 22— gyl (20K)
At the wing tips this distribution features zero function value, zero first derivative and zero second
derivative of the circulation distribution, i.e., the third bell-shaped distribution: a super-bell-shaped

distribution. Table 8 summarizes the expressions derived so far in this section.

23



FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP

() =Ty/1—1n2 +I‘1(,/1 n? +1121n1+'1 ")+I‘2(1—n2)3/2

n —1. T
Win(inl<1) E]":f” S+ g mlnl + 553G — 1Y)

win(In|>1) -1, T Il 2y ( =Inl T2 2 2 _
TR > [Uoob (1 — n2—1) + wa( ra + narcsin(= )) 3( —n*+nlvn D]
o — (12602 — 32040 + 1957)

I‘O,e o

m —(—6002 + 15010 — 907)
a

I‘O,e

1z — (—6002 + 16010 — 1007)

l"()e a
L 1
Le
D% %[90 — 40403 +( T+50/12)0 —60/110+—T]
d D
doD, —?(60 — 2040 + 157)2 = -2 (0——1) _E( AZ—T)]
da* D 216 5.\2  5(10 5, 35 (250 5
ao? b, wllo=52) —3(52 —T)][(“—ﬂ) ~ (e =)
My A
Mx,e
My T
My2.e
M,
] — 2~ [120* - 7140® + 110(1 - 21—”) +20252 1281 _ 12005(; Yo + 150(1 —21—") 2]
Ycov - o3
0.5be 46021000457
ba t
Topt = 1+ E(Ezz—r) fort <= /12

Dopt
D, [ /‘{Z—T ii 10 /F i E 1012 l
3 3 2

Ycov,opt . " 10 - , 0,
05b, Zla 22 Cr-o)+£22(22-1)

Table 8 — Summary solution scenario (d). minimisation of induced drag D, for prescribed free-stream conditions
(U 9), lift L = L,, root-bending moment M, = AM, ., and span-integrated section-bending-moment M, , =

TM, 5, Yielding circulation distribution I'(5) = [,\/1 —n2 + Ty {\/1 n? + nzln“vll| u }+ [,(1 —1n?)3/2

Note: Optimal solution with +sign is invalid solution since resulting I'() not positive over part of span.

Figure 11 presents results for the induced drag D/D, and the distribution of the circulation
I'(y/0.5b,) /T, as function of the relative span ¢ = b/b, and of the spanwise coordinate y/0.5b,, res
pectively. Four cases are considered:

(i) The case of Klein & Viswanathan ([19], [24]), their Figure 1, i.e., for (1,7) = (1,1). The present
result is the black curve in Figure 11. It shows that at o = gy, = (10 — V10)/6 ~ 1.14, the curve
D(o)/D,features an inflection point (both first and second derivative with respect to ¢ are zero) at the
point where D/D, ~ 0.9292. Further down along the curve, the induced drag decreases to still lower
values, until at o = g4y, = (10 + V10)/6 ~ 2.1936, a second local minimum occurs, again an inflect-
ion point. However, beyond o = g, 1 the section-circulation is negative along part of the span, which
invalidates the solution. Furthermore, though for these values of ¢ = b/b, the induced drag D/D, ~
0.7959 is substantially lower, the large span required to realise this result is not considered to be
realistic. Figure 11 — right presents, as reference, the circulation distribution for the elliptic distribution
(dotted line), which at the wing tip has a square-root singularity in the first derivative. The circulation
distribution for (4,7) = (1,1) plotted as black curve, illustrates the two local minimums: one for ¢ =
dopt,1 (SOlid black curve) and one for o = g, , (dashed black curve). In both cases, the distribution
has zero function value and zero first derivative at the wing tip: giving a bell-shaped distribution.
However, for o = gy, 2, the distribution is negative in the region next to the wing tip. Actually, this is
true for all cases with 6,1 < 0 < g,pt2, While for still larger spans the region with negative load
moves inboard, away from the wing tip. For all such distributions, the integrals of moments of the load
(proportional to T'(n)) should be taken as integrals of the absolute value of the load, not of the load
itself, as has been done in the present study. This invalidates the present analysis for prescribed M,
and M, ,, for 6 > o, 1.
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Figure 11 — Results optimisation scenario (d): minimisation of induced drag D, for prescribed free-stream con-
ditions (Uw, q-), lift L = L, and root-bending-moment M, = AM, . and span-integrated section-bending-moment
M,, =tM,,,., for 4 combinations of 2 and 7. Left: Induced drag D/D, vs. span ¢ = b/b,. Right: Distribution
circulation I'(y/0.5b,) /T; .. Black line, present result Eq. (20c) for (1 = 1,7 = 1), identical to result of [19], [24].
Red line: Eq. (20c) for (A = 1,7 = 3%2?) Bluish line: Eq. (20c) for (1 = (9t/10)Y2, ¢ = 1). Ochre line: Eq. (20c) for
(A = 1.05,7 = 1042/9). Dashed part of curves: invalid solution because I' < 0 for part of span. Vertical dashed
lines in the left plot indicate the location of optimal values of ¢ for minimal induced drag.

(ii) The new case (1,7) = (/9/10, 1), corresponding to the bluish curves in Figure 11. This is the first
of three examples of cases for which = = (10/9)42, i.e., the expression in Eq. (20e) implies that the
roots of %DE =0, Eqg. (20d), features a zero discriminant. For such cases the two local minimums of
D(o0)/D, coincide, while, since also ;722,32 = 0 at this point, see Eg. (20i), the minimum is an inflection
point as well. Actually, as can be deduced from Eq. (20i), since for 7 = %AZ, 0 = Oopt1 = Ooptz = 2/1,

the derivative of Eq. (20i) with respect to g, i.e., :733133 is zero as well.

The present result is the bluish curve in Figure 11 - left. It shows that at 6 = g,pt1 = Gopr2 = g/l ~

1.5811, the curve indeed features a super-inflection point at which not only the first and second de-
rivative of D(a)/D, with respect to ¢ are zero, but also the third derivative. The result is that in a
108 1 120

relatively large range around ¢ = g,,:, D(0)/D, is about constant at e = 15 =096, @ modest

value, in spite of the 58% increase in wing span with respect to the wing with the elliptic loading.
The bell-shaped distribution of the circulation is included in Figure 11 — right, with at the wing tip, zero
function value, zero first and zero second derivative with respect to the spanwise coordinate.

(iii) The next case of a super-bell-shaped is (1, 7) = (1,10/9), corresponding to the red curves in Figure
9. The optimal span is found to be o,,; = 2/1 =5/3 ~ 1.6667, somewhat longer than the one of case
(ii). This longer span pays off in the optimum induced drag, which is now 10% lower than for case (ii),
i.e.,D/D, = % ~ 0.8640 and lower than D /D, for case (i), the case of Klein & Viswanathan ([19], [24]).

But for the longer span, the distribution of the circulation is similar to the each of the three cases with
7 =(10/9)A2.

(iv) The final case of super-bell-shaped distributions considered, is for a higher value of A, namely 1 =

1.05, which translates into a longer optimal span of o,,; = 3/1 = 1.75. The results are indicated by the

ochre-colored curves in Figure 11. The optimum induced drag achieved equals D/D, = == ~ 0.7837,

125 22
due to the longer span required for this wing to obey the prescribed constraints.
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Figure 12 — Results for optimisation scenario (d): prescribed free-stream conditions (U, ), lift L = L,, root-
bending moment M, = AM, ., and span-integrated section-bending-moment M, , = tM,,. in (4,7)-plane. Left:
Solid lines are iso-contours D, /D, = 0.77(0.01)0.95 of optimal values of induced drag D, /D, given in Eq.
(209). Dotted lines are iso-contours o,y 1 = bype,1/be = 1.0(0.1)1.7. Black dashed line is boundary of domain of

validity T < 19—0/12. The four crosses-inside-box symbols correspond to the four combinations (4, t)-combinations

discussed above. Red dashed line t = EAZ with open circles representing ensemble of optimal (4, t)-combina-

tions. Right-upper: Vertical cross-sections 4 = 0.98(0.02)1.04, of iso-D,, , /D, lines. Right-lower: Vertical cross-
sections 1 = 0.98(0.02)1.04 of iso-a,,, ; lines. Black dashed lines with open circles are the ensemble of values

of (Dopt,l/De)opt and (Gopt,l)opt-

To provide an overview of the present results, Figure 12-left presents iso-contours in the (4, t)-plane,
obtained from Eq. (20g), of the optimum-induced-drag D, /D, and of the optimum span o, ; =
bope1/be The induced drag has been minimised for prescribed lift L = L,, prescribed root-bending mo-
ment A = M, /M, , and prescribed span-integrated section-bending-moment t = M, ,/M,,.. All results
shown feature bell-shaped distributions of the circulation along the span of the wing. Figure 12-right
presents vertical cross-sections of the results in Figure 12-left, which will help in the analysis and
interpretation of the results. The herring-bone pattern of the D,,.,/D, iso-contours illustrates that in
the (4, 7)-plane, there is a band-like, valley-type, region of steadily decreasing values of the induced
drag. The envelope of the points at the bottom of the valley are found by taking the derivative of D /D,
with respect to 7 at o = o,,;. With Eq. (20c):

dD _[dD]ds 8D 9D _ _5 5(10 ) . d D _
dTDe_[daDe aT+6TD€—aTDesmceata—aopt—3/1 /2(9/1 7), EQ. (20d)g|vesdaDe—0.

20 _ 485052 85,52 - _ty4l [R5
Therefore,awe—an[a “io+321| =0, leadingtos =314 2 (o2 —1).

Then it follows that along the bottom of the valley: t = %/12, while o, = %A. (201

In geographically terms, the valley runs from south-west to north-east, with the optimum induced drag
decreasing from south-west to north-east along the bottom of the valley = = (16/15)42. The iso-con-
tours can be interpreted as altitude lines running clockwise along the flanks of the valley. On the
steep, southerly side of the valley the contours are closely packed lines, running in negative A-direc-
tion, from east to south. Then the iso-contours turn north, in positive t-direction. Subsequently the
iso-contours cross the valley and turn in positive A-direction, in north-easterly direction, along the
less-steep northerly side of the valley. Finally, the iso-contours abruptly end at the dashed-black curve
T = (10/9)22. At this “barrier” the discriminant of Eq. (20e) equals zero, becoming negative north of
this curve. At all points on the “barrier’ T = (10/9)?, i.e., the distribution of the circulation is of the
super-bell-shaped type, given in Eqg. (20k), at all other points in the (4, t)-plane, south of the “barrier”,
the distribution of the circulation is of the bell-shaped type, given in Eq. (20h).

