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Abstract 

Prandtl’s Lifting-Line theory is applied to predict the aerodynamic characteristics of wings with various distrib-
utions of circulation. Expressions for induced upwash distribution, lift, drag, bending moment, adverse/proverse 
yawing moment and center-of-vorticity have been derived for numerically-computed or prescribed distributions 
of the circulation. The distributions include the classical elliptic distribution and a number of bell-shaped dis-
tributions. For a specified wing planform, solving Prandtl’s integro-differential equation, analytically, or 
numerically, is more or less standard practice. Prandtl’s methodology for minimization of induced drag for given 
lift and integrated section-bending-moment, requires finding the circulation distribution for a prescribed qua-
dratic distribution of the upwash. For the minimization also involving the root-bending moment, the required 
distribution of the upwash contains a linear term. Determining the corresponding circulation distribution is less 
standard. However, for many upwash distributions the inverted Biot-Savart law between vortex distribution and 
upwash distribution yields a closed-form circulation distribution. In literature, the prescribed span-integrated 
section-bending-moment and the prescribed root-bending-moment are taken as the value of these moments 
for the wing with elliptic circulation distribution giving the prescribed lift. Here the generalization is considered 
to prescribe any value of span-integrated section-bending-moment and root-bending-moment. The results of 
the generalization reveal that an increase in each of the prescribed moments gives a reduction of the induced 
drag, facilitating a trade-off during wing design. 
In the present study the upwash is determined along the span, as well as along the extension of the span from 
the tip outwards to infinity. This provides insight into the singular behavior of the upwash distribution in the tip 
region. This knowledge is used to assess the initial roll-up of the wake vortex sheet. 

Keywords: flying wing, circulation distributions, wake roll-up, lifting-line theory 

 

1. Introduction 
The flying wing is an aircraft that does not have vertical nor horizontal tail surfaces: a wing-alone 
aircraft. Without the tail surfaces the (parasite) drag of the aircraft is smaller, while also the radar-
cross-section (RCS) is smaller. Blended wing-body (BWB’s) configurations might also be counted as 
belonging to the class of flying wings. However, without tail surfaces the controllability of flying-wing 
aircraft forms a challenge. Designs of flying-wing aircraft have been around for a long time, one might 
think of the hang-glider type of gliders that Lilienthal [1] experimented with, until his fatal flight accident 
in 1896. The 1920’s saw a number of flying-wing gliders, notably those of the Horten brothers [2], [3]. 
During WW2 the Horten Brothers also developed military aircraft of flying-wing type, in Germany, 
such as the Horten Ho 229 V3 jet fighter-bomber, that was under construction at the end of WW2.  

                  
(a) Horten Ho 229 V3 Northrop-Grumman  (b) Northrop YB 49. National Museum US Air Force 
 built replica [4] 

Figure 1 a, b – Flying wing configurations of the 1940’s. 



FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP 

 

 

2  

After WW2 the prototype was shipped to the USA. Presently, this prototype is at the Steven F. Udvar-
Hazy Center of the Smithsonian National Air and Space Museum at Washington’s Dulles Interna-
tional Airport, USA, for preservation/restoration. Figure 1a shows a replica [4] of the Ho 229 V3, built 
by Northrop-Grumman for the National Geographic documentary “Hitler’s Stealth Fighter” (2009), 
used for Radar-Cross-Section (RCS) measurements. The replica (no elevons, no engines) is on 
display at the San Diego Air and Space Museum. 
Figure 1b shows the Northrop YB-49 prototype flying-wing jet bomber, in development between 1945 
and 1950 [5]. It experienced severe control problems and the project was cancelled after some acci-
dents. Figure 1c shows a 1990’s example of a flying wing, the US Air Force B-2 Spirit stealth bomber 
[5]. The absence of tail surfaces contributes to reducing the RCS of such aircraft. Figure 1d shows 
a Prandtl-D flying-wing Radio-Controlled configuration (2010’s) [6], designed to feature, like the Ho 
229, a so-called bell-shaped spanwise distribution of the wing loading. The latter is proportional to 
the spanwise distribution of the section circulation. Such a circulation distribution generates an 
induced drag that is about 10% lower than the distribution that most aeronautical engineers consider 
to be the optimal distribution: the elliptic distribution. The bell-shaped distribution is the distribution 
that the Horten’s implemented in their designs of gliders and other aircraft [2], [3]. 
 

               
(c) B-2 Spirit. US Air Force                                         (d) Prandtl-D RC flying wing. [6], Figure 5.  

Figure 1 c, d – Flying wings of the 1990’s and 2010’s. 

 
There are numerous other wing planforms around, in aeronautical and maritime technology, as well 
as in nature and applied in robotic configurations to mimic their natural counterparts. The Gannet 
shown in Figure 1e, features a very slender thin wing with interesting wing tips. Figure 1f shows the 
Robird, an ornithopter type of drone mimicking the Peregrine Falcon. 
 

            
(e) Northern Gannet [7].                                   (f) Robotic bird Robird [8], [9]. 

Figure 1 e, f – Example from nature (left) and example of robotic bird (right). 
 

The Gannet (“Albatross of the Northern Atlantic”, also known as Jan van Gent) [7], see Figure 1e, 
exemplifies an aerodynamically very efficient bird that can stay aloft for a long time and can cover 
large distances. Its wing planform is a prime example of a high-aspect-ratio wing featuring special 
wing tips. Presumably because of the geometry of these wing tips, this bird, like all birds, does not 
require a vertical control surface. 
The Robird, see Figure 1f, is an ornithopter-type of drone developed by Clear Flight Solutions (CFS), 
that was designed to appear and fly like a Peregrine Falcon [8]. The wing of the Robird has an aspect 
ratio of about 7.5. The drone has the same dimensions and weight as the real falcon, and produces 
lift and thrust by flapping/pitching its wings [9]. Real birds instinctively sense that a falcon in flapping 

https://en.wikipedia.org/wiki/Steven_F._Udvar-Hazy_Center
https://en.wikipedia.org/wiki/Steven_F._Udvar-Hazy_Center
https://en.wikipedia.org/wiki/Smithsonian_Institution
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flight is on the hunt, making the Robird very suitable for bird control at airports, garbage dumps, crop 
fields, etc.  
Figure 1g shows the “On the Wing” movie (1986) replica Quetzalcoatus-Northropi of the extinct giant 
pterodactyl, which had a wing span of more than 10m. It was designed by Paul MacCready of Aero-
Vironment [10]. MacCready’s model of this pterosaur, is another drone shaped after a flying animal. 
The wing planform shows the same type of features as that of the Albatross. 
Figure 1h is a photograph of a wind-tunnel model of a crescent-moon shaped wing design, investi-
gated by van Dam et al. [11], [12]. Its elliptic distribution of the chord has been shifted in streamwise 
direction (flow is from bottom to top) in order to create an interaction between the vortex wake from 
the trailing edge and flow about the wing tip. Such an interaction is hypothesized to change the 
spanwise circulation distribution such that the induced drag is reduced. 

               
(g) Ornithopter of extinct giant pterodactyl [10].  (h) Crescent-moon shaped wing [11], [12]. 
Figure 1 g, h – Example from movie (left) and example of unconventional shape wing or fin. 
 

At the University of Twente, a model B747-8, span about 0.35 m, see Figure 1i, has been used in 
demonstrations on aircraft aerodynamics in the (aero-acoustic) wind tunnel [13]. One of the goals of 
the demonstration is to show the tip vortices in the wake of aircraft. In these down-to-earth experi-
ments for aspirant students and visitors of the facilities, it became clear that the tip vortex of the 
model B747-8, with its raked wing tip, i.e., integrated winglet, does not start at the wing tip, but at a 
location more inboard, see Figure 1j. This phenomenon triggered the present study. 

              
(i) Top view of B747-8 model aircraft.                           (j) Flow visualization with tuft, B747-8 model aircraft. 
Figure 1 i, j – Example slender wing transport aircraft in UT wind-tunnel [13]. 

 
Figure 1i is a top view of the B747-8 model aircraft, showing the wing planform with unloaded raked 
wing tips. Figure 1j presents a top view of the same model in the (low-speed) wind tunnel of the 
University of Twente. The flow, visualized with a tuft, indicates the presence of a vortex that forms 
quite a bit inboard of the wing tip. The way in which a vortex wake rolls up is determined by the 
spanwise distribution of the section-circulation, or rather its derivative: the wake vortex distribution, 
as will be addressed in chapter 6. 
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In the present study the (Lanchester-)Prandtl lifting-line theory is used to investigate various circula-
tion distributions that follow from minimising the induced drag, subject to different constraints. The 
lifting-line theory is a basic tool to investigate wing aerodynamics in concept design studies, to explore 
the effect on aerodynamic performance of different circulation distributions and their effect on the 
formation of wake vortices. Lifting-line theory allows an analytic approach to find insightful answers 
to research questions, even 100 years after its introduction by Prandtl’s group in Göttingen, Germany. 
 
The present paper is structured as follows:  
Section 2 introduces the essentials of Prandtl’s Lifting-Line Theory, including the not very well-known 
inverted Biot-Savart law which gives the vortex distribution for given upwash distribution. Three ana-
lysis/design approaches to using Prandtl’s theory are discussed; 
Section 3 describes the way the Lifting-Line methodology is used to obtain wing designs for minimum 
induced drag. Four scenarios are considered:  
(i) prescribed lift and span;  
(ii) prescribed lift and span-integrated section-bending-moment; 
(iii) prescribed lift and root-bending moment, and;  
(iv) prescribed lift, span-integrated section-shear-force (equivalent to root-bending moment) and 
       span-integrated section-bending-moment. 
Detailed expressions are derived for circulation distributions and vortex distributions, as well as dis-
tributions of upwash along the lifting line and its extension in outward direction. Furthermore, for 
assessment of aerodynamic performance, expressions are derived for overall lift, drag, bending mo-
ments and yawing moment, as well as location of the center of the vortex distribution; 
Section 4 presents verification of the methodology via the application of the developed expressions 
to the Prandtl-D(rag) wing pursued by Bowers et al. [6], based on a bell-shaped circulation distribution. 
Present results are compared with results found in [6]. 
Section 5 presents the results of the application of the present lifting-line methodology to the wing 
planform of the Robird robotic bird;  
Section 6 presents upwash distributions on lifting line and its outward extensions, as well as some 
results for the initial roll-up of the vortex wake of wings with bell-shaped distributions of the circulation. 
Section 7 provides the conclusions of the present investigation. 

 

2. Prandtl’s Lifting-Line Theory 
In the first half of the twentieth century, Prandtl’s group in Göttingen derived the lifting-line theory [14], 
[15] for determining the aerodynamic characteristics of slender (high aspect-ratio), thin, mildly-cam-
bered, nonelastic, non-swept, 3D wings positioned in a uniform free stream of velocity 𝑈∞, in steady, 
incompressible, inviscid, irrotational (potential) flow. In this theory the wing is represented by a line-
vortex along its quarter-chord line, of strength equal to the circulation Γ(𝑦) of the airfoil sections 
making up the wing. In order to obey Kelvin-Helmholtz’s vortex laws, a planar vortex sheet is added, 
which trails from the lifting-line to infinity downstream, see Figure 2.  

                       
Figure 2 – Mathematical model Prandtl’s lifting-line method for incompressible potential flow about 

high-aspect-ratio wing at small angle-of-attack. 