Within the chosen ranges 0.95 < 1 = M, /M, , < 1.05 and 0.9 <t = M, ,/M,,. < 1.25, the induced drag
has values between D,,.,/D. = 0.95 at the left side of the plot and D,,../D, = 0.77 at the right side of
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the plot. So, it becomes clear that increasing 4, i.e., the root-bending-moment and increasing t, i.e.,
the span-integrated section-bending-moment, along the bottom = = (16/15)4? of the valley, leads to
increasingly lower values of the induced drag. Klein & Viswanathan’s ([19], [24]) analysis for just the
single combination (1 = 1, r = 1) turns out to be a case for which not much reduction in induced drag
can be achieved: Dy, kieimaviswantnan/De = 0.929. For example, increasing, for fixed 12 = 1, the span-
integrated section-bending-moment () by 5% to r = 1.05 reduces the induced drag to D,,, /D, = 0.85.
Simultaneously decreasing, at fixed t = 1, the root-bending-moment (1) by 2% to A = 0.98 would re-
duce the induced drag to D, /D, = 0.89.

Included in the iso-contour plot are iso-contours (dotted black lines running in north-easterly direction)
of the span a,,, = bop:/b. required for achieve the optimum values of the induced drag. This reveals
that in the valley of lowest values of the induced drag D, /D,, the span of the wing is in between the
reasonable values b,,./b. = 1.3 and b, /b, = 1.5.
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Figure 13 — Results for scenario (d): prescribed free-stream conditions (U, ), lift L = L., root-bending mo-
ment M, = AM, . and span-integrated section-bending-moment M, , = tM,. , .. Left-upper: Circulation distribu-
tion I'(y/0.5b,); Right-upper: vortex distribution y,(y/0.5b,); Left-lower: distribution upwash w;,(y/0.5b,) for
0 < y/0.5b < 1; Right-lower: distribution upwash wy,(y/0.5b,) for 0 < y/0.5b < 3/¢. Solid black and red
curves: "bottom valley” T = (16/15)4%; Dashed black and red lines: “barrier” T = (10/9)A2. Solid-black line
(4, 7) = (1,(16/15)24?); Dashed-black line (4,1) = (1,(10/9)4%); Solid-red line (4,7) = (1.05,(16/15)4?);
dashed-red line (1,7) = (1.04, (10/9)A?); dotted-black line: elliptic distribution circulation and wake vortex dis-
tribution.

Figure 13 presents detailed results of four (4,7) combinations, selected from Figure 12: two (solid
lines) combinations on the “optimum-optimorum” curve (“bottom valley”) T = (16/15)A% and two (dash-
ed-line) combinations on the “barrier” curve T = (10/9)4%, each pair for 1 = 1 (black) and 1 = 1.05 (red).
Egs. (20g) and (20e) show that along the “optimum-optimorum” curve T = (16/15)4* the induced drag
equals D,,./D, = (27/32)A72, while the wing span equals g,,; = bop:/b, = (4/3)A. Similarly, along the
“barrier’-curve T = (10/9)4%, the induced drag is somewhat (factor 1.024) higher, equal to D,,./D, =
(108/125)A72, even though the wing span is substantially longer (factor 1.25), equal to o,,; = by /b, =
(5/3)4, see Table 9.

The circulation distribution at points on the “optimum-optimorum”-curve does not include the
(1 —n?)3/2-term, just the first two terms, see Table 9. This solution is equivalent to the solution for
scenario (c) investigated in section 3.3: a bell-shaped distribution. with at the wing tips zero function
value and zero first derivative. The circulation distribution at points on the “barrier” curve in the (2, 1)-
plane is also a bell-shaped distribution. This distribution includes all three terms, such that at the wing
tips the function value, the first and the second derivatives of the circulation distribution are equal to
zero. This is accompanied by, compared to the “optimum-optimorum” case, a longer span, which is
lightly loaded in the tip region in combination with higher loads (section circulation) in the wing-root
region.
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Table 9 — Summary characteristics solutions on “optimum-optimorum” curve and on “barrier” curve. Scenario
(d): minimisation of induced drag D, for prescribed free-stream conditions (U, 9 ). lift L = L, root-bending-
moment M, = AM, ., and span-integrated section-bending-moment M, , = tM, , ., yielding circulation distribu-

tion I(n) = Ty T =72 + T, {,/1 =2 + i LT }+ L (1 — n?)¥2,

The wake-vortex distribution y,(y/0.5b,), proportional to —dr'/dy, shows that the principal difference
between the two types of bell-shaped distributions of the circulation is the behavior at the wing tip:
(a) The “optimum-optimorum” vortex distribution has zero function value and infinite slope, which
results in an upwash distribution that is continuous in function value but discontinuous in its slope, i.e.
a finite slope inboard and a square-root singularity outboard.

(b) The “barrier” vortex distribution has zero function value and zero slope at the wing tip, which
results in an upwash distribution that is continuous in function value as well as in its slope, but dis-
continuous in higher derivatives.

The upwash w;, (y/0.5b,) induced along the span of the wing by the optimum-optimorum” distribution
is a linear distribution, negative in the wing-root region, positive in the tip region. At the wing tip the
upwash distribution is continued slope-discontinuously outboard of the wing tip, see Figure 13. The
upwash induced by the 3-term “barrier” circulation distribution is quadratic along the span of the wing,
compared to the “optimum-optimorum” distribution, more negative in the wing-root region and less
positive in the wing-tip region. At the wing tip, the upwash distribution is continued slope-continuously
outboard of the wing tip. For both distributions, the upwash tends to zero in the far-field.

For the “optimum-optimorum” vortex distribution the COV is at ycoy/ycov.. = 81/9, while for the “bar-
rier” distribution the COV is more inboard at ycoy/ycov e = 51/6.

Figure 14 Left-top presents the distribution of the dimensionless section-induced-drag coefficient
d(m)/qe b., equal to:
M l-‘Oe be L _ _ 2 \/— N2
doobe  UZDLEZ b [Fo +F17T|rl| +F23( 1] [FO\/1 +F1 {\/1 Z+7 In =1 }"‘Fz(l ) I (Zom)
for the pair of points on the “optimum- optlmorum curve 7 = (16/15)/12 and the pair of points on the
“pbarrier” curve T = (10/9)2%. Figure 14 shows that for the elliptic distribution T, ./1 — n? of the circula-
tion the distribution of the section-drag d(y/0.5b,)/q.b. Of the wing is positive along the whole span
of the wing. For the 2-term “optimum-optimorum” bell-shaped circulation distributions T,,.(n) =
Toly1=n% —n*In (1 + /1 —n2/InD], with T/ T, = 9/(44), the tip portion of the wing features much
lower and even negative section-drag (section-thrust). In the root portion of the wing, the 2-term bell-
shaped circulation distribution generates a considerably higher section-drag, however, for the wing
as a whole the net effect is a decrease in overall induced drag, like 1/42. Itis also clear that increasing
A does not change the section-thrust in the tip region very much, while in the wing-root portion of the
wing the section-drag decreases quite a bit. This is the reason that the overall drag decreases qua-
dratically with increasing A. For the 3-term “barrier” bell-shaped circulation distributions T,,.(n) =
Toly1—n? —n*In(1 + 1 —n2/Inl) — 2(1 — n*»)*/?], with T,/ T, . = 36/(254), the tip portion of the wing fea-
tures similar magnitudes of section-thrust as the 2-term optimum-optimorum” 2-term distribution.
However, in the root-section of the wing the 3-term “barrier” distribution shows higher levels of section
drag than the 2-term distribution, resulting in a higher overall induced drag: 108/(12522) for 3-term vs.
27/(32A%) for 2-term distribution, i.e., an increase in induced drag of 2.4%.
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As far as the section contribution m,(y/0.5b.)/q.b? to the starboard-yawing moment M, /q., b3 is con-
cerned, it is clear that for both bell-shaped distributions the yawing moment is much smaller in mag-
nitude than that of the elliptic circulation distribution. For increasing 1 = M, /M, ., the yawing moment
quite drastically decreases in magnitude, like 1/4 because the contribution of the root portion of the
wing, with negative, adverse, yawing moment, decreases. The 3-term, “barrier”, circulation distribu-
tion, with its longer span ¢ = b/b,, features, at equal = M, /M, . a 27.5% lower magnitude of yawing
moment than the 2-term optimum-optimorum” circulation distribution.

The plot of the distributions of the section contribution m,(y/0.5b,) to the root-bending-moment M,
indicates that the root-bending moment due to the bell-shaped distributions and that due to the elliptic
circulation distribution differ in amplitude and in shape. For 2 = M,,/M, , = 1, the elliptic circulation dis-
tribution and the two bell-shaped distributions have identical M,/M, . = 1, while the distributions of
m,(y/0.5b,) is quite different. For the bell-shaped distributions, the longer wing span and the wing-tip
continuity conditions result in a shift of the outboard half of the distributions of m,(y/0.5b,). The am-
plitude of the distribution m,(y/0.5b,) depends stronger on the type of bell-shaped distribution than on
A. With increasing A the distribution m, ,(y/0.5b,) of the section-contribution to the starboard-side inte-
grated-bending-moment M, , ,,,, increases in amplitude, while simultaneously the distribution stretch-
es in outboard direction because of the increasing span. For the “optimum-optimorum” distribution
this causes M, , to increase quadratically with increasing A: for A =1, M, ,,:/My 2 ~ 1.0667, for 1 =
1.05, My 5 opt/Mx 2, = 1.1760 an increase by 10%.