 

2.1 Formulation lifting-line theory 
Prandtl’s integro-differential equation solves for the distribution of the circulation Γ(𝑦) along the span 

of the lifting line. The lifting line is situated along the 𝑦-axis for |𝑦| < 𝑏 2⁄  in the plane 𝑧 = 0. The wake 
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vortex sheet (𝑥 > 0), also in the plane 𝑧 = 0, is attached to the lifting line and extends to infinity (𝑥 →
∞). In the present paper it is assumed that the problem features starboard-side/port-side symmetry. 
Prandtl’s equation is obtained by equating the expression for the section lift ℓ(𝑦) in terms of the 

section circulation Γ(𝑦), obtained through Kutta-Joukowsky’s Theorem, and the expression of the 
section lift ℓ(𝑦) in terms of the lift coefficient 𝑐ℓ(𝑦) and the section chord 𝑐(𝑦): 

ℓ(𝑦) = 𝜌∞𝑈∞Γ(𝑦) and ℓ(𝑦) =
1

2
𝜌∞𝑈∞

2 𝑐(𝑦)𝑐ℓ(𝑦), respectively,      (1a) 

with, the slope 𝑎0 of the section-lift curve assumed constant: 

𝑐ℓ(𝑦) = 𝑎0𝛼𝑒𝑓𝑓(𝑦)  = 𝑎0 (Δ𝛼(𝑦) +
𝑤𝑖𝑛(𝑦)

𝑈∞
) = 𝑎0 (𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) +

𝑤𝑖𝑛(𝑦)

𝑈∞
).    (1b) 

This exercise yields Prandtl’s integro-differential equation for Γ(𝑦): 

Γ(𝑦) =
1

2
𝑈∞𝑐(𝑦)𝑎0[𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) +

𝑤𝑖𝑛(𝑦)

𝑈∞
], for |𝑦| < 𝑏/2 and Γ(|𝑦| = 𝑏/2) = 0.  (1c) 

The upwash 𝑤𝑖𝑛(𝑦), induced at the lifting line by the wake vortex sheet downstream of the lifting line, 
expressed as Cauchy-Principle-Value integral, equals (Biot-Savart’s law): 

𝑤𝑖𝑛(|𝑦| < 𝑏/2) =
1

4𝜋
CPV∫ 𝛾𝑥(𝑦′)

𝑑𝑦′

𝑦−𝑦′

𝑏/2

−𝑏/2
,         (1d) 

with the x-component of the vortex distribution on the wake vortex sheet 𝛾𝑥(𝑦′) = −
𝑑Γ

𝑑𝑦′ (𝑦
′).  

The relation given in Eq. (1d) between the distribution of the upwash 𝑤𝑖𝑛(𝑦) and that of the strength 
𝛾𝑥(𝑦) of the wake vortex sheet can be inverted into 

𝛾𝑥(𝑦) = −
4

𝜋

1

√(𝑏 2⁄ )2−𝑦2
CPV∫ 𝑤𝑖𝑛(𝑦′)

((𝑏 2⁄ )2−𝑦′2)1 2⁄

𝑦−𝑦′ 𝑑𝑦′
𝑏/2

−𝑏/2
, for |𝑦| < 𝑏/2,    (2a) 

which might be called the inverted Biot-Savart law. Following the evaluation of Eq. (2a), the distribution 
of the circulation Γ(𝑦) is found by substituting Eq. (2a) in 

Γ(𝑦) = ∫ 𝛾𝑥(𝑦̃)𝑑𝑦̃
𝑏/2

𝑦
, for |𝑦| < 𝑏/2.        (2b) 

In literature the inverted relation Eq. (2a), between 𝑤𝑖𝑛(𝑦) and 𝛾𝑥(𝑦), does not appear to be widely 
known. Jones [17], Eqs. (11, 12), based on Munk [18], provides a very brief account on the derivation 
of a relation similar to Eq. (2a) above. Klein and Viswanathan [19], also present a similar relation, 
derived from airfoil theory. Nickel [20], [21] presents the inverted relation in the form of Eq. (2b) with 
Eq. (2a) substituted. Nickel derived this expression considering Eq. (1d) as a Fredholm integral equa-
tion of the first kind for 𝛾𝑥(𝑦) = −(𝑑 𝑑𝑦⁄ )Γ(𝑦) with 𝑤𝑖𝑛(|𝑦| < 1) specified. Nickel’s result would read, in 
the present notation: 

Γ(𝑦) =
4

𝜋
∫ 𝑤𝑖𝑛(𝑦′)ln

((𝑏 2⁄ )2−𝑦2)1 2⁄ ((𝑏 2⁄ )2−𝑦′2)1 2⁄ +(𝑏 2⁄ )2−𝑦′𝑦

(𝑏 2⁄ )|𝑦−𝑦′|
𝑑𝑦′

𝑏/2

−𝑏/2
.      (2c) 

To verify Eq. (2c), differentiate Eq. (2c) with respect to y, which yields 
𝑑

𝑑𝑦
Γ(𝑦) = −

4

𝜋

1

√(𝑏 2⁄ )2−𝑦2
CPV∫ 𝑤𝑖𝑛(𝑦

′)
((𝑏 2⁄ )2−𝑦′2)1 2⁄

𝑦−𝑦′ 𝑑𝑦′
𝑏/2

−𝑏/2
  

Since 𝛾𝑥(𝑦) = −(𝑑 𝑑𝑦⁄ )Γ(𝑦), indeed this expression is equal to the expression for the vortex distribution 
𝛾𝑥(𝑦) in Eq. (2a). Nickel [20], [21] presents the circulation distribution for a number of port-side/star-
board-side symmetric and nonsymmetric distributions of the upwash. 
In the present study, the inversion of Eq. (1d), given in Eq. (2a), has been inspired by the treatise of 
Ashley & Landahl ([22], section 5.3) on the inversion of the formulation of thin-airfoil theory in the 
complex plane.  
 
Finally, for the velocity induced at points on the outward extensions of the span Eq. (1d) is a regular 
integral, not requiring the CPV-evaluation: 

𝑤𝑖𝑛(|𝑦| > 𝑏 2⁄ ) =
1

4𝜋
∫ 𝛾𝑥(𝑦′)

𝑑𝑦′

𝑦−𝑦′

𝑏/2

−𝑏/2
        (2d) 

 

2.2 Analysis and design/optimization formulations 

For specified free-stream density 𝜌∞ and free-stream velocity 𝑈∞ parallel to the 𝑥-axis, Prandtl’s lifting-
line (integro-differential) equation, given in Eq. (1c-d), can be utilised in three ways:  

1.  Aerodynamic performance analysis: Given the planform of the wing, i.e., span b and distribution 
section-chord 𝑐(𝑦), as well as Δ𝛼(𝑦) = 𝛼 − 𝛼0(𝑦) + 𝛽(𝑦), with 𝛼 the wing angle of attack, 𝛼0(𝑦) the 
section-zero-lift angle-of-attack and 𝛽(𝑦) the section-twist-angle, the integro-differential equation 

Eq. (1c) can be solved approximately for Γ(𝑦) by expanding the spanwise circulation distribution 
Γ(𝑦) as a Fourier series and solving analytically for the coefficients in the series. This is the ap-
proach followed by Prandtl’s group. Alternatively, as in the present research, the integro-differential 
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equation can be discretised employing local polynomial-type of expansions of the circulation dis-
tribution Γ(𝑦) and determining the parameters in the local expansions by solving the resulting sys-
tem of linear algebraic equations, e.g., [23].  

 

Once the circulation distribution Γ(𝑦) has been computed, the wing’s aerodynamic performance is 
obtained in terms of the components of the overall forces and moments: lift 𝐿, induced drag 𝐷, star-

board-side span-integrated section-shear-force 𝐹𝑧, starboard-side root-bending moment 𝑀𝑥, span-
integrated section-bending-moment 𝑀𝑥,2 and starboard-side yawing moment 𝑀𝑧. Furthermore, also 

computed are the section lift ℓ(𝑦), drag 𝑑(𝑦), section shear force 𝑓𝑧(𝒚), the section-starboard-root-
bending-moment 𝑚𝑥(𝑦), section-span-integrated-bending-moment 𝑚𝑥,2(𝑦) and yawing-moment 

𝑚𝑧(𝑦), see Appendix A and Table 1. 

Table 1 Formula aerodynamic performance quantities. 𝑞∞ =
1

2
𝜌∞𝑈∞

2  is free-stream dynamic pressure. 

Note that in the derivation of the expression for 𝐹𝑧 and that for 𝑀𝑥,2 in Table 1, use has been made of 

partial integration and of Leibniz’s rule of differentiating integrals. For example, for the span-integrated 
section-bending-moment 𝑀𝑥,2: 

∫ 𝑚𝑥,2(𝑦)𝑑𝑦
𝑏 /2

0
= [𝑦𝑚𝑥,2(𝑦)]|

0

𝑏 2⁄
− ∫ 𝑦

𝑑

𝑑𝑦
𝑚𝑥,2(𝑦)𝑑𝑦

𝑏 /2

0
= −∫ 𝑦 {−∫ ℓ(𝑦′)𝑑𝑦′

𝑏 2⁄

𝑦
} 𝑑𝑦

𝑏 2⁄

0
  

                               = ∫ 𝑦
𝑏 2⁄

0
[∫ ℓ(𝑦′)𝑑𝑦′]𝑑𝑦

𝑏 2⁄

𝑦
= [

1

2
𝑦2 ∫ ℓ(𝑦′)𝑑𝑦′]

𝑏 2⁄

𝑦
|
𝑦=0

𝑏 /2

+ ∫
1

2
𝑦2ℓ(𝑦)𝑑𝑦

𝑏 2⁄

0
. 

                      = ∫
1

2
𝑦2ℓ(𝑦)𝑑𝑦

𝑏 2⁄

0
=

1

2
𝜌∞𝑈∞ ∫ 𝑦2Γ(𝑦)𝑑𝑦

𝑏 2⁄

0
  

An additional quantity considered is 𝑦𝐶𝑂𝑉, the location of the center of the 𝑥-component of the wake 
vortex distribution 𝛾𝑥(𝑦). The center-of-vorticity (COV) of the starboard side of the 𝑥- (and only) com-

ponent of the wake vortex distribution 𝛾𝑥(𝑦), follows from: 

𝑦𝐶𝑂𝑉 ≡ ∫ 𝛾𝑥(𝑦)𝑦𝑑𝑦 
𝑏/2

0
/ ∫ 𝛾𝑥(𝑦)𝑑𝑦

𝑏/2

0
=

1

Γ(0)
∫ Γ(𝑦)𝑑𝑦

𝑏 2⁄

0
      (3) 

In the present study the focus is on the design/optimisation problem of prescribing specific distribu-
tions of the circulation Γ(𝑦) that follow from minimising the induced drag. This leads to the next two 

problem formulations, for given Γ(𝑦): 

2.  For prescribed distribution of the circulation Γ(𝑦), the upwash distribution 𝑤𝑖𝑛(𝑦) is computed from 

Eq. (1d). Then, if for given 𝑎0 and 𝑈∞, Δ𝛼(𝑦) = 𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) is specified, the spanwise distrib-
ution of the chord 𝑐(𝑦) required to generate the prescribed circulation distribution, follows from Eq. 
(1c) as: 

𝑐(𝑦) =
2Γ(𝑦)

𝑎0𝑈∞(𝛼−𝛼0(𝑦)+𝛽(𝑦)+
𝑤𝑖𝑛(𝑦)

𝑈∞
)
, for |𝑦| ≤ 𝑏/2.       (4a) 

3.  If for given 𝑎0 and 𝑈∞, 𝑐(𝑦) and 𝛼 − 𝛼0(𝑦) are specified, the geometric twist distribution 𝛽(𝑦) 
required for generating the prescribed spanwise distribution of the circulation Γ(𝑦), follows from 
Eq. (1c) as: 