Therefore increasing 1 = M,/M, , in optimisation scenario (d), results in a quadratic increase with 1

in the integrated section-bending-moment M, ,/M,., ., Similar to scenario (c). Of course, choosing for
a somewhat higher root-bending moment, of span-integrated section-bending-moment pays off in a
considerable decrease in induced drag.
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Figure 14 - Results optimisation scenario (d): minimisation of induced drag D, for prescribed free-stream con-
ditions (Ue,qs), lift L = L,, root-bending-moment M, = AM,, and span-integrated section-bending-moment
M,, = ™M, ,.. Solid black and red curves: "optimum-optimorum” = = (16/15)2?%; Dashed black and red lines:
“parrier” T = (10/9)42. Solid-black line (1,7) = (1, (16/15)4?); Dashed-black line (1,7) = (1,(10/9)42); Solid-
red line (4, 1) = (1.05,(16/15)A%); dashed-red line (4,7) = (1.04, (10/9)1?); dotted-black line: results for elliptic
distribution circulation. Left-top: spanwise distributions dimensionless section drag [dp:(y/0.5b.)/qwbc]/
(Toe/Uwbe)® Vvs. y/0.5b,; Left-bottom: spanwise distributions dimensionless section yawing moment
[Mzope (¥/0.5b¢)/qeb’]/(Toe/Ussbe)? VS. y/0.5b,. Right-top: spanwise distributions dimensionless root-bending-
moment [my q,¢ (¥/0.5be)/qoobZ]/(Toe/Ussbe). Right-bottom: spanwise distributions dimensionless integrated-
bending-moment [m, ;o (¥/0.5b)/qeb2]/(Toe/Ussb,). Sub-tables provide integrated: drag, starboard-yawing-
moment, root-bending moment and span-integrated section-bending-moment, see Table 9.
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Finding the distribution of the twist angle
In order to generate the circulation distribution that produces the prescribed lift L, root-bending-mo-
ment AM, ., and integrated section-bending-moment tM, , . at minimum induced drag, the wing is
required to possess twist. The distribution of the section chord c(y) is specified. The wing selected
has a linear distribution of the chord:

c(m) /b, = (¢, /b.)(1 —n) + (c;/be)n, With ¢,./b, = 0.16 and ¢, /b, = 0.04. (20n)
The geometric mean chord is equal to ¢/b, = [¢,/b, + c;/b.]/2.

The spanwise distribution of the section A« follows from Aa(y/0.5b,) = a — aq(y/0.5b.) + f(y/0.5b,),
with a the wing angle-of-attack, a,(y) the section zero-lift angle and g the section twist angle. The

section Aa(y/0.5 b,)follows from Eg. (4b) as

_ 2 Toe be T _ win®)
Aa(y) - ag Usobe c(¥) Toe Uo

= %CL,e[a%%n){rm/l —n*+ 0 (\/1 -7’ + UZIHHTII_WZ) + 01— 772)3/2} +%i%{ro + Lymlnl + 153 G - TIZ)}]v (200)
with €., = L./q.b.C, the lift coefficient of the wing with the elliptic loading. Note that ¢, = L/q.b¢ =
CLeb./b = C,./0. Figure 15 shows the resulting distributions of Aa(y/0.5b,) for the “optimum-optimo-
rum” distribution and for the “barrier” distribution. Included in Figure 15 is the result for the elliptic
distribution of the circulation, obtained by substituting b = b,, I; = 0 and [, = 0 in Eq. (200). For the
elliptic distribution the section-drag is positive all along the span of the wing, due to the induced (neg-
ative) upwash being constant along the entire span.
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Figure 15 — Scenario (d): prescribed free-stream conditions (U, ), lift L = L., root-bending moment M, =
AM, . and span-integrated section-bending-moment M, , = tM, , .. Chord c(n): linear distribution, see Section
4. Distribution required section Aa(y/0.5b,) = a — ay(y/0.5b,) + B(y/0.5b,), with a angle-of-attack, «,
section zero-lift angle and g the section twist angle, for two points on “optimum-optimorum” curve 7 = (16/15) 2
and two points on “barrier” curve 7 = (10/9)A2. Solid-black line (1,t) = (1, (16/15)4?); dashed-black line
(1, 1) = (1, (10/9)1%); solid-red line (1, 7) = (1.05, (16/15)4%); dashed-red line (1,7) = (1.05, (10/9)A?); dotted-
black line elliptic distribution.

Figure 15 illustrates that, in order to achieve the optimum distributions of the circulation, the distribu-
tion of Aa(y/0.5b,) =a— ay(y/0.5b,)+ B(y/0.5b,), i.e., the distribution of the wing-twist angle
B(y/0.5b,), is required to adjust considerably from a high value in the root region to a lower and even
negative value in the tip region, with a wash-out of the twist angle in case of (4, t)-values on the
“barrier’-curve. The distribution of Aa(y/0.5 b,) required to achieve the elliptic distribution of the circu-
lation, given by

Ba(y) = 2Cpels 1= + 51, (20p)

ap c(¥)
is of quite different from that required for the bell-shaped distributions of the circulation.

3.5 Comparison performance bell-shaped distributions circulation
Apart from the elliptic distribution I'(n) = I, (1 — n?)/?, (21a)

associated with a constant (negative) upwash distribution W = —%% (21b)

considered in section 3.1, in the present study three bell-shaped distributions of the circulation have
been discussed:
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(1) T(n) = T (1 —1?)*/2, also, as I'(n) = IL,(1 — n?)*/2,

associated with a quadratic upwash distribution

discussed in section 3.2 and also, section 3.3, respectively;
= L[ = 7)Y2 =2 {(1+ (1 —n»¥2) /Inl}],

(2) T

associated with a linear upwash distribution

Win(|77|<1)

discussed in section 3.3 and section 3.4; and

(3) I) = 2o[(1 = 7®)Y2 = nIn{(1+ (1 -
associated with a quadratic upwash distribution

discussed in section 3.4.

(4) In addition, here a fourth bell-shaped distribution is introduced: I'(n) = I3 (1 — n?)%/2,

0

win(Inl<1) —
U

nY2)/Inl} -2 (1 -

Win(|7I|<1)

1T,
2 Usob

3G -1,

1 FO
T 2Us Db L ——|77|)

2)3/2]

1F0
2 U b[

(21c)
(21d)

(21e)
(21f)

(219)

il -2 (- n?)1(21h)

(21i)

that satisfies the conditions at the wing tip of distribution (3), namely zero function value, zero
first and zero second derivative. This distribution generates a quartic-polynomial upwash distri

bution:

win(Inl<1) - _

Ueo

1 F3
2Uxb

(G-

(21j)

Table 10 collects the expressions for the performance of the four bell-shaped distributions and in
addition, the “stretched” elliptic distribution for wings of span b. The parameter in these four express-
ions is the relative span o = b/b,.
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Table 10 — Performance,

(reference); 3/2-power distribution T, (1 — 5?)3/2; *

distribution 2 1"0[\/1 n? nzln<

1+/1-7

relative to performance wing of span b, with elliptic circulation distribution
T (1 —H%)'/2, where # = y/0.5b,, of optimised bell-shaped circulation distributions considered in present study.
Most-left to most-right columns list wings of span b and n = y/0.5b: Stretched elliptic distribution Ty(1 — 5?)1/2

Inl

optimum-optimorum” distribution -, [\/T -2 —nzln(”Vl I “barrier”

) 2(1 —?)*/2]; 5/2-power distribution I;(1 — 52)5/2. Relative span: ¢ = b/b,.

Figure 16 presents the three moments induced by the four bell-shaped circulation distributions, con-
sidered in the present study, as function of the induced drag. From the plots it becomes clear that for
prescribed root-bending moment M, =AM, ., the “optimum-optimorum” distribution (red curve), for
which t = 16/(15 4?), yields the lowest values of the induced drag, with reductions up to 30% with
respect to the induced drag of the wing of span b, with elliptic circulation distribution.

In the (D,p:/De,A)-plane the results for the four bell-shaped circulation distributions are quite close
together, i.e., within 2.5% in induced drag D,,./D,. The result for the additional fourth distribution
(blue) is within 0.2%, i.e., nearly identical, to the result for the “optimum-optimorum” distribution (red).
Increasing the relative span o = b/b,, of the wing with elliptic circulation distribution by 10% decreases
the induced drag by 17.5%, while the span-integrated section-bending-moment increases by 22.5%.
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integrated section-bending-moment M, , and
yawing moment M,, all presented as function
of induced drag D,,,, for four bell-shaped cir-
culation distributions described in sections 3.2
to 3.4 for minimising induced drag for pre-
L peedeeene scribed free-stream conditions (U, q.,) and lift
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and; dashed-blue curves: additional, fourth,
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In the (Dop:/De, T)-plane the results for the four bell-shaped circulation distributions are also close
together, i.e., within 7.5%, with the result for the additional fourth distribution (blue) exactly identical
to the result for the “optimum-optimorum?” distribution (green). Here the result for the first bell-shaped
distribution (black) gives the most reduction in induced drag. Figure 16 also shows that, compared to
the result for the stretched elliptic circulation distribution, for all four bell-shaped distributions, the
yawing-moment is substantially, order 50%, smaller in magnitude.

Comparison at equal lift and equal induced drag

To compare the aerodynamic performance of wings with bell-shaped distributions of the circulation
from a different perspective, the dimensionless induced drag D,,./D, is set at 0.8. Table 10 shows
that the dimensionless induced drag is proportional to 1/02, so that the relative wing span ¢ is pro-
portional to 1/,/D,,./D,. Then the amplitude of the circulation distribution I'(y/b,), the root-bending
moment A = M, /M, ., the span-integrated section-bending-moment 7 =M, ,/M,,., the yawing-mo-
ment M,/|M,.| and ycoy, the center of the vortex distribution are found. Figure 17 presents the four
bell-shaped distributions, as well as the "stretched” elliptic distribution, of the circulation and the cor-
responding upwash distributions. The stretched-elliptic, ¥2-power, distribution has the smallest span
of o = b/b, of the four distributions. Compared to the stretched-elliptic distribution, in order to maintain
the span-integrated value (lift), the bell-shaped distributions have higher sectional-circulation near the
wing root and lower sectional-circulation near the wing tip, i.e., the center-of-gravity of the distribution
shifted in inboard direction. That allows the distribution to feature zero first-derivative (first two distrib-
utions) plus even zero second-derivative (other two distributions). Note that the “optimum-optimorum”
distribution ((3)-red) and the 5/2-power ((4)-blue) distribution coincide over the middle part of the
semi-span and are close near the root and near the tip.
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Figure 17 — Top plot: Optimal distributions of circulation, see Figure 16. Bottom-plot: Corresponding upwash
distributions. Solid-black curve: 3/2-power distribution (1); solid-red curve: “optimum-optimorum?” distribution (2);
solid-green curve: “barrier” distribution (3), and; dashed-blue curve: 5/2-power bell-shaped distribution (4).
Black-dotted curve: stretched elliptic circulation distribution. Solid triangular symbols along horizontal axis indi-
cate location wing tip. Open triangular symbols indicate location COV. Table provides numerical values for:
dimensionless span ¢ = b/b,; dimensionless root-bending moment 1 = M,./M, .; dimensionless span-integrated
section-bending-moment ¢ = M, ,/M,, .; dimensionless yawing moment M,/|M,.|; location y.,y /b, along span.