Δ𝛼(𝑦) = 𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) =
2Γ(𝑦)

𝑎0𝑈∞𝑐(𝑦)
−

𝑤𝑖𝑛(𝑦)

𝑈∞
, for |𝑦| ≤ 𝑏/2.     (4b) 

3 Minimization Induced Drag 
The task considered is to determine the distribution of the circulation Γ(𝑦) that minimises the induced 
drag 𝐷. For this purpose, upon introducing an arbitrary infinitesimal variation 𝛿Γ(y) of the circulation 

Γ(y), accounting for the resulting variation of the upwash, Prandtl (and Betz) [14] set the ensuing 

Section forces and moments Integrated along span Conversion from y to 𝜼 = 𝒚/(
𝒃

𝟐
) 

𝓵(𝒚) = 𝝆∞𝑼∞𝚪(𝒚)  𝐿 = 𝜌∞𝑈∞ ∫ Γ(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
  = 𝑞∞𝑏2 ∫

Γ(𝜂)

𝑈∞𝑏
𝑑𝜂

1

−1
  

𝒅(𝒚) = −𝝆∞𝒘𝒊𝒏(𝐲)𝚪(𝒚)  𝐷 = −𝜌∞ ∫ Γ(𝑦)𝑤𝑖𝑛(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
  = −𝑞∞𝑏2 ∫

Γ(𝜂)

𝑈∞𝑏

𝑤𝑖𝑛(𝜂)

𝑈∞
𝑑𝜂

1

−1
  

𝒇𝒛(𝒚) = ∫ 𝓵(𝒚′)𝒅𝒚′
𝒃/𝟐

𝒚
  𝐹𝑧 = 𝜌∞𝑈∞ ∫ Γ(𝑦)𝑦𝑑𝑦

𝑏/2

0
  = 𝑞∞𝑏3 1

2
∫

Γ(𝜂)

𝑈∞𝑏
𝜂𝑑𝜂

1

0
  

𝒎𝒙(𝒚) = 𝒚𝓵(𝒚)  𝑀𝑥 = 𝜌∞𝑈∞ ∫ Γ(𝑦)𝑦𝑑𝑦
𝑏/2

0
  = 𝑞∞𝑏3 1

2
∫

Γ(𝜂)

𝑈∞𝑏
𝜂𝑑𝜂

1

0
  

𝒎𝒙,𝟐(𝒚) = ∫ 𝓵(𝒚′)(𝒚′ − 𝒚)𝒅𝒚′
𝒃/𝟐

𝒚
  𝑀𝑥,2 =

1

2
𝜌∞𝑈∞ ∫ Γ(𝑦)𝑦2𝑑𝑦

𝑏/2

0
  = 𝑞∞𝑏4 1

8
∫

Γ(𝜂)

𝑈∞𝑏
𝜂2𝑑𝜂

1

0
  

𝒎𝒛(𝒚) = −𝒅(𝒚)𝒚  𝑀𝑧 = 𝜌∞ ∫ Γ(𝑦)𝑤𝑖𝑛(𝑦)𝑦𝑑𝑦
𝑏/2

0
  = 𝑞∞𝑏3 1

2
∫

Γ(𝜂)

𝑈∞𝑏

𝑤𝑖𝑛(𝜂)

𝑈∞
𝜂𝑑𝜂

1

0
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variation 𝛿𝐷 of the induced drag D equal to zero. Using the expression for the induced drag listed in 

Table 1 and the analysis in Appendix B, gives for 𝛿𝐷: 

𝛿𝐷 = −2𝜌∞ ∫ 𝑤𝑖𝑛(𝑦)δΓ(𝑦)𝑑𝑦
𝑏 2⁄

−𝑏 2⁄
= 0,           (5) 

for positive Γ(𝑦).  
In this section, four scenarios have been investigated for minimising the induced drag 𝐷: 
(a) Section 3.1: prescribed lift 𝐿, for given span 𝑏;  
(b) Section 3.2: prescribed lift 𝐿, prescribed starboard-span-integrated section-bending-moment 𝑀𝑥,2, 

which is some measure for the structural weight of the wing. The span 𝑏 of the wing is a free 
parameter, it will be determined as part of the outcome;  

(c) Section 3.3: prescribed lift 𝐿, prescribed starboard root-bending-moment 𝑀𝑥, which is another 

measure for the wing structural weight. The span 𝑏 of the wing is free, it will be part of the outcome. 
(d) Section 3.4: prescribed lift 𝐿, prescribed starboard root-bending-moment 𝑀𝑥(equal to span-inte-

grated section-shear-force 𝐹𝑧) in combination with the starboard-span-integrated section-bending-
moment 𝑀𝑥,2. The combination of 𝑀𝑥 and 𝑀𝑥,2 represents a more comprehensive measure for the 

wing structural weight. The span 𝑏 of the wing is free, it will be determined as part of the outcome. 
Note that: scenario (a) was considered by Prandtl [14]; scenario (b) by Prandtl [15]; scenario (c) by 
Jones [17] and Nickel [21] and; scenario (d) by Klein and Viswanathan [24].  
Further note that there are many more practical relevant scenarios, such as:  

- scenario (b) with span-integrated section-bending-moment divided by section thickness, 
  e.g., Löbert [25] and McGeer [26]; 
- either scenario coupled to the Breguet range formula for mission-performance analysis 
  Iglesias & Mason [27] and Bragado-Aldana & Riaz [28]. 

 

3.1 Minimization Induced Drag for prescribed Lift and prescribed Wing Span 
The classic scenario of minimizing the induced drag is to prescribe lift 𝐿 = 𝐿𝑒 in combination with the 

span 𝑏𝑒 of the wing. Therefore, the variation 𝛿𝐿 due to an infinitesimal variation 𝛿Γ(y) of the circulation 
Γ(𝑦) should be zero, i.e., using the expression for the lift in terms of the circulation distribution Γ(𝑦), 
given in Table 1, Appendix B lists the optimalisation problem: as  

𝛿𝐷 = −2𝜌∞ ∫ 𝑤𝑖𝑛(𝑦)δΓ(𝑦)𝑑𝑦
𝑏𝑒 2⁄

−𝑏𝑒 2⁄
= 0 subject to         (5) 

𝛿𝐿 = 𝜌∞𝑈∞ ∫ δΓ(𝑦)𝑑𝑦
𝑏𝑒 2⁄

−𝑏𝑒 2⁄
= 0.            (6) 

So, it is found from Eq. (5), that, in order to minimise induced drag 𝐷, for constant span 𝑏𝑒, 𝑤𝑖𝑛(𝑦) 
should be constant, here chosen as: 𝑤𝑖𝑛(𝑦) = −𝑈∞𝐴0, with 𝐴0 an arbitrary constant. 

For specified 𝑤𝑖𝑛(𝑦) the vortex distribution 𝛾𝑥(𝑦) follows from the inverted Biot-Savart relation, Eq. 
(2a), as: 

𝛾𝑥(𝑦) =
4

𝜋

𝑈∞𝐴0

√(𝑏𝑒 2⁄ )2−𝑦2
CPV∫

((𝑏𝑒 2⁄ )2−𝑦′2)1 2⁄

𝑦−𝑦′ 𝑑𝑦′
𝑏𝑒 2⁄

−𝑏𝑒 2⁄
=

4

𝜋

𝑈∞𝐴0

√1−𝜂2
CPV∫

(1−𝜂′2)1 2⁄

𝜂−𝜂′ 𝑑𝜂′
1

−1
=

4𝑈∞𝐴0𝜂

√1−𝜂2
,   (7a) 

with 𝜂 = 𝑦/(𝑏𝑒 2⁄ ). It then follows from Eq. (2b) that the distribution of the circulation is indeed the 
elliptic distribution, found in any textbook on aircraft aerodynamics, e.g., [29]: 

Γ(𝑦) = 4𝑈∞𝐴0√(𝑏𝑒 2⁄ )2 − 𝑦2 ≡ Γ0,𝑒√1 − 𝜂2, with Γ0,𝑒 = 4𝑈∞𝐴0
𝑏𝑒

2
.     (7b) 

Therefore, 𝛾𝑥(𝜂) = 𝑈∞
Γ0,𝑒

𝑈∞𝑏𝑒

2𝜂

√1−𝜂2
 and 𝑤𝑖𝑛(𝜂) = −

1

2
𝑈∞

Γ0,𝑒

𝑈∞𝑏𝑒
.     (7c) 

 
The aerodynamic performance, calculated using the formulas in Table 1, is presented in Table 2 
below. The table includes the expressions for the induced upwash 𝑤𝑖𝑛(𝜂)/𝑈∞, both at the lifting line 
(|𝜂| < 1) and at its outboard-directed extensions (|𝜂| > 1). The upwash at the latter points is obtained 

by evaluating Eq. (1d) for |𝜂| > 1, as a regular integral, see Appendix C for the integrals. The table 
also includes the location of the center-of-gravity 𝑦𝐶𝑂𝑉,𝑒/(0.5𝑏𝑒) of the vortex distribution 𝛾𝑥(𝜂). 
 
In Table 2 the forces and moments are expressed in dimensionless form, using 𝑞∞ and powers of the 
(full) span 𝑏𝑒. These dimensionless quantities are a function of dimensionless amplitude Γ0,𝑒/𝑈∞𝑏𝑒 of 

the circulation distribution, or equivalently, of dimensionless lift 𝐿𝑒/𝑞∞𝑏𝑒
2, only. The results indeed 

show that the induced drag 𝐷𝑒 is quadratic in the prescribed lift 𝐿𝑒 and that the induced drag 𝐷𝑒 de-
creases quadratically with span 𝑏𝑒: the classic result for the elliptic circulation distribution. The two 
bending moments are linear in the prescribed lift 𝐿𝑒, while the yawing moment is quadratic in the lift 
𝐿𝑒.  
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𝚪(𝜼) = 𝚪𝟎,𝒆√𝟏 − 𝜼𝟐  Function of 
𝚪𝟎,𝒆

𝑼∞𝒃𝒆
 Function of 

𝑳𝒆

𝒒∞𝒃𝒆
𝟐 

𝒘𝒊𝒏(|𝜼|<𝟏)

𝑼∞
  −

1

2

Γ0,𝑒

𝑈∞𝑏𝑒
   −

1

𝜋

𝐿𝑒

𝑞∞𝑏𝑒
2  

𝒘𝒊𝒏(|𝜼|>𝟏)

𝑼∞
  −

1

2

Γ0,𝑒

𝑈∞𝑏𝑒
(1 −

|𝜂|

√𝜂2−1
)  −

1

𝜋

𝐿

𝑞∞𝑏𝑒
2 (1 −

|𝜂|

√𝜂2−1
)  

𝑳𝒆

𝒒∞𝒃𝒆
𝟐  

𝜋

2

Γ0,𝑒

𝑈∞𝑏𝑒
  

𝑫𝒆

𝒒∞𝒃𝒆
𝟐  

𝜋

4
(

Γ0,𝑒

𝑈∞𝑏𝑒
)2  

1

𝜋
(

𝐿𝑒

𝑞∞𝑏𝑒
2)

2  

𝑴𝒙,𝒆

𝒒∞𝒃𝒆
𝟑  

1

6

Γ0,𝑒

𝑈∞𝑏𝑒
  

1

3𝜋

𝐿𝑒

𝑞∞𝑏𝑒
2  

𝑴𝒙,𝟐,𝒆

𝒒∞𝒃𝒆
𝟒  

𝜋

128

Γ0,𝑒

𝑈∞𝑏𝑒
  

1

64

𝐿𝑒

𝑞∞𝑏𝑒
2  

𝑴𝒛,𝒆

𝒒∞𝒃𝒆
𝟑  −

1

12
(

Γ0,𝑒

𝑈∞𝑏𝑒
)
2

  −
1

3𝜋2 (
𝐿𝑒

𝑞∞𝑏𝑒
2)

2

  

𝒚𝑪𝑶𝑽,𝒆/𝟎. 𝟓𝒃𝒆  
𝜋

4
  

Table 2 - Aerodynamic performance for scenario (a) minimisation of induced drag 𝐷𝑒, for prescribed free-stream 

conditions (𝑈∞, 𝑞∞), lift 𝐿𝑒 as 𝐿𝑒/𝑞∞𝑏𝑒
2 and span 𝑏𝑒: yielding elliptic distribution circulation Γ(𝜂) = Γ0,𝑒√1 − 𝜂2, with 

𝜂 = [𝑦 0.5𝑏𝑒]/𝜎⁄ ; 𝜎 = 𝑏 𝑏𝑒⁄ = 1. 