Noteworthy, in spite of a difference in the behavior of the distributions at the wing tip: the second
derivative of the circulation is zero for the 5/2-power distribution and infinite for the “optimum-optimo-
rum” (red) distribution. For induced-drag D,,./D, = 0.8, the wing tip of the 5/2-power distribution is
located in between that of the “optimum-optimorum” distribution (red) and that of the “barrier” distrib-
ution (green). At the wing tip of the latter distribution both first and second derivative of the distribution
are zero, which in order to preserve the prescribed lift, forces the wing tip to a more outboard location
than the tip of the “optimum-optimorum” distribution.

The table in Figure 17 provides the numerical data for the performance indicators. Clearly, the
“stretched” elliptic distribution, in spite of its shorter span, leads to substantial higher values of the
root-bending-moment M, /M, . and the span-integrated section-bending-moment M,.,/M, ., as well
as the magnitude of the yawing-moment M,/|M, .|. The “optimum-optimorum” distribution (red) and
the 5/2-power distribution (blue) result in the lowest values of the root-bending-moment 2 = M,,/M,,.,
the span-integrated section-bending-moment z = M, , /M, , . and the magnitude of the yawing moment
M,/|M,,|. For these two distributions the root-bending moments differ 0.0016 (0.16%), the span-inte-
grated section-bending-moments are identical and the yawing moments differs 0.0210 (4.7%).

The center of the vortex distribution COV, which is approximately the center of roll-up of the trailing
vortex wake, is most inboard, at y.,,/0.5b, = 0.6802, i.e., ycoy/0.5b = 0.3927, for the very stretched
“barrier” circulation distribution (green triangle). The COV of the other three bell-shaped distributions
are at ycor/0.5b = 0.5236, 0.4909 and 0.5890, for the “optimum-optimorum” distribution (red), 5/2-
power distribution and 3/2-power distribution, respectively, so, around 50% semi-span of these dis-
tributions. The stretched-elliptic distribution has its COV at y.,,/0.5b = 0.7854, about three-quarter
semi-span, i.e., much closer to the wing tip than the COV of the bell-shaped distributions.
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Comparison at equal lift and equal span

An alternative to compare results for equal induced drag, is to consider the span of the wing fixed and
determine the performance of the four bell-shaped distributions. The span of the wing with the 5/2-
power distribution of the circulation has been chosen as the reference case. So, all wings have di-
mensionless span o = b/b, = 1.5. Subsequently the last row in Table 10 gives 1 = M, /M, , and 7 =
M,,/M,,., different for each distribution. Figure 18 presents the plot with the distributions as function
of y/0.5b,. In addition, the Table in Figure 18 gives the numerical values of the aerodynamic perform-
ance indicators: induced drag D,/ D., root-bending-moment M, /M, ., span-integrated section-bend-
ing-moment M, ,/M,,., as well as the magnitude of the yawing-moment M,/|M,.|. Also, the location
of ycov/0.5b,is listed in the 1t?ble.
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Figure 18 — Top: Optimal distributions of circulation I'(y/0.5b,) /Ty ., see Figure 16. Bottom: Upwash distribution
[Win(¥/0.5b.)/Us]/(Tye/Us be). Solid-black curve: 3/2-power distribution (1); solid-red curve: “optimum-opti-
morum” distribution (2); solid-green curve: “barrier” distribution (3), and; dashed-blue curve: additional, 5/2-
power bell-shaped distribution (4). Black-dotted curve: stretched elliptic circulation distribution. Solid red triang-
ular symbol on horizontal axis indicates location wing tip for all 5 distributions: y/0.5b, = 1.5. Open triangular
symbols indicate location COV. Table provides numerical values for: dimensionless span ¢ = b/b,; dimension-
less induced drag D,,./D.; dimensionless root-bending moment 1 = M, /M,,.; dimensionless span-integrated
section-bending-moment ¢ = M, ,/M,, .; dimensionless yawing moment M,/|M,.| and; location COV.

The top plot in Figure 18 shows that near the wing tip the black (1) 3/4-power distribution and the red
(3) “optimum-optimorum” distribution behave similarly: at the wing tip zero function value and zero
first derivative, but a square-root singularity in the second derivative of the distribution. Near the wing
tip the 3/2-power distribution (1) is above the “optimum-optimorum” distribution. In the wing-root
region this is the other way around. The 5/2-power distribution (4) and the “barrier” distribution (2)
behave in a similar fashion, although at the wing tip, these two distributions have, apart from zero
function value and zero first derivative, in addition zero second derivative. The lower plot in Figure 18
presents the upwash distributions corresponding with the circulation distributions. Note that also a
small part of the distribution for n > 1 has been included, revealing the continuation of the upwash
distribution outboard of the wing tip. Note that the section-induced-drag equals minus section-circu-
lation times section-upwash. Since the circulation always has positive sign, negative section-upwash
corresponds to positive section drag and positive section upwash corresponds to negative section-
drag (i.e., section-thrust). For example, in case of the “barrier’ distribution (green), section-drag is
negative in the region between y/0.5b, = 0.65 and the tip at y/0.5b, = 1.5. However, since the
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section-circulation has high values in the inboard part of the span, the section-thrust is not large
enough to render the overall induced drag small, i.e., D,,./D, = 1.0667. The other three bell-shaped
distributions do result in a sizable reduction of the induced drag.

The induced drag of the 3/2-power distribution is lower than that of the “optimum-optimorum” distrib-
ution, which is associated with the lower strength of the vortex distribution y, (minus first derivative
circulation) of the 3/2-power distribution in the mid semi-span region. Similarly, the induced drag of
the “barrier” distribution (2) is higher (even > 1) than that of the 5/2-power distribution (4) because of
the higher strength of the vortex distribution in the mid semi-span region. Clearly, the induced drag of
the stretched-elliptic distribution is lowest because of the low level of circulation in the root region of
the wing. However, the magnitude of the root-bending-moment, the span-integrated section-bending-
moment and the yawing moment are substantially larger than those of the bell-shaped distributions.
As far as the COV is concerned, the “barrier” distribution (green) has its COV most inboard, at
Ycov/0.5b, = 0.5891, i.e., ycoy/0.5b = 0.3927= /8. The COV of the stretched-elliptic distribution is
most outboard at y,/0.5b = 0.7854 = /4. The remaining three bell-shaped distribution have their
COV around y¢oy/0.5b, = 0.8, i.e., Yoy /0.5b = 0.53 =1/6
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Figure 19 — Top: Optimal distributions of circulation I'(y/0.5b,) /Ty, See Figure 16. Bottom: Upwash distribution
[Win(¥/0.5b,)/Us]/(To/Us be). Solid-black curve: 3/2-power distribution (1); solid-red curve: “optimum-opti-
morum” distribution (2); solid-green curve: “barrier” distribution (3), and; dashed-blue curve: additional, 5/2-
power bell-shaped distribution (4). Black-dotted curve: stretched elliptic circulation distribution. Solid red triang-
ular symbols on horizontal axis indicate location wing tips. Open triangular symbols indicate location COV.
Table provides numerical values for: dimensionless span ¢ = b/b,; dimensionless induced drag D,,./D,; dimen-
sionless root-bending moment 1=M,/M,,; dimensionless span-integrated section-bending-moment
T = M,,/M,,.; dimensionless yawing moment M,/|M, .| and; location COV along span of wing.

For the case that the four bell-shaped circulation distribution have equal root-bending moment A =
M, /M, .=1.05, the circulation distributions are close to each other, but for the wing-tip region, where
the differences in the tip conditions affect the wing span o = b/b,. The induced drag D,,./D, of the

four bell-shaped distributions does not differ very much, all are in the narrow range [0.7677,0.7837].
Actually, this was already evident from the results for M, /M, . vs. D,,:/D., presented in Figure 16,

which illustrate the closeness of the curves for the four bell-shaped distributions. The induced drag of
Dope/D. = 0.9070 for the stretched-elliptic distribution is 15% above that of the bell-shaped distribu-
tions. Similarly, the results in Figure 17 for constant induced drag show values of M, /M, , that are
within a narrow band in the (D,,./D., M,/M,.)-plane. In the table in Figure 19, the values of the span-
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integrated section-bending-moment M, ,/M, , . of the bell-shaped circulation distributions are within a

slightly wider band. The results for the smallest-span 3/2-power (black) distribution are the best.
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Figure 20 — Top: Optimal distributions of circulation I'(y/0.5b,) /Ty ., see Figure 16. Bottom: Upwash distribution
[Win(¥/0.5b.)/Us]/(Tye/Us be). Solid-black curve: 3/2-power distribution (1); solid-red curve: “optimum-opti-
morum” distribution (2); solid-green curve: “barrier” distribution (3), and; dashed-blue curve: additional, 5/2-
power bell-shaped distribution (4). Black-dotted curve: stretched elliptic circulation distribution. Solid red triang-
ular symbol on horizontal axis indicates location wing tip for all 5 distributions: y/0.5b, = 1.5. Open triangular
symbols indicate location COV. Table provides numerical values for: dimensionless span ¢ = b/b,; dimension-
less induced drag D,,./D.; dimensionless root-bending moment A = M,/M,,.; dimensionless span-integrated
section-bending-moment ¢ = M, ,/M,, .; dimensionless yawing moment M,/|M,.| and; location COV.

Finally, Figure 20 presents the comparison of the aerodynamic performance of the four bell-shaped
distributions for the case the span-integrated section-bending-moment is kept the same for each dis-
tribution at r = M, ,/M, , ., = 1.1. For this case the induced drag for all bell-shaped distributions but the
“barrier” distribution, falls within the narrow band [0.8081,0.8182]. The “barrier” distribution, with its
longer span, features a 6% higher induced drag, while the stretched-elliptic distribution’s induced drag
is 10% higher. The table in Figure 20 also shows that the variation in the root-bending-moment
A= My/M,, is small.

4 Prandtl-D wing

In the literature the aerodynamics of the so-called Prandtl-D wing has received quite some attention.
Such a flying wing has a bell-shaped distribution of the circulation: the 3/2-power distribution.