 
As shown in Figure 3, at the wing tip 𝜂 = 1, the circulation distribution has zero function value and 

infinite first and higher derivatives. At the wing tip the vortex distribution 𝛾𝑥(𝜂) features a square-root 
singularity and is therefore infinite. The induced upwash 𝑤𝑖𝑛(𝜂), the requirement that followed from 
the optimisation formulation, Eqs. (5) and (6), is a negative constant all along the lifting line. Along 
the outward extension of the lifting line, the upwash is positive featuring a discontinuity at 𝜂 = 1,  the 
wing tip, where the upwash has a square-root singularity for 𝜂 ↓ 1. 

                         
Figure 3 – Left: Elliptic distribution circulation Γ(𝜂) = Γ0,𝑒√1 − 𝜂2; Right-upper: Vortex distribution 𝛾𝑥(𝜂); Right-

lower: Distribution upwash 𝑤𝑖𝑛(𝜂) on starboard-side lifting line and its outward extension. Dashed line: location 

COV. 𝜂 = [𝑦 0.5𝑏𝑒]/𝜎⁄ ; 𝜎 = 𝑏 𝑏𝑒⁄ = 1. 
 
In case the spanwise distribution of the section chord 𝑐(𝑦) of the wing is given, Eq. (4b), derived from 
Prandtl’s integro-differential equation, provides the section angle-of-attack combination Δ𝛼(𝑦) = 𝛼 −
𝛼0(𝑦) + 𝛽(𝑦), consisting of wing angle-of-attack 𝛼, section zero-lift angle-of-attack 𝛼0(𝑦) and section 
geometric twist-angle 𝛽(𝑦) of the wing. Alternatively, in case Δ𝛼(𝑦) is given, Eq. (4a), also derived 

from Prandtl’s integro-differential equation, provides the spanwise distribution of section chord 𝑐(𝑦). 
 

3.2 Minimization Induced Drag for prescribed Lift and Span-integrated Section-Bending- 
Moment 

For scenario (b), the optimisation is for constant lift L, and for constant starboard-side-integrated 
section-bending-moment 𝑀𝑥,2, with circulation distribution Γ(𝜂) and the span 𝑏 of the wing to be de-

termined. Now not only the variation 𝛿𝐿 of the lift L, but also the variation 𝛿𝑀𝑥,2 of 𝑀𝑥,2, due to an 

infinitesimal variation δΓ(𝑦), should be zero, i.e., the formulation of the optimalisation problem reads, 
see Appendix B: 

𝛿𝐷 = −2𝜌∞ ∫ 𝑤𝑖𝑛(𝑦)δΓ(𝑦)𝑑𝑦
𝑏 2⁄

−𝑏 2⁄
= 0, subject to        (5) 

𝛿𝐿 = 𝜌∞𝑈∞ ∫ δΓ(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
= 0 and         (8a) 
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𝛿𝑀𝑥,2 =
1

2
𝜌∞𝑈∞ ∫ 𝑦2δΓ(𝑦)𝑑𝑦

𝑏/2

0
=

1

4
𝜌∞𝑈∞ ∫ 𝑦2δΓ(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
= 0.    (8b) 

In order to force 𝛿𝐷 in Eq. (5) to be equal to zero, it is to be prescribed that 

𝑤𝑖𝑛(𝑦) = −𝑈∞[𝐴2 +
1

4
𝐵2(𝑦 0.5𝑏⁄ )2], for |𝑦| < 𝑏 2⁄  ,     (9a) 

with 𝐴2 and 𝐵2 arbitrary dimensionless constants. To get more insight, 𝑤𝑖𝑛(𝑦) is expressed as 
𝑤𝑖𝑛(𝑦) = −𝑈∞[𝐴̂2 + 𝐵̂2{1 − (𝑦 0.5𝑏⁄ )2}] = −𝑈∞[𝐴̂2 + 𝐵̂2(1 − 𝜂2)],    (9b) 

with 𝐴̂2 and 𝐵̂2 another set of arbitrary dimensionless constants. Substitution in Eq. (2a), the inverted 
Biot-Savart law, gives, with the CPV integrals listed in the Appendix C: 

𝛾𝑥(𝑦) =
4

𝜋

𝑈∞

√(𝑏 2⁄ )2−𝑦2
CPV∫ [𝐴̂2 + 𝐵̂2{1 − (𝑦′/0.5𝑏)2}]

((𝑏 2⁄ )2−𝑦′2)1 2⁄

𝑦−𝑦′ 𝑑𝑦′
𝑏

2

−
𝑏

2

  

           =
4

𝜋

𝑈∞

√1−𝜂2
[𝐴̂2CPV∫

(1−𝜂′2)1 2⁄

𝜂−𝜂′ 𝑑𝜂′1

−1
+ 𝐵̂2CPV∫

(1−𝜂′2)3 2⁄

𝜂−𝜂′ 𝑑𝜂′1

−1
=

4𝑈∞𝜂

√1−𝜂2
[𝐴̂2 + 𝐵̂2 (

3

2
− 𝜂2)].  (9c) 

It then follows from Eq. (2b), that the corresponding distribution of the circulation equals: 

Γ(𝑦) = 4𝑈∞[𝐴̂2√(𝑏 2⁄ )2 − 𝑦2 + 𝐵̂2 {
1

2
√(𝑏 2⁄ )2 − 𝑦2 +

1

3

1

(𝑏 /2)2
((𝑏 2⁄ )2 − 𝑦2)3 2⁄ }], so that  

Γ(𝜂) = 4𝑈∞[𝐴̂2
𝑏

2
√1 − 𝜂2 + 𝐵̂2 {

1

2

𝑏

2
√1 − 𝜂2 +

1

3

𝑏

2
(1 − 𝜂2)3 2⁄ }].  

With Γ2,0 and Γ2,2 defined as Γ2,0 = 4𝑈∞
𝑏

2
(𝐴̂2 +

1

2
𝐵̂2) and Γ2,2 = 4𝑈∞

𝑏

2

1

3
𝐵̂2, respectively, it follows  

Γ(𝜂) = Γ2,0√1 − 𝜂2 + Γ2,2(1 − 𝜂2)3 2⁄ , for |𝜂| < 1.       (9d) 

In this notation 𝛾𝑥(𝜂) =
2

𝑏
[Γ2,0

𝜂

√1−𝜂2
+ 3Γ2,2𝜂√1 − 𝜂2]       (9e) 

Since it follows that 𝐴̂2 =
Γ2,0−

3

2
Γ2,2

4𝑈∞(𝑏 2⁄ )
 and 𝐵̂2 =

3Γ2,2

4𝑈∞(𝑏 2⁄ )
, the induced upwash 𝑤𝑖𝑛(𝜂) can be rewritten as: 

 𝑤𝑖𝑛(𝜂) = −
1

2𝑏
[Γ2,0 + 3Γ2,2{−

1

2
+ (1 − 𝜂2)}], for |𝜂| < 1.      (9f) 

In Eq. (9d), the first term in the expression for Γ(𝜂) is the elliptic distribution that gives a constant 
contribution to the upwash 𝑤𝑖𝑛(𝜂), i.e., the first term in Eq. (9f). The term inside the curly brackets in 
Eq. (9f) is the quadratic distribution of the upwash generated by the Γ2,2(1 − 𝜂2)3 2⁄  term in Eq. (9d). This 

part of the circulation distribution is the so-called bell-shaped (as coined by Reimar Horten [2], [3]) 
circulation distribution. At the wing tips the bell-shaped distribution has zero function value as well as 
zero first derivative, resulting in a wing loaded lighter near the wing tips and more heavily near the 
wing root. At the wing tip, circulation distribution Eq. (9d) generates an upwash distribution that is 
continuous at the wing tip, with a square-root singularity in its first derivative, see Figure 4. Using the 
expression for the circulation distribution, Eq. (9d), the lift, induced drag, root-bending- moment, etc., 
have been computed and collected in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3 – Aerodynamic performance scenario (b) minimisation of induced drag 𝐷, for prescribed free-stream 

conditions (𝑈∞, 𝑞∞), lift 𝐿 and starboard-integrated-bending-moment 𝑀𝑥,2: yielding circulation distribution Γ(𝜂) =

Γ2,0√1 − 𝜂2 + Γ2,2(1 − 𝜂2)3/2. 𝜂 = [𝑦 0.5𝑏𝑒]/𝜎⁄ ; 𝜎 = 𝑏 𝑏𝑒⁄  

 
The minimisation of the induced drag 𝐷, for prescribed lift 𝐿 and prescribed starboard-span-integrated 

section-bending-moment 𝑀𝑥,2, comprises to consider, with wing span 𝑏 some function of 𝐿 and 𝑀𝑥,2:  

Minimize        𝐷 = 𝑞∞𝑏2 𝜋

4
[(

Γ2,0

𝑈∞𝑏.
)
2
+

3

2

Γ2,0

𝑈∞𝑏.

Γ2,2

𝑈∞𝑏.
+

3

4
(

Γ2,2

𝑈∞𝑏.
)2],  

for prescribed 𝐿 = 𝑞∞𝑏2 𝜋

2
[

Γ20

𝑈∞𝑏
+

3

4

Γ2,2

𝑈∞𝑏.
] and        (10) 

 𝚪(𝜼) = 𝚪𝟐,𝟎√𝟏 − 𝜼𝟐 + 𝚪𝟐,𝟐(𝟏 − 𝜼𝟐)
𝟑 𝟐⁄

  
𝒘𝒊𝒏(|𝜼|<𝟏)

𝑼∞
  −

1

2
[
Γ2,0

𝑈∞𝑏
+ 3

Γ2,2

𝑈∞𝑏
(−

1

2
+ (1 − 𝜂2))]  

𝒘𝒊𝒏(|𝜼|>𝟏)

𝑼∞
  −

1

2
[
Γ2,0

𝑈∞𝑏
(1 −

|𝜂|

√𝜂2−1
) + 3

Γ2,2

𝑈∞𝑏
(−

1

2
+ (1 − 𝜂2) + |𝜂|√𝜂2 − 1)]  

𝑳

𝒒∞𝒃𝟐  
𝜋

2
[

Γ20

𝑈∞𝑏
+

3

4

Γ2,2

𝑈∞𝑏
]  

𝑫

𝒒∞𝒃𝟐  
𝜋

4
[(

Γ2,0

𝑈∞𝑏
)
2

+
3

2

Γ2,0

𝑈∞𝑏

Γ2,2

𝑈∞𝑏
+

3

4
(

Γ2,2

𝑈∞𝑏
)
2

]  

𝑴𝒙

𝒒∞𝒃𝟑  
1

6
[
Γ2,0

𝑈∞𝑏
+

3

5

Γ2,2

𝑈∞𝑏
]  

𝑴𝒙,𝟐

𝒒∞𝒃𝟒  
𝜋

128
[
Γ2,0

𝑈∞𝑏
+

1

2

Γ2,2

𝑈∞𝑏
]  

𝑴𝒛

𝒒∞𝒃𝟑  
−1

12
[(

Γ2,0

𝑈∞𝑏
)
2

+
9

10

Γ2,0

𝑈∞𝑏

Γ2,2

𝑈∞𝑏
+

27

70
(

Γ2,2

𝑈∞𝑏
)2]  

𝒚𝑪𝑶𝑽

𝟎.𝟓𝒃
  𝜋

4
[
Γ2,0

𝑈∞𝑏
+

3

4

Γ2,2

𝑈∞𝑏
] /[

Γ2,0

𝑈∞𝑏
+

Γ2,2

𝑈∞𝑏
]  
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prescribed      𝑀𝑥,2 = 𝑞∞𝑏4 𝜋

128
[
Γ2,0

𝑈∞𝑏
+

1

2

Γ2,2

𝑈∞𝑏
],  

with Γ(𝜂) > 0, for |𝜂| < 1. 