¢, =0.4m
¢, =0.1m

b=3.7356m

From the report of Bowers [6] the specification of the trapezoidal wing of the RC sub-scale flying-
wing aircraft (25% Horten H Xc glider) has been extracted as:

Span: b =3.7356 m;

Chord: c(m) =c. (1 —=nl) + c¢Inl, with ¢,, = 0.4m and ¢; = 0.1m, so that ¢ = 0.25m; (22a)
Aspect ratio: AR = 14.9422;

Sweep: not taken into account in present study;

Wing dihedral: not taken into account in present study.
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The specified data on root-section and (symmetric) tip section have been used to determine, using
a panel method, the zero-lift angle of attack as:

ay(n) = —0.1178(1 — |n|) deg. (22b)
The list with the distribution of the wing-twist angle has been least-squares fitted in the third-degree
polynomial:

B(n) = 8.2580 + 6.1981|n| — 12.8295|n|2 — 3.5759|n|3 (22¢)
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Figure 21 — Prandtl-D wing: section wing-twist angle g(n).

Figure 21 shows the excellent agreement of the present fit with the data from Bowers’ report [6], with
the L2-norm of the difference equal to 0.01 deg. The geometric twist of the wing increases the section
angle of attack in the root section and lowers it in the tip region. Such type of distribution of 8 (n), with
unloading the tip region, is necessary to generate a bell-shaped distribution of the circulation.

Now all data, except the angle-of-attack a of the wing, required to solve Prandtl’s Lifting-line integro-
differential equation (1c) is available. In dimensionless form Prandtl's equation becomes:

T 160 g [a — ao(p) + B + 222, for |n| < 1 and T(Iy 1 1) = o0, (23a)

UsoC 2 ¢ U
with a, the slope of the 2D-section-lift curve, chosen here as a constant a, = 2.
The upwash w;,, (), induced at the lifting line by the wake vortex sheet downstream of the lifting line,
expressed as the Cauchy-Principle-Value integral, follows from Eg. (1d) as

Win - 1 ¥x oy 407
o (nl < 1) = ZCPV [Z = ()= (23b)
The x-component of the wake vortex distribution equals %Z') =— ﬁdiw%g n". (23c)

Eqg. (23a) is solved numerically employing a second-order panel method that provides the solution
in the form of function value, first and second derivative of the circulation at the midpoints of the
panels used to discretise the lifting line.

Eq. (23) has been applied for a sequence of angles-of-attack, for which the lift coefficient and the
induced-drag coefficient have been obtained, see Figure 20.
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Figure 22 — Prandtl-D wing: Lift coefficient C;, = L/q.bc and induced-drag coefficient C, = D/q.b¢ vs. angle-
of-attack a.

Figure 22 shows, as expected, the linear dependence of the lift coefficient C;, on angle-of-attack «
and the quadratic dependence of induced drag on angle-of-attack a and thus on lift coefficient C;.
The numerical results show that the zero-lift angle-of-attack of the wing «a,_, is close to -7.3 deg,
while the design lift coefficient, according to Bowers [6], is C}, gesign= 0.6, which is achieved for a = -
1 deg. The slope of the lift curve is dC,/da = 1.74%. The results in Figure 22 correlate with the wind-
tunnel data of Zelenka et al. [31] (Figure 5) acquired for a Prandtl-D test model, at Re,, ;.= 210k.

The distribution of the circulation and the distribution of the upwash, computed for design condition
Craesign= 0.6, are presented in Figure 23.
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Figure 23 — Prandtl-D wing at C gesign,= 0.6. Left: Distribution dimensionless circulation I'(n)/Ux.C Vvs. 1 =
y /0.5b. Middle: Distribution dimensionless upwash w;,(n)/U, vs. n =y /0.5b. Right: Table with coefficients
in series expansion circulation and upwash distributions. Black open circles: numerical solution. Solid red
curve: Four term least-squares fit. Number of panels: N = 80.

In order to obtain insight in the character of the found circulation distribution, the numerical solution
has been subjected to a least-squares fit consisting of four terms, for the circulation distribution:

T = Ag(1 =2 + Ay(1 = 120/ + Ay(1 =)/ + Ag(1 = n?)7/2. (24a)
Using the expressions for the upwash induced by each of these terms yields:
M) = R0+ 3A2(= 5 07+ 5A,C = St ) + TAG — 0P+ o — )] (24b)

L2-norm fit circulation distribution: 1.37x10-3 and upwash distribution: 1.41x1073, respectively.

Figure 23 shows that the circulation distribution generated for the prescribed wing planform and
prescribed Aa = a — ay(n) + B(n) is indeed a bell-shaped distribution, e.g., compare Figure 23 and
black lines in Figure 20. The least-squares four-term fit consisting of the elliptic distribution and three
bell-shaped distributions illustrates that indeed, the dominating term is Horten’s bell-shaped distrib-
ution 4,(1 — n?)3/2.

The series for the upwash, Eq. (24b), consists of the polynomial upwash generated by the corres-
ponding terms in Eq. (24a). The first three have been calculated in section 3. Computing the 7/2-
power term requires some algebra, but is not too cumbersome, see also Appendix C. Note that the
order of the even-degree polynomials in the expression for the upwash corresponds to the order of
the corresponding terms in the circulation distribution written as (1 — n?)**Y/2 = p,, () (1 — n?)'/?, for
k=0, 2,4 and6.

Determination distribution required twist

So far, the aerodynamic analysis of the Prandtl-D wing has been carried out for the distribution of
the section twist angle g(n), specified in Figure 19. Subsequently it was shown that the resulting
distribution of the circulation is dominated by the bell-shaped distribution (1 — 5?)3/2 In a wing-design
process, one has to determine the distribution of the twist angle g(n) that generates the bell-shaped
circulation distribution. This process would determine the twist angle distribution from Prandtl’s inte-
gro-differential equation, Eq. (23a), by substituting:

the required circulation distribution I'(n) = I, (1 — n?)3/?;

the corresponding upwash distribution W;}"—:’) = (=5 +3n%);

1.

2.

3. the chosen distribution of the section chord c(); and

4. the chosen distribution of the section zero-lift angle «, ().

For the present case one obtains:
r 3 1 . —_
Aa(n) = a—ay(m) + ) = 5= et %)% +—— (5 - nz)], with AR = b/c.
From Table 3 it follows, with I,, = 0, I, = T, and % = %CL, that, with Eq. (20n):
2 (1-n?)3/2 3oo 1

_ 8,1 2_@=7" 3 (1 _ 2
A(X(T)) T 3n CL 2 (Cr + Ct) [ao cr(1=n)+celn| + 2b (2 N )] (25)

Substituting €, = 0.6, ¢, = 0.4m, ¢; = 0.1m, a, = 2w and b = 3.7356m yields the curve for Aa(n) in
Figure 24. Adding a,(n), given in Eq. (22b) and subtracting the design angle-of-attack of -1 deg,
results in the desired curve for g (7).

2 C
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Figure 24 — Prandtl-D wing at C; gesign= 0.6, @gesign = —1 deg: Comparison computed distribution desired wing
twist angle 8(n), required to generate bell-shaped circulation distribution, with distribution used by Bowers [6].
Also presented Aa(n) = a — ay,(n) + B(n).

Figure 24 presents the results for the desired wing twist angle vs. n. The agreement with the distrib-
ution used by Bowers [6] is quite reasonable. Only in the tip region the two results diverge giving a
difference of 1 degree at the tip.

5. Wing Robotic Bird Robird
The wind-tunnel model of the Robird (Figure 1f) is a wing-only half-model. Its spanwise distribution of
the chord c(y) (Figure 25) has been simplified to a piece-wise linear distribution, symmetric with res-
pect to the plane-of-symmetry y = 0. The semi-span is subdivided in three parts, see Figure 25:
y €[0.0,0.182]m :c(y)=02m
y € [0.182,0.476] m: c(y) = [0.200(0.476 — y) + 0.102(y — 0.182)]/0.294 m
y € [0.476,0.560] m: c(y) = [0.102(0.560 — y) + 0.010(y — 0.476)]/0.084 m

Figure 25 provides the dimensions of the wing planform.
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Figure 25 - Spanwise distribution of chord c(y/0.5b) of simplified planform of wind-tunnel model Robird. Table
provides the main geometric parameters.

In the present analysis the gap between the root of the wing and the wall of the wind tunnel is closed
for reasons of convenience of modeling. Therefore, the span of the wing of the simplified configura-
tion extends from the plane of symmetry y = 0 to the tip of the wing.
Furthermore, it is assumed that:

Section zero-lift angle-of-attack a,(y) = —5 deg is constant;

Section twist angle g(y) = 0; and

Angle of attack, equal to wing pitch angle, is in the range @« = —10(5)15 deg.

In the left plot of Figure 26 the symbols denote the spanwise distribution of the dimensionless circu-
lation T'(y/0.5b)/U,C as numerically solved from Eq. (24a) for « = 5 deg. The red solid line repre-
sents the four-term least-squares fit, in terms of the sum A4,,(1 — n?)®+Y/2 k = 0, 2, 4 and 6 of the
calculated circulation distribution. This fit agrees quite well with the numerical solution. The coeffici-
ents in the expansion have been determined through the least-squares fit and are listed in the table
in Figure 26. It shows that the first three terms are dominant, i.e., the elliptic and two bell-shaped
distributions: the 3/2-power and the 5/2-power distributions. Rewriting the circulation distribution in
terms of a polynomial times the square-root yields B,,n?*(1 —n?)'/2, with k = 0, 2, 4 and 6. It reveals
that the first term, B, (1 — n?)Y/2, with B, = A, + A, + A, + Ag, is the dominant term.
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Figure 26 - Lifting-line solution for gliding flight Robird. Left: Spanwise distribution circulation T'/U,C vs. n =
vy/0.5b. Symbols denote numerical solution (N = 80); red lines denote four-term least-squares fits based on
Egs. (24a, b). Right: spanwise distribution induced upwash w;, /U, vs. n = y/0.5b. a = 5 deg, a, = —5 deg.
Table provides constants By, k = 0, 2, 4, 6 in Egs. (24a, b). L2-norm fit equals 4.2x10-2 and 4.9x103 for the
circulation distribution and the upwash distribution, respectively.

Figure 26-right, shows that the four-term fit gives a reasonable match of the numerical solution of
the upwash w;,(7)/U,. Note that the numerical upwash distribution features discontinuities in the
slope at locations at which the distribution of the chord c(n) is slope-discontinuous, see Figure 25.
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Figure 27 - Lifting-line solution for gliding flight Robird. Spanwise distribution section drag coefficient
ca(mc(m)/cvs.n =y/0.5b. Symbols denote numerical solution; solid red line denotes four-term least-squares
fit based on Egs. (24a, b). « = 5 deg, a, = —5 deg. N = 80.

The distribution of the section-drag coefficient c;(n)c(®)/¢ = =2 [wi, (1) /Us][T(n)/Us¢], See Table 1,
is presented in Figure 27, derived from the numerical solution (symbols), as well as from Egs. (24a,
b) (red line). This shows that the four-term least-squares fit of the product of the circulation distribu-
tion and that of the upwash distribution, matches the numerical results quite reasonably (L2-norm
difference equals 3.3x10®). The location of the slope discontinuities corresponds to the location of
the discontinuities in the chord distribution c(n). Note that the section drag is positive along almost
the entire span, only very close to the wing tips the section-drag turns into section-thrust. However,
as illustrated in [9], [32], for the case of flapping flight. the Robird generates, cycle-integrated, not
only lift, but also thrust, as shown by utilising the unsteady-flow extension of the lifting-line theory.
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Figure 28 - Lifting-line solution for gliding flight Robird. Left: Overall lift coefficient C; as function of angle-of-
attack a, calculated from numerical solution. Right: Overall (induced) drag coefficient C,, as function of angle-
of-attack, calculated from numerical solution. @, = —5 deg. N = 80.

In Figure 28 the overall lift coefficient C; and the overall (induced-)drag coefficient C,, are presented
as function of angle-of-attack a, derived from the numerical values obtained from the method based
on the lifting-line theory. The lift coefficient is linear in terms of @ — «,, the induced drag coefficient
is quadratic in a@ — a,. i.e., quadratic in lift coefficient C,. Given the numerical data, or using the
expressions from the 4-term fit of the circulation distribution, the lift coefficient €, and the induced-
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drag coefficient Cp, can be expressed to give a perfect fit, as

__ Qo _ ¢t .
C, = 1+n':f‘{)e{; (@ —ap), and Cp = TAReS’ respectively, (26)

with the span-efficiencies for lift and drag, e, = 0.9594 and e; = 0.9642, respectively.

6. Vortex Wake Roll-Up

The distribution of the circulation I'(n) of the lifting line, or rather, the associated vortex distribution
V’CU—(” = ;—1dil“(y) along the span, determines not only the flow field, it also determines the way in which
ot s Vet _ Toe =2 d T
Uso Usobe o dn Tge
the wake to roll up, consider the induced velocity at points along the lifting line |n| < 1 and at points
on its extension from the wing tip outwards || > 1. Considered are three cases: Stretched elliptic
circulation distribution, the 3/2-power bell-shaped distribution and the 5/2-power bell-shaped distribu-
tion, i.e., a selection from the solutions presented in Figure 18.

the vortex wake rolls up. In the present notation

. To get insight in the tendency of

Elliptic 3/2-power bell-shaped 5/2-power bell-shaped
o NI-7? (1 —n?)2 o (1=
mraatirodll b 223G =) 225 T Y
MaD joe | 22—y | S3G -t I =D) | oS- = on® 4t = Il -1

Table 11 — Expressions for elliptic and two bell-shaped distributions: Circulation distribution I'(n)/T,.; vortex
distribution [ y,(1) / U]/ [To,e/Usb.] and upwash distribution [ w;,, () / U]/ [T/ Usb.] along lifting line (In| < 1)
and along extensions (|n| > 1).

The expressions for the induced upwash were included in Tables 2 - 8. Table 11 provides a summary
of the expressions for circulation distribution I'(n), the vortex distribution y, (n) and the upwash dis-
tribution w;,, (n) for the three cases considered. The lift (L/q,b2)/(Tye/Uwb.) = o f_ll[r(n) /Toldn and span
b are identical for these three distributions. The distribution of the circulation and of the upwash along
the wing span were presented in Figure 18. For the sake of completeness, Figure 29 again presents
the vortex distribution along the wing span, as well as the induced upwash distribution not only along
the wing span but also along its outward extension.
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Figure 29 — Comparison of vortex distributions and upwash distributions induced by elliptic and two bell-
shaped circulation distributions, see Table 11. Note that the dimensionless spanwise coordinate, for these
wings of equal span b, is chosen as n = y/b, with ¢ = b/b,= 1.5. The red triangle denotes the location of the
wing tip, the open triangles denote the location of COV, the center of the vortex distribution.
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Figure 29 shows that the upwash is (negative-)constant along the span; quadratic, partly negative,
partly positive; and quartic, partly negative, partly positive, for the elliptic, 3/2-power and 5/2-power
distributions. The latter two are bell-shaped circulation distributions. For all three distributions, along
the extension of the lifting line, the upwash tends to zero quite quickly.

For the stretched-elliptic distribution the upwash distribution is discontinuous, as well as singular at
the wing tip, when approaching the tip along the extension from outside. For the 3/2-power distribution,
for which at the wing tip the vortex distribution is zero, but its derivative is infinite and discontinuous,
the upwash distribution is continuous, but its derivative is discontinuous across |n| = 1. For the 5/2-
power distribution for which at the wing tip the vortex distribution is zero in function value and in its
first derivative, the upwash distribution is continuous in function value and in its first derivative, result-
ing in a relatively smooth upwash distribution.

Remarkably, the upwash distribution presented by Bowers et al. [6] (Figure 1b, page 2) for the 3/2-
power bell-shaped circulation distribution is quite different near the wing tip for || > 1. As also stated
in their text, the upwash distribution is not only continuous in function value, but also in its first deri-
vative, which is not the case in our analysis. Unfortunately for |n| > 1 a formula for the upwash distrib-
ution has not been provided in their report.

In the context of lifting-line theory, vortex wake roll-up is approximated by converting it to a 2D time-
dependent problem, in which the evolution is followed of the cross-section of a double-infinite, x €
(—o0, ), wake vortex sheet of constant cross-section, with t « b/U,. At each time step this results
in a 2D flow field (v, w) in the plane of the cross-section The initial condition of the cross-section of
the vortex sheet is the projection of the wing trailing edge on the cross-flow plane perpendicular to the
x-axis. At the next time step the cross-section of the wake vortex sheet is convected, within the cross-
sectional plane, with the local velocity induced by the 2D wake vortex sheet. This yields the updated
shape of the cross-section of the wake vortex sheet. The vortex distribution is convected as an inva-
riant with the velocity field. Next the velocity field induced by the new shape of the wake vortex sheet
is computed, the vortex sheet and vortex distribution are convected with the flow to their next position,
etc. The method [33], [34] used to compute the velocity field induced by the wake-vortex sheet is a
second-order panel method that employs a curvature-adaptive discretization scheme for 2D time-
dependent vortex sheets. The segmented vortex sheets include single and double-branched discrete
vortices that represent tightly rolled-up parts of the vortex sheets.

1 , 4 8
P(1) = Toer (1 — )12 T = Toeq (1 — 1) P(n) =Toeg (1-n%)%2
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Figure 30 - Computed roll-up of starboard side of vortex wake for elliptic circulation distribution (left), 3/2-
power bell-shaped distribution (middle) and 5/2-power bell-shaped distribution of circulation (right). Amplitude
distributions warrants equal lift and span. Here ¢ = b/b, = 1.5. The time step is kept constant.

Figure 30- left shows results for the wake roll-up for the elliptic distribution of circulation. Since the
velocity field is singular and discontinuous at the wing tip, see Figure 29, at the tip the wake rolls up
instantaneously at t = 0*. For that problem Kaden [35] developed a similarity solution, that can be, or
should be used, as initial de-singularised solution for the rolled-up vortex-wake spiral. Figure 30-left
shows that for the elliptic circulation distribution, just one single-branch spiral wake-vortex evolves,
located just outboard of the COV of the vortex distribution. As time progresses, more and more of the
vortex distribution is convected into the spiral vortex core, which ultimately has circulation equal to
I'he/0o and ends up at the location of the COV of the initial vortex sheet: n¢oy = Yoy /0.5b = /4 =
0.785.

Figure 30-middle gives the initial evolution for the 3/2-power bell-shaped circulation distribution. For
this case at the wing tip the initial flow field is continuous, see Figure 29, with a weaker singularity
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than for the elliptic circulation distribution. This is evident in the vortex sheet remaining smooth at the
wing tip, i.e., no single-branched spiral-type of roll-up. For this case, the vortex distribution, e.g., see
Figure 29, has a plateau region in the vortex distribution of maximum strength, around n =
veov/0.5b = 0.7. At this spanwise location the vortex sheet appears to feature a Kelvin-Helmholtz type
of instability that results in two double-branched centers of roll-up, which rotate around n = 0.7. The
COV for this vortex distribution is at n = y;o,/0.5b = 3n/16 = 0.59, which, compared to the elliptic
distribution, is further inboard.

Figure 30-right presents the initial evolution of the roll-up of the wake-vortex sheet for the 5/2-power
bell-shaped circulation distribution. For this case Figure 29 shows that at the wing tip the initial flow
field is slope-continuous, with a singularity that is even weaker than for the 3/2-power bell-shaped
circulation distribution. The vortex sheet remains smooth in the wing-tip region, with no tendency to
roll-up. However, for this case the strength of the vortex distribution peaks near the mid-semi-span
location, where a center of roll-up forms as a double-branched vortex, which ultimately collects all
vorticity of the starboard side of the vortex sheet. The COV for this vortex distribution is, not surprising-
ly, atn = ycoy/0.5b = 5m/32 = 0.49.

Bembrekar et al. [36] analysed a constant-airfoil-section (NACA0012) wing of modest AR = 6.6667,
c:/cr = 0.2 and sweep angle A = 24deg. Similarly to Bowers [6], see section 4 above, the spanwise
distribution of geometric twist was constructed such that the distribution of section-circulation is bell-
shaped: i.e., a 3/2-power distribution. A Vortex-Latice-Method was used to compute the wing-surface-
pressure distribution, lift and induced-drag. The roll-up of the wake-vortex-sheet of this wing is pre-
sented up to about 8 chord lengths behind the wing. This result illustrates the gradual development
of a center of roll-up at about 2/3 semi-span, which is in reasonable agreement with the corresponding
present result in Figure 30.

Hammer & Garmann [37], [38] carried out RaNS computations for a Prandtl-D wing, see section 4
above, with an aspect-ratio of 15.5 and slightly rounded wing tips. The distribution of the geometric
twist ([37], Figure 3) is very similar to the distribution computed in the present study, see Figure 8, as
is the 3/2-power bell-shaped distribution of the section-circulation. Contours of the vortical wake are
shown in two crossflow-planes, i.e., at 0.5¢ and 2.82¢ downstream of the wing. At the design angle-
of-attack of 8 deg, this part of the wake does not appear to feature any roll-up of the wake. However,
at off-design angles-of-attack a tip-vortex structure develops rapidly, but a mid-semi-span double-
branched vortex does not appear.