The lift 𝐿 is prescribed as 𝐿 = 𝐿𝑒. Rather than prescribing 𝑀𝑥,2, arbitrarily, Prandtl and Betz [15] pre-

scribed the radius r, associated with the radius of gyration, i.e., the inertial moment of the circulation 
distribution Γ(𝑦). The radius of gyration is defined as: 

𝑟2 ∫ Γ(𝑦)𝑑𝑦
𝑏

2
0

≡ ∫ Γ(𝑦)𝑦2𝑑𝑦
𝑏

2
0

,  

resulting in 𝑟2 =
𝑏2

16
[
Γ2,0

𝑈∞𝑏
+

1

2

Γ2,2

𝑈∞𝑏
] [

Γ20

𝑈∞𝑏
+

3

4

Γ2,2

𝑈∞𝑏.
]⁄ , which is equivalent to 𝑟2 = 4𝑀𝑥,2/𝐿. However, for the 

present study it turned out to be more insightful, and less cumbersome algebraically, to follow Klein 
and Viswanathan ([19], [24]), in prescribing alongside 𝐿 = 𝐿𝑒, 𝑀𝑥,2 in terms of 𝑀𝑥,2,𝑒 as 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒, 

with 
𝑀𝑥,2,𝑒

𝒒∞𝑏𝑒
4 =

𝜋

128

Γ0,𝑒

𝑈∞𝑏𝑒
, see Table 2. This results in expressions in terms of the dimensionless geometric 

variable 𝜎 = 𝑏/𝑏𝑒, directly related to the yet unknown span of the wing. In the present derivation, a 
system of linear equations is constructed for Γ2,0 and Γ2,2, the two parameters in the circulation dis-

tribution, Eq. (9d). With Γ̂2,𝑘 = Γ2,𝑘/Γ0,𝑒, Eq. (10) yields: 

Γ̂2,0 + 3/4Γ̂2,2 = 1 𝜎⁄  and 

Γ̂2,0 + 1/2Γ̂2,2 = 𝜏 𝜎3⁄ 𝜏  

which keeps the dimensionless wing span 𝜎 = 𝑏/𝑏𝑒  as geometric parameter in the optimalisation. 
The solution of the above system of linear equations for Γ̂2,0 and Γ̂2,2 is: 

 Γ̂2,0 = −2 𝜎⁄ + 3𝜏 𝜎3⁄  and Γ̂2,2 = 4 𝜎⁄ − 4𝜏 𝜎3⁄                   (11a) 

Substitution of Eq. (11a) in the expressions given in Table 3 results in the expressions listed in Table 

4. Specifically, the induced drag 𝐷 𝑞
∞
𝑏2⁄ in Table 3, divided by the induced drag 𝐷𝑒 𝑞∞𝑏𝑒

2⁄ =
𝜋

4
(

Γ0,𝑒

𝑈∞𝑏𝑒
)
2
 of 

the wing with elliptic circulation distribution and the same lift 𝐿 = 𝐿𝑒, yields, upon some algebra: 
𝐷

𝐷𝑒
=

1

𝜎6 [4𝜎4 − 6𝜏𝜎2 + 3𝜏2].         (11b) 

The induced drag is a function of variable 𝜎 = 𝑏/𝑏𝑒 and parameter 𝜏. The value of the relative span 𝜎 

for which the first derivative with respect to 𝜎, of the induced drag 𝐷 𝐷𝑒⁄  equals zero, is the value 

𝜎𝑜𝑝𝑡 = 𝑏 𝑏𝑒⁄  for which the induced drag is at a local minimum. The first derivative of Eq. (11b) with 

respect to 𝜎 equals:  
𝑑

𝑑𝜎

𝐷

𝐷𝑒
= −

2

𝜎7 (2𝜎2 − 3𝜏)2.                    (11c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4 – Aerodynamic performance scenario (b) minimisation of induced drag 𝐷, for prescribed free-stream 

conditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and starboard-integrated section-bending-moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒, as function of 

𝜎 = 𝑏/𝑏𝑒: yielding circulation distribution Γ(𝜂) = Γ2,0√1 − 𝜂2 + Γ2,2(1 − 𝜂2)3/2. 𝜂 = [𝑦 0.5𝑏𝑒]/𝜎⁄ ; 𝜎 = 𝑏 𝑏𝑒⁄ . Third 

column lists performance for the optimal solution of the minimisation problem at 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = √3𝜏/2. 

 

 𝚪(𝜼) = 𝚪𝟐,𝟎√𝟏 − 𝜼𝟐 + 𝚪𝟐,𝟐(𝟏 − 𝜼𝟐)
𝟑 𝟐⁄

  Optimum:𝝈𝒐𝒑𝒕 = √
𝟑𝝉

𝟐
 

𝒘𝒊𝒏(|𝜼|<𝟏)

𝑼∞
  −

1

2
[
Γ2,0

𝑈∞𝑏
+ 3

Γ2,2

𝑈∞𝑏
(−

1

2
+ (1 − 𝜂2))]  

𝒘𝒊𝒏(|𝜼|>𝟏)

𝑼∞
  −

1

2
[
Γ2,0

𝑈∞𝑏
(1 −

|𝜂|

√𝜂2−1
) + 3

Γ2,2

𝑈∞𝑏
(−

1

2
+ (1 − 𝜂2) + |𝜂|√𝜂2 − 1)]  

𝚪𝟐,𝟎

𝚪𝟎,𝒆
  

1

𝜎3 [−2𝜎2 + 3𝜏]  0 

𝚪𝟐,𝟐

𝚪𝟎,𝒆
  

1

𝜎3 [4𝜎2 − 4𝜏]  4

3
√

2

3𝜏
  

𝑳

𝒒∞𝒃𝒆
𝟐  

𝜋

2

Γ0,𝑒

𝑈∞𝑏𝑒
=

𝑳𝒆

𝒒∞𝑏𝑒
2  

𝑫

𝑫𝒆
  

1

𝜎6 [4𝜎4 − 6𝜏𝜎2 + 3𝜏2]  
8

9

1

𝜏
  

𝑴𝒙

𝑴𝒙,𝒆
  

1

𝜎
[
2

5
𝜎2 +

3

5
𝜏]  

2

5
√6𝜏  

𝑴𝒙,𝟐

𝑴𝒙,𝟐,𝒆
  𝜏  𝜏  

𝑴𝒛

|𝑴𝒛,𝒆|
  

−1

𝜎5 [
104

35
𝜎4 −

74

5
𝜏𝜎2 +

153

35
𝜏2]  −

24

35
√

2

3𝜏
  

𝒚𝑪𝑶𝑽

𝟎.𝟓𝒃𝒆
  𝜋

4
[

𝜎3

2𝜎2−𝜏
]  𝜋

4

3

4
√

3𝜏

2
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The optimum is obtained for 
𝑑

𝑑𝜎

𝐷

𝐷𝑒
= 0, which yields: 

𝜎𝑜𝑝𝑡 = √
3𝜏

2
, for which 

𝐷𝑜𝑝𝑡

𝐷𝑒
=

8

9

1

𝜏
.                    (11d) 

From Eq. (11c) it follows that at the optimum span 𝜎𝑜𝑝𝑡, not only the first derivative, but also the second 

derivative of 𝐷(𝜎; 𝜏) equals zero. Therefore, the minimum of 𝐷(𝜎; 𝜏). is at an inflection point of 𝐷(𝜎; 𝜏). 
From Eq. (11d) and the expressions listed in Table 4, it becomes clear that the distribution of the 
circulation Γ(𝜂) that minimizes the induced drag 𝐷, for prescribed lift 𝐿 = 𝐿𝑒 and prescribed starboard 
span-integrated section-bending-moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒 is the one for which: Γ(𝑦) = Γ2,2(1 − 𝜂2)3 2⁄ , i.e., 

the bell-shaped circulation distribution, for any value of 𝜏. For 𝜏 = 1,  analysis shows that this particular 
bell-shaped distribution generates a factor 8/9 lower induced drag than the elliptic distribution of the 

circulation. This is partly due to the longer span 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = √3 2⁄ ≈ 1.225 of the wing featuring the 

bell-shaped distribution of the circulation and partly due to the differences in the induced upwash 
combined with differences in the circulation distribution. For 𝜏 > 1 the minimum induced drag de-

creases further like 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ = 8 9𝜏⁄ , while the span increases slower like 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = √3 2⁄ √𝜏. 

The aerodynamic performance of wings with circulation distribution Γ(𝜂) = Γ2,0√1 − 𝜂2 + Γ2,2(1 − 𝜂2)3/2 

is presented in Figure 4 as function of 𝜎 = 𝑏/𝑏𝑒. 

      
Figure 4 – Results of optimisation scenario (b): minimisation induced drag 𝐷, for prescribed free-stream condi-

tions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and starboard span-integrated section-bending-moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒: yielding two-

term circulation distribution Γ(𝜂) = Γ2,0√1 − 𝜂2 + Γ2,2(1 − 𝜂2)3 2⁄ . Results are shown for 𝜏 = 1.0(0.05)1.2, from 

black-to-red-to-green-to-blue-to-ochre coloured curves. Left-top: dimensionless induced drag 𝐷 𝐷𝑒⁄  vs. dimen-

sionless span 𝜎 ≡ 𝑏/𝑏𝑒; Left-bottom: Amplitude two contributions circulation distribution Γ2,0(𝜎)/Γ0,𝑒 (solid lines) 

and Γ2,2(𝜎) Γ0,𝑒⁄  (dashed lines); Right-top: dimensionless root-bending-moment 𝑀𝑥/𝑀𝑥,𝑒 vs. 𝜎 and; Right-bottom: 

dimensionless starboard-yawing-moment 𝑀𝑧/𝑀𝑧,𝑒 vs. 𝜎. Dotted lines: invalid solutions for which Γ(𝜂) not positive 

for all |𝜂| < 1. Coloured round solid circles: optimum solution of minimum induced drag. 
 