7 Concluding Remarks

1) The application of Prandtl’s lifting-line theory, for the incompressible, inviscid, irrotational, steady
flow about thin, mildly-cambered, high-aspect-ratio, non-swept wings, has brought much insight in
the aerodynamic performance associated with bell-shaped distributions of section-circulation.

2) In the optimisation, the use of the inverted Biot-Savart law on the relation between vortex distribu-
tion and upwash distribution facilitates the direct determination of the vortex distribution and there-
with the circulation distribution, required to achieve the minimal induced drag subject to various
structure-related constraints.

3) The solution of four analysis/design problems has been pursued of minimisation of induced drag,
subject to:

(i)  prescribed lift and span;

(i)  prescribed lift and span-integrated section-bending-moment;

(i) prescribed lift and root-bending moment (equal to span-integrated section-shear-
force), and;

(iv) prescribed lift, root-bending-moment and span-integrated section-bending-moment.

4) For these cases detailed expressions have been derived for circulation distribution and distribution
of upwash along the lifting line and its outward extension. Furthermore, expressions have been
derived for the span of the wing (for cases (ii), (iii) and (iv)), overall lift, drag, span-integrated
section-bending-moment, root-bending-moment and yawing-moment, as well as location of the
center of the vortex distribution (COV). The latter is relevant for vortex-wake roll-up.

5) The elliptic distribution of the circulation /1 — 5?2 is the classical solution of the first minimisation
problem. The solution of the three further minimisation problems brings to light four bell-shaped

43



FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP

distributions of the section circulation:
0} (1 —n?»3%
(i) JT=n2 —pn

nl
(i) ;{ T—n7 - an“mﬁ} ~ 1@ -2 and;
(iv)  @-n*¥2
These four distributions have zero function value and zero first derivative at the wing tip. The last
two distributions have in addition zero second derivative of the circulation distribution at the tip.
This has a large effect on the induced upwash distribution, as well as vortex-wake roll-up.

6) The prescribed span-integrated section-bending-moment and root-bending moment are express-
ed as a factor (1 and 7, respectively) times their value for a wing with elliptic circulation distribution
and identical lift. In literature the factor is taken to be unity. In the present study the factor is arbitrary
and its value is shown to have a significant effect on the outcome of the optimization: an increase
in the factor results in a decrease of the minimum induced drag. During wing design, this facilitates
a trade-off between aerodynamic performance and structural weight.

7) Successful verification of the methodology has been achieved by application of the developed
expressions to cases considered in literature by Prandtl, Munk, Jones, Nickel and Klein & Viswa-
nathan. Furthermore, the present methodology has been applied with success to the Prandtl-
D(rag) wing of Bowers et al. [6], a design based on Prandtl’s (1 —5?2)3/2 bell-shaped circulation
distribution.

8) The present lifting-line methodology has been applied, with success, to the analysis of the aero-
dynamic performance of the wing planform of the robotic bird Robird;

9) For all circulation distributions the corresponding upwash distributions along the lifting line and
along its outward extensions have been obtained in closed form. Results for the initial roll-up of
the vortex wake of wings with a bell-shaped distribution of the circulation have been obtained.

10) The observation in Figure 1 (j) of the wake downstream of the trailing-edge of the wing of the
model of the B747-8 in our wind tunnel triggered the present study. Though the section-circulation
distribution of the wing (AR = 8.5) is not known, it is hypothesized that the location of the tuft
(v/0.5b = 0.8) corresponds with the change in sign of the upwash distribution typical for a bell-
shaped distribution of the section-circulation.
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FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP
APPENDIX A: Aerodynamic Performance Indicators

Quantities are made dimensionless using:
. 1
dw:. Free-stream dynamic pressure 2 PoUZ

Uy: Free-stream velocity

Pw. Free-stream density

and quantities of the wing with elliptic circulation distribution with prescribed span b, and lift L,:
b,  Span of wing with elliptic loading and lift L,

e Amplitude elliptic circulation distribution I'(y) = Iy (1 — (y/0.5b,)%)*/?

Section forces and moments:
1.1. Section lift force £(y) = poUssI'(y)

Toe 15T
£y) = [quobelly 5127

1.2. Section drag force d) = —PuWin (M ()

— _ FOE Wm(Y)/Uoom
4 = ~ldabe [( 2 Toe/Usbe Toe

1.3. Section contrlbutlon starboard-side root-bending-moment m,.(y) = y£(y)

Toe {T()
my(y) = [qmbg][Uo:be]?ye%be

1.4. Section contribution starboard-side section-bending-moment m, ,(y) = %yzt’(y)

Toe 11T(y)
M2 () = [4b3]l 20 7 o)

1.5. Section contribution starboard-side section-yawing-moment m,(y) = —yd(y)

_ l—‘Oe Wm(y)/Uoo F(y) Yy
m, () = [qub?] | (G o)?] Fuie T2

Full-span, or semi-span-integrated overall forces and moments, with b/b, the dimensionless span:

2.1. Full-span lift force L = [*)7 £()dy

= 211 Loey (b/be 5, TOD 4 ¥
L_[qOOb ][U b]f Zro'edosb
b/2
2.2. Full- span drag force 0 = fb/zd(y)dy
[( Toe ] b/be WLn(Y)/Uoo@ Yy
r‘o,e/Uoobe Foe  0.5bc
2.3. Starboard- S|de root-bending-moment M, = fo”/z
Toe 1 b/bem y y
[qwb ][U be ]2 fo Toe O.Sbed 0.5b,
2.4 Starboard-side integrated-bending-moment m, , = fo”/ m,(n)dy
_ 417 Loe 11 (b/be L TQY) - ¥ N2, ¥
My = [qwbe][uwbe] 2f0 4 Toe (0.5be) 0.5b,
2.5 Starboard-side integrated-yawing-moment M, = fo”/ 2m,(y)dy
_ 3] Toe b/be Wwin(y)/Uso T'(y) ¥ y
M, = [qebz] [ ) ] f Toe/Usobe Toe OSbedO.Sbe
2.6 Starboard- S|de center of vortex distribution

my(y)dy

_ (b/2 b/2 b/2 . 0.5be  (b/beT®) ;¥
Yeov = [y v ydy / [ Vx(y)dy—r(o)f dy =comdo T s
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FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP
Appendix B: Variational Formulation

This Appendix considers the variational expressions of lift L, induced-drag D, root-bending-moment M,
and span-integrated section-bending-moment M, ,. The analysis is based on Prandtl and Munk [14],
Prandtl and Betz [15], Nickel [21], Jones [17], Klein & Viswanathan [19], [24], Drela [23], ...

Lifting-line Theory

The lifting line geometry considered consists of a discrete, y-symmetric, line-vortex, circulation I'(y), with
attached to it the downstream flat wake-vortex-sheet of strength y, (x,y) = —dI'/dy, in the plane z =
0, which extends from the lifting line to infinity downstream. This vortex system defines the velocity po-
tential ¢(x,y,z) and induced velocity field 1 (x,y,z) = V(p in the whole 3D space. In the present study
the lifting line is taken as the straight line x = 0,|y| < b/2,z = 0.

I'(y) is the distribution of the circulation: T'(y) = ¢(0,y,0) — ¢(0,y,07) = Ap(y) in terms of the per-
turbation velocity potential, with %(0,y, z) = V¢ in the (y, z)-plane. The perturbation velocity potential
satisfies Laplace’s equation V. (V) = 0.

The lift, induced drag, root-bending-moment and the span-integrated section-bending-moment follow
from Table 1 and Appendix A. The lift of the wing is expressed as

b/2
L= peUq f_lf/z T(y)dy. (B.1)
The induced-drag is given by
b /2
D =—po [*) s2WinNT()dy, (B.2
with the upwash distribution w;,, (|y| < b/2) along the lifting line expressed as
b/2 N dyr
win(ly] < b/2) = w(0,,0) = 3=CPV [ v, (/) 72 (B3)
The distribution of the upwash w;, (y) along the lifting-line is continuous over the wake-vortex-sheet:
] ] _
win(¥) =22(0,,0%) = 22(0,y,07). (B.4)
The root-bending-moment M,., see Table 1 and Appendix A, equals:
b/2 1 b/2
M, = poUs [ T()ydy = PV f_lf/z r()lyldy, (B.5)
while the span-integrated section-bending-moment follows from
1 b/2 1 b/2
Mx,Z = EpooUoo fO F(Y)yzdy = ZpooUoo f—b/Z F(Y)yzdy (86)
i

Figure B.1 — Trefftz-plane at x - «. Area A is in plane x = constant, with € = dA closed contour forming its
boundary, which wraps around cross-section of wake-vortex-sheet (C};, C;;). It is connected to contour C,, in
far-field by cut consisting of parallel, closely-spaced, curves C; and C,. 7 is unit normal on C pointing out of A4,
s denotes coordinate along contour €. Within A perturbation potential ¢(y,z) is continuous and satisfies
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Laplace’s equation 72¢ = 0. Distribution of circulation lifting line: T'(s) = Ap(s) = ¢+ (s) — ¢~ (s).

In the further analysis, the expressions for lift, induced-drag, root-bending-moment and span-inte-
grated section-bending-moment are generalised in terms of expressions in the so-called Trefftz-
plane: the (y, z)- plane at x - oo, see Figure B.1. This yields:

L= pOOU f """ (p(s) |—| ds, with y(s) = y(s)é, + z(s)é,, (B.7)

My = 3pulen [ 9(9)Iy()]|2] ds and (8.8)

Myy = 3pole [ 0(8)y2(5) |2 ds. (8.9)
In this notation, the eontributions of the integration along ¢}, and €, combine to

Lis = peUso , Ao (s)dC, with dC = | |ds (B.10)

M1t =3 Pooloo f """ _Ap()ly(s)ldC and (B.12)

Myass =3 PewUeo chL Ap()y*(s)dC, with Ap(s) = @™ (s) — ¢~ (s) =T(s). (B.12)

Furthermore, the contributions of the two sides of the cut, C; and C,, cancel because ¢(s) and y(s)
are continuous across the cut. Finally, the contribution of C,, equals zero because ¢(s) — 0 along C,
the far-field part of the closed contour. Therefore, the results in Egs. (B.1), (B.5) and (B.6) are indeed
equivalent to the results in Egs. (B.7), (B.8) and (B.9), respectively.