From Figure 4 it becomes clear that, with increasing 𝜏 = 𝑀𝑥,2/M𝑥,2,𝑒> 1, the semi-span required for 

the minimisation of the induced drag, increases slowly as 𝜎 = 𝑏/𝑏𝑒~√𝜏, from 22.5% for 𝜏 = 1 to 34.2% 

for 𝜏 = 1.2. The optimal induced drag decreases from 𝐷𝑜𝑝𝑡 𝐷𝑒⁄  = 8 9⁄  ≈ 0.8889 for 𝜏 = 1 to 𝐷𝑜𝑝𝑡 𝐷𝑒⁄  

= 8 (9 ∗ 1.2)⁄  ≈ 0.7407 for 𝜏 = 1.2. This indicates that a relatively small increase in starboard-span-
integrated section-bending-moment yields a substantial decrease in minimum induced drag. 
Also clear from Figure 4 is that the optimal condition requires that the amplitude Γ02/Γ0,𝑒 of the elliptic 

part of the distribution drops to zero, while the amplitude Γ22/Γ0,𝑒 of the bell-shaped part rises to its 

ultimate value (4 3⁄ )√2 3𝜏⁄ . This optimal value decreases slowly with 𝜏, because of the with 𝜏 increasing 

optimal span allows a lower amplitude of the circulation distribution in order to achieve the same lift.  
For fixed 𝜏, the starboard-root-bending moment 𝑀𝑥 decreases with increasing values of 𝜎 = 𝑏 𝑏𝑒⁄ , in 

spite of the larger span of the wing. For 𝜏 = 1, the decrease in 𝑀𝑥 of 2.2%, for a wing with the optimal 
bell-shaped circulation distribution, is due to the lower wing loading in the tip portion of the wing. 
For higher values of 𝜏 = 𝑀𝑥,2/𝑀𝑥,2,𝑒, the root-bending moment 𝑀𝑥/𝑀𝑥,𝑒 also increases, but for any value 
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of 𝜏, the root-bending-moment is at its minimum when the induced drag is at its minimum.  

For any value of 𝜏, the starboard-yawing moment 𝑀𝑧 |𝑀𝑧,𝑒|⁄  remains negative, though its magnitude 

decreases quite rapidly with increasing 𝜎 = 𝑏 𝑏𝑒⁄ , attaining its minimum when the induced drag is at 

its minimum. For increasing values of 𝜏, the magnitude of 𝑀𝑧 |𝑀𝑧,𝑒|⁄  decreases to increasingly smaller 

values. The reason is that in the wing-tip region the section drag becomes negative (thrust rather than 
drag), which gives a positive (proverse) contribution to the yawing moment. This is advantageous for 
turning flight, since this leads to a smaller vertical tail surface, or even elimination of the vertical tail. 
 
Figure 5 presents results for three values of 𝜏 = 𝑀𝑥,2/𝑀𝑥,2,𝑒: 𝜏 = 1.0, 1.1 and 1.2, values in the same 

range as the ones used in Figure 4. Furthermore, for the dimensionless wing span 𝜎 = 𝑏 𝑏𝑒⁄ , we 

choose, for each value of 𝜏, the value at which the induced drag is minimal: 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = √3𝜏 2⁄ . 

This implies that the corresponding circulation distributions have Γ20 = 0, corresponding to bell-

shaped distributions Γ𝑜𝑝𝑡(𝜂) = (4 3⁄ )√2/3𝜏(1 − 𝜂2)3 2⁄ . Results are compared with results for the elliptic 

circulation distribution. Figure 5 shows that with increasing 𝜏 = M𝑥,2/M𝑥,2,𝑒 the dimensionless section 

circulation Γ𝑜𝑝𝑡(𝑦 /0.5𝑏𝑒) Γ0,𝑒⁄ , which is proportional to the dimensionless section lift: ℓ (𝑦 0.5𝑏𝑒)⁄ 𝑞
∞
𝑏𝑒⁄ =

2Γ (𝑦 0.5𝑏𝑒)⁄ 𝑞
∞
𝑏𝑒⁄ , see Table 1, decreases near the wing root, which is due to the increase in dimen-

sionless span 𝜎 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄  at constant total lift, i.e., the lift for the elliptic distribution.  

Figure 5 confirms that the bell-shaped circulation distribution generates a quadratic distribution of the 
upwash 𝑤𝑖𝑛 (𝑦 0.5𝑏𝑒)⁄ 𝑈∞⁄  on the lifting line, negative in the wing-root portion of the wing, positive in 
about 30-percent of the outboard part of the semi-span. The elliptic circulation distribution generates 
a constant (negative) upwash. As will be clear later on, this difference in upwash distribution has 
implications for the roll-up of the wake of the wing.  

                   
Figure 5 - Results optimisation scenario (b): minimisation of induced drag 𝐷, for prescribed free-stream condi-

tions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and starboard-integrated section-bending moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒: yielding two-term cir-

culation distribution Γ(𝜂) = Γ2,0√1 − 𝜂2 + Γ2,2(1 − 𝜂2)3 2⁄ . Results are shown for 𝜏 = 1.0(0.1)1.2, from black-to-

green-ochre coloured curves. 𝜂 = (𝑦 0.5𝑏𝑒)/𝜎⁄ ; Minimum drag: 𝜎 = 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = √3𝜏/2, Γ2,0 = 0. Top-left: 

spanwise distributions dimensionless circulation Γ𝑜𝑝𝑡(𝑦/0.5𝑏𝑒) Γ0,𝑒⁄  vs. 𝑦 0.5𝑏𝑒⁄ ; Bottom-left: spanwise distribu-

tions dimensionless upwash velocity [𝑤𝑖𝑛 (𝑦 0.5𝑏𝑒)⁄ 𝑈∞⁄ ]/[Γ0,𝑒 𝑈∞𝑏𝑒⁄ ] vs. 𝑦 0.5𝑏𝑒⁄ ; Top-right: spanwise dimen-

sionless vortex distribution [𝛾𝑥 (𝑦 0.5𝑏𝑒)⁄ 𝑈∞⁄ ]/[Γ0,𝑒 𝑈∞𝑏𝑒⁄ ] vs. 𝑦 0.5𝑏𝑒⁄ ; Bottom-right: spanwise distributions di-

mensionless upwash velocity [𝑤𝑖𝑛 (𝑦 0.5𝑏𝑒)⁄ 𝑈∞⁄ ]/[Γ0,𝑒 𝑈∞𝑏𝑒⁄ ] vs. 𝑦 0.5𝑏𝑒⁄  on lifting line and its extension 𝑦 > 𝑏. 

Vertical dashed lines: location COV. Results for elliptic circulation distribution: black dotted curves. 

 
The vortex distribution along the lifting line decreases in peak value with increasing value of 𝜏. The 

location of the peak, at 𝑦𝑝𝑒𝑎𝑘 0.5𝑏𝑒⁄ = 𝜎𝑜𝑝𝑡 √2⁄ = √3𝜏/2, as well as the location of the center-of-vorticity 

(COV) at 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄ = (3𝜋 16)⁄ 𝜎𝑜𝑝𝑡 = (3𝜋 16)⁄ √3𝜏/2 < 𝑦𝑝𝑒𝑎𝑘 0.5𝑏𝑒⁄ , both move outboard with increasing 

𝜏. For 0.823 = 𝜋2 12⁄ < 𝜏 < 32 27⁄ = 1.185. the COV for the elliptic distribution, at 𝑦𝐶𝑂𝑉,𝑒 0.5𝑏𝑒⁄ = 𝜋/4, 

is situated between 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄  and 𝑦𝑝𝑒𝑎𝑘 0.5𝑏𝑒⁄ . For 𝜏 > 32 27⁄ = 1.185, 𝑦𝐶𝑂𝑉,𝑒 0.5𝑏𝑒⁄ < 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄ , so 

inboard of both 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄  and 𝑦𝑝𝑒𝑎𝑘 0.5𝑏𝑒⁄ . Figure 5, bottom-right presents the upwash distribution 

for 𝑦 > 𝑏, along the extension of the lifting line. It shows that, characteristic for bell-shaped circulation 
distributions, the upwash distribution:  
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    (i) is continuous in function value across the wing tip;  
   (ii) is slope-discontinuous across the wing tip: the slope is finite at the inboard side of the wing tip, 
        but has a square-root singularity at the outboard side; 
  (iii) tends to zero for points far outboard of the wing tip, as should be the case for any circulation  
        distribution. 
 

Figure 6 shows that for the elliptic distribution Γ0,𝑒√1 − 𝜂2 of the circulation, the distribution of the 

section- drag 𝑑(𝑦 0.5𝑏𝑒⁄ ) 𝑞∞𝑏𝑒⁄  of the wing is positive along the whole span of the wing, while for the 
bell-shaped circulation distribution Γ2,2(1 − 𝜂2)3 2⁄  the tip portion of the wing features much lower and 

even negative section-drag (section-thrust). In the root portion of the wing, the bell-shaped circulation 
distribution generates a higher section-drag, however, for the wing as a whole the net effect is a 
decrease in overall induced drag, like 1/𝜏. 

               
Figure 6 - Results optimisation scenario (b): minimisation of induced drag 𝐷, for prescribed free-stream condi-

tions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and starboard-integrated section-bending-moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒: yielding two-term cir-

culation distribution Γ(𝜂) = Γ2,0√1 − 𝜂2 + Γ2,2(1 − 𝜂2)3 2⁄ , with. Results are shown for 𝜏 = 1.0(0.1)1.2, from black-to-

green-to-ochre coloured curves. 𝜂 = (𝑦 0.5𝑏𝑒)/𝜎⁄ ; 𝜎 = 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = √3𝜏/2. Left-top: spanwise distributions di-

mensionless section drag [𝑑𝑜𝑝𝑡(𝑦/0.5𝑏𝑒) 𝑞∞𝑏𝑒⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ )2 vs. 𝑦 0.5𝑏𝑒⁄ ; Left-bottom: spanwise distributions 

dimensionless section yawing moment [𝑚𝑧,𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ )2 vs. 𝑦 0.5𝑏𝑒⁄ . Right-top: spanwise dis-

tributions dimensionless root-bending-moment [𝑚𝑥,𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ ). Right-bottom: spanwise dis-

tributions dimensionless integrated-bending-moment [𝑚𝑥,,2𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ ). Results for elliptic cir-

culation distribution: black dotted curves. 

 
It is also clear that increasing 𝜏 does not change the section-thrust in the tip region very much, while 
in the wing-root portion of the wing the section-drag decreases substantially. This is the reason that 
for the optimal case, the overall drag decreases for increasing 𝜏. 

Since 𝑚𝑧(𝑦) = −𝑑(𝑦)𝑦, the section contribution 𝑚𝑧(𝑦 0.5𝑏𝑒⁄ ) 𝑞∞𝑏𝑒
2⁄  to the starboard-yawing moment 

𝑀𝑧 𝑞∞⁄ 𝑏𝑒
3, it is clear that for the bell-shaped distributions the yawing moment is much smaller than for 

the elliptic circulation distribution. For increasing 𝜏 = 𝑀𝑥,2/𝑀𝑥,2,𝑒, the yawing moment quite drastically 

decreases the magnitude of the negative, adverse, yawing moment, see Figure 4. 
The plot of the distributions of the section contribution to the root-bending-moment 𝑚𝑥(𝑦), indicates 
that the root-bending moment due to the bell-shaped distributions and that due to the elliptic circula-
tion distribution behave about the same. For 𝜏 = 𝑀𝑥,2/𝑀𝑥,2,𝑒 = 1, 𝑀𝑥/𝑀𝑥,𝑒 ≈ 0.98, while for 𝜏 = 1.1 

and 1.2, 𝑀𝑥/𝑀𝑥,𝑒 ≈ 1.03 and 1.07, respectively, slowly increasing like √𝜏. As far as the distributions 

of the contribution to the integrated-bending-moment 𝑚𝑥,2(𝑦), is concerned, it is seen that: 

    (i) for 𝜏 = 1 and for the elliptic distribution, the corresponding integrated-bending-moments are  

        equal: 𝑀𝑥,2,𝑜𝑝𝑡/𝑀𝑥,2,𝑒 = 𝜏 = 1 and 𝑀𝑥,2,𝑒/𝑀𝑥,2,𝑒 = 1. Therefore, since the span of the optimal wing 

        is longer, the distribution is less peaky. 
   (ii) For 𝜏 > 1 𝑀𝑥,2,𝑜𝑝𝑡/𝑀𝑥,2,𝑒 = 𝜏 > 1 increases, so that the distribution of 𝑚𝑥,2(𝑦) shifts towards the  

        wing tip and simultaneously its amplitude increases.  
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Comparison with results of Prandtl [15] 
The results presented in the present section agree with the results presented by Prandtl [15], though 
the present study considers further details on aerodynamic performance. Note that there is a diffe-
rence in choice of the form of the expression for the circulation distribution: in our case Γ(𝜂) =

Γ2,0√1 − 𝜂2 + Γ2,2(1 − 𝜂2)3 2⁄ ; in Prandtl’s case Γ(𝜂) = Γ0,𝑃[1 − 𝜇𝜂2]√1 − 𝜂2. Here 𝜇 is the aerodynamic pa-

rameter that Prandtl varied in the optimisation. The relation between the two formulations is: 
Γ0,𝑃 = Γ2,0 + Γ2,2 and 𝜇 = Γ2,2 (Γ2,0 + Γ2,2)⁄ . 

Substituting Eqs. (11a) results in Γ0,𝑃 = Γ0,𝑒(
2

𝜎
−

𝜏

𝜎3) and 𝜇 = 4(𝜎2 − 𝜏) (2𝜎2 − 𝜏)⁄ . 

The optimal values are found for 𝜎 = 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = √3𝜏/2, i.e., Γ0,𝑃,𝑜𝑝𝑡 = Γ0,𝑒
4

3
√2/3𝜏 and 𝜇𝑜𝑝𝑡 = 1. This 

means that Γ2,0 = 0: the circulation distribution is the bell-shaped distribution Γ(𝜂) = Γ0,𝑃(1 − 𝜂2)3 2⁄ . 

Clearly, 𝜇𝑜𝑝𝑡 = 1 agrees with the value found by Prandtl [15], resulting in 𝐷 𝐷𝑒⁄ = 8 9⁄  and 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ =

√3/2. In other words, a decrease in induced drag of 11.1% and an optimal span 22.5% longer than 

the span of the wing with elliptic distribution of the wing load at the same lift 𝐿 = 𝐿𝑒.  
 
A remarkable difference is found in the circulation distributions, which in Figure 1 of [15] appears to 
have the same value of Γ(𝜂 = 0) for the three distributions shown, while in our Figure 5 upper-left, 
Γ(𝜂 = 0) is larger for 𝜏 = 1 than for the elliptic distribution. Also, there is a typo in the formula heading 
the most-right column in the table above Figure 1 in [15]: the power 2 should be within the brackets. 
 

3.3 Minimization Induced Drag for prescribed Lift and prescribed Root-Bending-Moment 
For scenario (c), the optimisation is for constant lift L, and for constant starboard-side root-bending 
moment 𝑀𝑥. Now the variation 𝛿𝐿 of the lift L in combination with zero variation 𝛿𝑀𝑥 of 𝑀𝑥,due to the 

variation in Γ(𝑦) should be zero, i.e., see Appendix B: 

𝛿𝐷 = −2𝜌∞ ∫ 𝑤𝑖𝑛(𝑦)δΓ(𝑦)𝑑𝑦
𝑏 2⁄

−𝑏 2⁄
= 0, subject to         (5) 

𝛿𝐿 = 𝜌∞𝑈∞ ∫ δΓ(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
= 0 and                  (13a) 

𝛿𝑀𝑥 = 𝜌∞𝑈∞ ∫ 𝑦δΓ(𝑦)𝑑𝑦
𝑏/2

0
= 0.                  (13b) 

In order to force 𝛿𝐷 in Eq. (5) to be equal to zero, it is to be prescribed that for the present case 

𝑤𝑖𝑛(𝑦) = 𝑈∞[𝐴 + 𝐵
𝑏

2
|𝜂|], for |𝑦| < 𝑏 2⁄  ,                (14a) 

Substitution in the inverted Biot-Savart law, Eq. (2a), gives, using the integrals listed in Appendix C: 

𝛾𝑥(𝜂) = −4𝑈∞𝐴
𝜂

√1−𝜂2
−

4𝑈∞

𝜋
𝐵𝑏{

𝜂

√1−𝜂2
− 𝜂ln

1+√1−𝜂2

|𝜂|
},                 (14b) 

It then follows from Eq. (2b), that the corresponding distribution of the circulation equals: 

Γ(𝑦) = −4𝑈∞
𝑏

2
𝐴√1 − 𝜂2 −

4

𝜋
𝑈∞(

𝑏

2
)2𝐵(√1 − 𝜂2 + 𝜂2ln

1+√1−𝜂2

|𝜂|
),  

which upon defining Γ0 = −4𝑈∞
𝑏

2
𝐴 and Γ1 = −

4

𝜋
𝑈∞(

𝑏

2
)2𝐵, is re-expressed as 

Γ(𝜂) = Γ0√1 − 𝜂2 + Γ1(√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
), for |𝜂| < 1,              (14c) 

while 
𝑤𝑖𝑛(𝜂)

𝑈∞
= −

1

2𝑈∞𝑏
[Γ0 + Γ1𝜋|𝜂|], for |𝜂| < 1.                 (14d) 

In this notation 𝛾𝑥(𝜂) =
2

𝑏
[Γ0

𝜂

√1−𝜂2
+ 2Γ1(

𝜂

√1−𝜂2
− 𝜂ln

1+√1−𝜂2

|𝜂|
)]                (14e) 

 
Note: in the present study Eq. (14e) has been derived independently. However, in 1950, R.T. Jones 
([17], Eq. (13)) derived an expression similar to Eq. (14c) for the circulation distribution that solves 
the present minimisation problem. Rather than using the natural-logarithmic term, Jones used the 

inverse-hyperbolic-cosine cosh−1(1 |𝜂|⁄ ) in his formulation. However, since ln
1+√1−𝜂2

|𝜂|
= cosh−1(1 |𝜂|⁄ ), 

Jones’ formulation and the present one are fully equivalent. Also, Klein and Viswanathan [19] pre-

sented the expression for the bell-shaped solution for scenario (c) with ln
1+√1−𝜂2

|𝜂|
 expressed as 

−
1

2
ln

1−√1−𝜂2

1+√1−𝜂2
. 

From the expression for the distribution of the circulation, Eq. (14c), the lift, induced drag, root-bending 
moment, etc., have been determined, see Table 5. 
 
The minimisation of the induced drag 𝐷, at prescribed lift 𝐿 and prescribed root-bending moment 𝑀𝑥, 

requires to consider 𝑏 as some function of 𝐿 and 𝑀𝑥:  
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Minimize          𝐷 = 𝑞∞𝑏2 𝜋

4
[(

Γ0

𝑈∞𝑏
)2 +

8

3

Γ0

𝑈∞𝑏

Γ1

𝑈∞𝑏
+ 2(

Γ1

𝑈∞𝑏
)2],  

for prescribed 𝐿 = 𝑞∞𝑏2 𝜋

2
[

Γ0

𝑈∞𝑏
+

4

3

Γ1

𝑈∞𝑏
] and        (15) 

     prescribed 𝑀𝑥 = 𝑞∞𝑏3 1

6
[

Γ0

𝑈∞𝑏
+

3

2

Γ1

𝑈∞𝑏
]. 

Similar to scenario (b), rather than working directly with 𝐿 and 𝑀𝑥, one could consider the radius 𝑟1, 

associated with the center-of-gravity of the circulation distribution Γ(𝑦): 

 𝑟1 ∫ Γ(𝑦)𝑑𝑦
𝑏

2
0

≡ ∫ Γ(𝑦)𝑦𝑑𝑦
𝑏

2
0

. 

However, in the present study the span b is used as the optimisation parameter in the formulation, 
which is less cumbersome algebraically. 
 

Table 5 – Aerodynamic performance for scenario (c): minimisation of induced drag 𝐷, for prescribed free-stream 

conditions (𝑈∞, 𝑞∞), lift 𝐿 and root-bending moment 𝑀𝑥, yielding circulation distribution Γ(𝜂) = Γ0√1 − 𝜂2 +

Γ1{√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
}. 

 
Remark: Evaluating the upwash for |𝜂| > 1 is not trivial. The integral is not found in Integral Tables. 

However, expanding 1/(𝜂 − 𝜂′) in the integrand in Eq. (2d) for large values of 𝜂, the evaluation of the 
sub-integrals is obtained, in closed form, as an infinite series that appears to converge. The resulting 
series is then recognised as the expansion of 𝜂arcsin(1 𝜂⁄ ).  
 
Following Klein and Viswanathan ([19], [24]), the prescribed lift 𝐿 is expressed in terms of the lift 

𝐿𝑒 generated by the elliptic distribution of the circulation, at the same free-stream conditions, of a wing 
with given span 𝑏𝑒. With Γ0,𝑒 the amplitude of the circulation of this imaginary wing, the circulation 

distribution equals Γ(𝜂) = Γ0,𝑒√1 − 𝜂2. Using the expression in Table 2 for the lift of such a distribution,  

 
𝐿𝑒

𝒒∞𝑏𝑒
2 =

𝜋

2

Γ0,𝑒

𝑈∞𝑏𝑒
,  

subsequently defines Γ0,𝑒. The prescribed root-bending moment 𝑀𝑥 is expressed as a factor 𝜆 times 

the root-bending moment 𝑀𝑥,𝑒 of the elliptic distribution: 𝑀𝑥 = 𝜆𝑀𝑥,𝑒, see Table 2: 

 
𝑀𝑥,𝑒

𝒒∞𝑏𝑒
3 =

1

6

Γ0,𝑒

𝑈∞𝑏𝑒
. 

Then a system of linear equations is constructed for the two parameters (Γ0 and Γ1) in the expression, 

Eq. (14c), for the circulation distribution. This gives, with Γ̂𝑘 = Γ𝑘/Γ0,𝑒 and 𝜎 = 𝑏/𝑏𝑒: 

Γ̂0 + 4/3Γ̂1 = 1 /𝜎 and 

Γ̂0 + 3/2Γ̂1 = 𝜆 /𝜎2  

The solution of this system of linear equations for Γ̂0 and Γ̂1 is: 
 Γ̂0 = 9 𝜎⁄ − 8𝜆 𝜎2⁄  and Γ̂1 = −6 𝜎⁄ + 6𝜆 𝜎2⁄                   (16a) 

Substitution of Eq. (16a) in the expression for the induced drag 
𝐷

𝑞∞𝑏2 in Table 5, divided by the induced 

drag 
𝐷𝑒

𝑞∞𝑏𝑒
2 =

𝜋

4
(

Γ0,𝑒

𝑈∞𝑏𝑒
)
2
 of the wing with elliptic circulation distribution, yields, upon some algebra: 

𝐷

𝐷𝑒
= Γ̂0

2 +
8

3
 Γ̂0 Γ̂1 + 2Γ̂1

2.                     (16b) 

Substitution of Eq. (16a) gives: 

𝚪(𝜼) = 𝚪𝟎√𝟏 − 𝜼𝟐 + 𝚪𝟏(√𝟏 − 𝜼𝟐 + 𝜼𝟐𝐥𝐧
𝟏+√𝟏−𝜼𝟐

|𝜼|
)  Function of 

𝚪𝟎

𝑼∞𝒃
, 

𝚪𝟏

𝑼∞𝒃
 and 𝒃  

𝒘𝒊𝒏(|𝜼|<𝟏)