For the induced drag D, given in Eqg. (B.2), the distribution of the upwash w;, (s) along the closed
contour, as given in Eq. B.4, can be expressed as the normal component of the induced velocity along
C in the Trefftz-plane, i.e.,

win(s) = —%(V¢.ﬁ), with outward unit normal 7 = Z—f X €. (B.13)
The factor 0.5 accounts for the upwash velocity induced in the Trefftz-plane (x — o), by the infinite
wake-vortex-sheet extending from x = 0 to x — oo, to be twice the upwash velocity induced by the semi-

infinite wake-vortex-sheet in the plane (x = 0) of the lifting-line. The generalized expression for the
induced drag becomeS'

=~ pe [ () (Vo.7)dC. (B.14)
In thrs notatron the contributions of the integration along C;; and C;; combine to the expression for
the induced-drag given in Eqg. (B.2).

Calculus of Variations

In the method of Calculus of Variations, the unknown function ¢(s) is perturbed by an infinitesimal
perturbation function 8¢ (s). For the case of the straight lifting-line, considered in detalil in the present
study, the result for prescribed lift L is:

L+6L= poo f b2 Ao ()dy + poof o2 Asp(y)dy, (B.15)
where 5L = poof by2 A0 (y)dy = poof b/2 ST (¥)dy should be zero.
For prescribed root bendlng moment M, it foIIows from Eq. (B.8):

My + My =~ peoUis [ b/zlylAqo(y)dy + 2 peoleo | b/zlylA&o(y)dy, (B.16)
where 8M, =~ p., fo/ Y1880 (n)dy = 3 pes [ /2|y|8F(y)dy should be zero. (B.17)
For prescribed span- integrated section-bending- moment sz it follows from Eq. (B.9):

My + 6My,, = pooU I b/2y2A<p(y)dy +300Uen [1)7, 2080 () dy, (B.16)
where §M,., = poof b/2 y2A8p(y)dy = poof b/zyZSF(y)dy should be zero. (B.17)

For the induced drag it foIIows from Eq. (B 14) that'

D+ 6D = poof “““ go(s)(VqJ n)dC + = poof """ (s)(qu) )+ 8¢(s)(Vo.7)]dC +

poof """ 8 (s) (V8. 7)dC. (B.18)
If the last integral in the right-hand-side, a second-order term in ¢, is neglected, the induced drag
will be minimised if

8D = 2 po J, T0(5)(V69p.7) + 809 (5) (Vp. )]dC = 0. (B.19)
Applying the Divergence Theorem of Gauss for the 2D area A with boundary C = dA:
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[79.FdA = [0 F.dc, (B-20)

to the mtegral with the flrst part of the integrand in Eq (B 19), yields, with F= <pV6<p

= ff """ (V(p V6p)dA. (B.21)
The mtegral with the second part of the integrand in Eq. (B.19) yields, with F= &pV(p
f 5o (V. R)dC = ff [V6g. Vo + 60V2@]dA, resulting, with V2p = 0 € A in
= ff (V5(p V(p)dA (B.22)
This proves that the two contributions in Eqg. (B.19) are identical, sometimes referred to as the Munk's

Mutual Drag Theorem, see [15]. Using Egs. (B.21) and B.22) results in the condition for optimality
becoming:

8D = p, [ 8¢ (V. 1)dC = 0. (B.23)

For the case of the straight lifting-line considered in detail in the present study, upon converting V. 7i
into w, (y), condition (B.23) becomes:

5D = prf b/2 wi, (¥)8Tdy = 0. (B.24)

Note that in Eqg. (B.18) the induced drag D and the neglected higher-order term in 6D, using the
Divergence Theorem, can be expressed as:

D= || fj}|V’<p|2dA and 6Dy ¢ = || fj::§|5’5<p|2dA, respectively. Both terms are positive.

In summary for the flat y-symmetric wake-vortex-sheet:

85D = ZpOOf b2 Win(¥)8T'dy = 0, subject to: (B.25a)
SL = pe, f_"lsz §T(y)dy = 0, (B.25b)
5My = 1pw J2% Iylsr(y)dy = o, (B.25¢)
My =7 oo fbgfz y28T(y)dy = 0, etc., (B.25d)

Note that the |nf|n|tesimally small 8T'(y) is arbitrary but for the conditions in Egs. (B.25b-d). Therefore,
condition (B.25a) is satisfied by the upwash distribution w;, (y) specified as

win(¥) = ag + aqlyl + azy?® + -, (B.25e)
for arbitrary constants a,, a4, a,, ....
The inverted Biot-Savart relation then provides the corresponding terms in the vortex distribution
¥x(¥) that generates the upwash distribution w;,(y) given in Eq. (B.25e). Integrating the relation
¥« (y) = —dI'/dy results in the circulation distribution along the lifting line.

Formulation in terms of Lagrangian function
An alternative formulation is to force the Lagrangian function £, which contains the induced drag D, as
well as all constraints, to be stationary. The Lagrangian function L is defined as:

L), Ko Ky, kg, ) =D + k(L — Le) + kg (Myy =AMy o) + Kz (Myp — Ty p0) + -+, (B.26)
with ky, k4, K5, ... the so-called Lagrangian multipliers associated with the constraints on lift L, root-bend-
ing-moment M,., span-integrated section-bending-moment M, ,, ..., respectively, to be determined as
part of the solution.

The solution of the minimisation problem should be stationary with respect to variations in the circula-
tion distribution I'(y), i.e., £ should be zero. This leads to

8L = 8D + 8o (L — Lg) + koSL + 8ky (M, — AMi ) + k1 SMy + Sy (Mo — T 20) + K6M,, .. = 0. (B.27a)
With the variations given in Egs. (B.25a-d), it follows:

1 1
= poo 7], [~ 2Win ) + KoUuo+ 21 Uonlyl + S1,Usey? + | ST () dy
+8K0(L — Le) + 816y (My — AMy o) + 83 (My; — Ty 50 ) + -+ = 0. (B.27b)

Note that the variation of the span b in the upper and lower limits of integration does not contribute in
Eq. (B.27b) for 6 L.
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Therefore, since 6T, 8k, dk4, Ok, ... are arbitrary, we find the system of relations:

Win () = 3 Ulito + 5 realyl + Jreay? + -], for [yl < b/2, (B.282)
L=L, Poolos [2 2, Ty = L, (B.28b)
My =AMy, Pl 3 lyITG)dy = M., (B.28¢)
My, =TMyqe: %pooUOo fob/z YT (y)dy = t™y , ., €tc. (B.28d)

The relation for the induced upwash distribution w;,, (y), Eq. (B.28a), yields, through the inverted Biot-
Savart relation the vortex distribution y,(y) and subsequently the circulation distribution I'(y). These
involve the yet unknown Lagrangian multipliers x, k4, k5, ...in & linear manner, i.e.,

IF(y) =Kkolo() + k11 (V) + K2l () + -+ ] (B.28e)
Substituting the circulation distribution I'(y) in the expressions for lift L, root-bending-moment M,,, span-
integrated section-bending-moment M, ,, ... in Egs. (B.28b-d), gives as many linear equations as there
are Lagrangian multipliers, kg, k4, k5, ...involving the prescribed L., AM,. ., T, ; ., ... as parameters.
Furthermore, in these equations, the span b of the wing is an additional variable. Substituting the
resulting expressions for kg, k1, k2, ... in the expression for the induced drag D, Eqg. (B.2), provides the
induced drag as function of L., AM,.,, TM,, , ., ... and span b, i.e.,

D =D(LeyAMy o, TM 5 ¢, ... b). (B.29
The minimum induced drag Dyt (Le, AMy ¢, TMy 5 ¢, - ; bope) IS found by setting

2 D(Le, My e, Ty 5, .3 b) = 0,

solving for optimal wing-span by, (Le, AMy ¢, Ty, 5 ¢, ...) @nd substitution of b,,;in Eq. (B.29) for the in-
duced drag, which provides D,;.
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APPENDIX C Some Integrals

Integrals over circulation distributions and vortex distributions

L10 f; ﬂ =3 120 [} T—n%dn =T 1.3.0 [,(1-n?)*dy ==
111 [ ’Z‘f’:}z =1 121 [[n/T—n2dn=; 131 [ n(1 —n2)%2dn _§
112 f) J”f_i; =2 122 [[n/1—nldn == 132 [ 21— 22y = =
113 folj’f_i; =2 123 [ /1—nldn == 133 [P (1 —n?)*2dn = 2
114 folj’:_i; =2 124 [t T—nPdn = 134 [1n*(1 —n?)*2dy = E
115 f;jf_i; == 135 [ 031 —n»)*dn = -

140 [[(1—n?)%2dn =2 150 f[(1—n?)"/2dy = 2= 160 [ (1—n?)*2dn = G
141 [;n(1—n?)%2dn =2 151 [ n(1—n>)""%dy =+ 16.1 f, n(1—n?)*dy ==
142 [ n?(1 —n?)*2dn = E 153 [;(1—n?)/2dn = 53
143 [{n*(1—n?)%2dn == 154 [} n*(1—n?)"dy = —
144 [ n*(1 —n?)%/?dn = E
145 [ n°(1 —n?)*2dn = —

693
211 folnlnu— ‘Tll_nzdr) ==

212 f!n ZlnL;"’zdn

2.1.3 [[n*In= n" dn =
2.1.4 [ n*In ”Vl" dn

$|_F, oolé«li o |- '.:;|;,

2.15 [ n°In=" n" dn:

Integrals in upwash generated by vortex distributions || < 1
, -1
3.1.1 Ioe(lnl < 1) = cpvf_1 4n (1 —7)7 =0

3.1.2 Ip,(Inl < 1) = CPvf_ “’7 (1 '2)% = m

3.1.3Ip,(Inl < 1) = CPV f_ﬂ%(l —77’2)% = mnC - n%)

3.1.4 Io5(In| < 1) = CPV f_llj_—’;',(l - n'z); = m (£ =20+ 1)
Integrals in upwash generated by vortex distributions |n| > 1

1 d ,
321 Iyo(Inl > 1) = [* 2L (1 n'?)? =n(m?-1)"1/?

1d77

3221 ,(nl>1) = f ’2)2=m;—7r(77 —1)1/2

3
3231o4(Inl > 1) = [, ,f" (1= n2) = mC - + m(n? = 12

5
324150001 > 1) = [L25 (1= 7Y = o (227 4 0%) - mn? = 1)
Integrals in upwash generated by natural-logarithmic vortex distribution
411/(nl < 1) = CPV [} nHLT T4 _ g 4 Ty

7l n-7
421J;(nl>1) = f | LA n[—1 + narcsin (%)]

- n=my
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