𝑼∞
  

−1

2
[

Γ0

𝑈∞𝑏
+

Γ1

𝑈∞𝑏
𝜋|𝜂|]  

𝒘𝒊𝒏(|𝜼|>𝟏)

𝑼∞
  

−1

2
[

Γ0

𝑈∞𝑏
(1 −

|𝜂|

√𝜂2−1
) +

2Γ1

𝑈∞𝑏
(

−|𝜂|

√𝜂2−1
+ 𝜂arcsin (

1

𝜂
))]  

𝑳

𝒒∞𝒃𝟐  
𝜋

2
[

Γ0

𝑈∞𝑏
+

4

3

Γ1

𝑈∞𝑏
]  

𝑫

𝒒∞𝒃𝟐  
𝜋

4
[(

Γ0

𝑈∞𝑏
)
2

+
8

3

Γ0

𝑈∞𝑏

Γ1

𝑈∞𝑏
+ 2(

Γ1

𝑈∞𝑏
)
2

]  

𝑴𝒙

𝒒∞𝒃𝟑  
1

6
[

Γ0

𝑈∞𝑏
+

3

2

Γ1

𝑈∞𝑏
]  

𝑴𝒙,𝟐

𝒒∞𝒃𝟒  
𝜋

128
[

Γ0

𝑈∞𝑏
+

8

5

Γ1

𝑈∞𝑏
]  

𝑴𝒛

𝒒∞𝒃𝟑  
−1

12
[(

Γ0

𝑈∞𝑏
)
2

+
3

2
(1 +

𝜋2

8
)

Γ0

𝑈∞𝑏

Γ1

𝑈∞𝑏
+

3

10
𝜋2 (

Γ1

𝑈∞𝑏
)
2

]  

𝜼𝑪𝑶𝑽 = 𝒚𝑪𝑶𝑽 𝟎. 𝟓𝒃⁄   𝜋

4

(
Γ0

𝑈∞𝑏
+

4

3

Γ1
𝑈∞𝑏

)

(
Γ0

𝑈∞𝑏
+

Γ1
𝑈∞𝑏

)
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𝐷

𝐷𝑒
=

1

𝜎4 [9𝜎2 − 16𝜆𝜎 + 8𝜆2].         (16c) 

The induced drag is a function of the variable 𝜎 = 𝑏/𝑏𝑒, i.e., the relative span and of the parameter 𝜆. 

The value of the relative span 𝜎 for which the first derivative, with respect to 𝜎, of the induced drag 
𝐷 𝐷𝑒⁄  equals zero, is the value 𝜎 = 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡/𝑏𝑒 for which the induced drag is at a local minimum. 

The first derivative of Eq. (16c) equals:  
𝑑

𝑑𝜎

𝐷

𝐷𝑒
= −

2

𝜎5 (3𝜎 − 4𝜆)2.                     (16d) 

The optimum is obtained for 
𝑑

𝑑𝜎

𝐷

𝐷𝑒
= 0, which yields: 𝜎𝑜𝑝𝑡 =

4

3
𝜆, for which 

𝐷𝑜𝑝𝑡

𝐷𝑒
=

27

32

1

𝜆2.              (16e) 

Eq. (16d) reveals that at the optimum span 𝜎𝑜𝑝𝑡, the first derivative and also the second derivative of 

the induced drag equals zero. Therefore, the minimum of 𝐷(𝜎; 𝜆) is at an inflection point of 𝐷(𝜎; 𝜆). 
Now the aerodynamics performance of the wing can be expressed in terms of the prescribed variables 
𝐿, 𝑀𝑥 and of the unknown wing span b, or equivalently 𝜎 and 𝜆, see Table 6 below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 6 – Aerodynamic performance for scenario (c) minimisation of induced drag 𝐷, for prescribed free-stream 

conditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and root-bending moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒, yielding circulation distribution Γ(𝜂) =

Γ0√1 − 𝜂2 + Γ1{√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
}.  

 

From Figure 7 it becomes clear that, with increasing 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒, the semi-span required for the 

minimisation of the induced drag, increases linearly as 𝜎 = 𝑏/𝑏𝑒~𝜆, from 27.6% for 𝜆 = 0.95 to 46.7% 
for 𝜆 = 1.1. The optimal induced drag decreases quadratically with 𝜆 from 𝐷𝑜𝑝𝑡 𝐷𝑒⁄  = 0.934 for 𝜆 = 

0.95 to 𝐷𝑜𝑝𝑡 𝐷𝑒⁄  = 0.697 for 𝜆 = 1.1. The latter is a decrease in induced drag by almost 30%, for a 

span increase of 46.7%. This indicates that a small increase in root-bending moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒 

yields a substantial decrease in minimum induced drag. 
Also clear from Figure 7 is that the optimal condition requires that the amplitude Γ0/Γ0,𝑒 of the elliptic 

part of the distribution and the amplitude Γ1/Γ0,𝑒 of the natural-logarithmic part of the circulation dis-

tribution should be related as Γ1 = −Γ0/2. Therefore, the optimal circulation distribution follows from 
Eq. (14c) as: 

Γ𝑜𝑝𝑡(𝜂) = 1

2
Γ0[√1 − 𝜂2 − 𝜂2ln

1+√1−𝜂2

|𝜂|
].                 (17a) 

The corresponding optimal vortex distribution then reads, see Eq. (14e): 

𝛾𝑥,𝑜𝑝𝑡(𝜂) =
2

𝑏
Γ0𝜂ln

1+√1−𝜂2

|𝜂|
,                   (17b) 

which shows that the vortex distribution is zero at the wing tip, i.e., the circulation distribution features 
not only zero function value, but also zero derivative at the wing tip, i.e., Eq. (17a) is our second bell-
shaped distribution. 
 
The associated distribution of the upwash follows from Eq. (14d) as: 

𝑤𝑖𝑛,𝑜𝑝𝑡(𝜂)

𝑈∞
= −

1

2

Γ0

𝑈∞𝑏
[1 − 0.5𝜋|𝜂|], for |𝜂| < 1,        (17c) 

 
𝚪(𝜼) = 𝚪𝟎√𝟏 − 𝜼𝟐 + 𝚪𝟏[√𝟏 − 𝜼𝟐 + 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
]  Optimum:𝝈𝒐𝒑𝒕 =

𝟒

𝟑
𝝀 

𝒘𝒊𝒏(|𝜼|<𝟏)

𝑼∞
  −

1

2
[

Γ0

𝑈∞𝑏
+

Γ1

𝑈∞𝑏
𝜋|𝜂|]   

𝒘𝒊𝒏(|𝜼|>𝟏)

𝑼∞
  −

1

2
[

Γ0

𝑈∞𝑏
(1 −

|𝜂|

√𝜂2−1
) +

2Γ1

𝑈∞𝑏
(

−|𝜂|

√𝜂2−1
+ 𝜂arcsin(1 |𝜂|⁄ ))]  

𝚪𝟎

𝚪𝟎,𝒆
  

1

𝜎2 [9𝜎 − 8𝜆]  
9

4𝜆
  

𝚪𝟏

𝚪𝟎,𝒆
  

1

𝜎2 [−6𝜎 + 6𝜆]  −
9

8𝜆
  

𝑳𝒆

𝒒∞𝒃𝒆
𝟐  

𝜋

2

Γ0,𝑒

𝑈∞𝑏𝑒
  

𝑫

𝑫𝒆
  

1

𝜎4 [9𝜎2 − 16𝜆𝜎 + 8𝜆2]  
27

32

1

𝜆2  

𝑴𝒙

𝑴𝒙,𝒆
  𝜆  𝜆  

𝑴𝒙,𝟐

𝑴𝒙,𝟐,𝒆
  𝜎

1

5
[−3𝜎 + 8𝜆]  

16

15
𝜆2  

𝑴𝒛

|𝑴𝒛,𝒆|
  

−1

𝜎3 [𝜆(9𝜎 − 8𝜆) +
27

40
𝜋2(𝜎 − 𝜆)(𝜎 −

8

3
𝜆)]  −

27

16
(1 −

3

40
𝜋2)

1

𝜆
  

𝒚𝑪𝑶𝑽

𝟎.𝟓𝒃𝒆
  𝜋

4
[

𝜎2

3𝜎−2𝜆
]  

2𝜋

9
𝜆  
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which is indeed a linear distribution of the upwash along the lifting line. For points at the outward 
extension of the lifting line, the distribution of the upwash follows, with Γ1 = −0.5Γ0 from Table 6 as: 

𝑤𝑖𝑛,𝑜𝑝𝑡(𝜂)

𝑈∞
= −

1

2

Γ0

𝑈∞𝑏
[1 − 𝜂arcsin(1 |𝜂|⁄ )], for |𝜂| > 1.                 (17d) 

Evaluation of Eqs. (17c) and (17d) at the wing tip |𝜂| = 1, shows that in the optimal case, the distrib-
ution of the upwash is continuous at the wing tip. 
 

     
Figure 7 – Results of optimisation scenario (c): minimisation induced drag 𝐷, for prescribed free-stream condi-

tions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and root-bending-moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒: yielding two-term circulation distribution Γ(𝜂) =

Γ0√1 − 𝜂2 + Γ1{√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
}. Results are shown for 𝜆 = 0.95(0.05)1.1, from green-to-black-to-red-to-

blue coloured curves. Left-top: dimensionless induced drag 𝐷 𝐷𝑒⁄  vs. dimensionless span 𝜎 ≡ 𝑏/𝑏𝑒; Left-bottom: 
amplitude two contributions circulation distribution Γ0(𝜎)/Γ0,𝑒 (solid lines) and Γ1(𝜎) Γ0,𝑒⁄  (dashed lines); Right-top: 

dimensionless starboard-integrated bending moment 𝑀𝑥,2/𝑀𝑥,2,𝑒 vs. 𝜎 and; Right-bottom: dimensionless star-

board-yawing-moment 𝑀𝑧/𝑀𝑧,𝑒 vs. 𝜎. Dotted lines: invalid solutions for which Γ(𝜂) not positive for all |𝜂| < 1. 

Coloured round solid circles: optimum solution of minimum induced drag. 
 

The optimal value of amplitude Γ0/Γ0,𝑒 of the bell-shaped distribution Eq. (17b) decreases slowly with 

increasing 𝜆 like 9 4𝜆⁄ . This optimal value decreases slowly with 𝜆, because the optimal span 𝜎𝑜𝑝𝑡 =

𝑏𝑜𝑝𝑡/𝑏𝑒 increases linearly with 𝜆, in order to force the lift to remain equal to: 𝐿 = 𝐿𝑒.  

The optimal starboard-integrated bending-moment 𝑀𝑥,2,𝑜𝑝𝑡/𝑀𝑥,2,𝑒 increases quadratically with increas-

ing 𝜆. For 𝜆 = 𝑀𝑥,𝑜𝑝𝑡 𝑀𝑥,𝑒⁄ = 1, 𝑀𝑥,2,𝑜𝑝𝑡 𝑀𝑥,2,𝑒⁄  increases a mere 6.7%, for a wing with the optimal bell-

shaped circulation distribution, which has an optimal span that is 33.3% longer than the wing with an 
elliptic circulation distribution. The induced drag for the optimal design equals 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ = 0.84, 16% 

lower than the corresponding value of the elliptically-loaded wing. 

For any value of 𝜆, the starboard-yawing moment 𝑀𝑧,𝑜𝑝𝑡 |𝑀𝑧,𝑒|⁄  remains negative, at −
27

16𝜆
(1 −

3

40
𝜋2) ≈

−0.4384 at 𝜆 = 1 and -0.3985 at 𝜆 = 1.1 a reduction by 56% and 60%, respectively, in magnitude com-
pared to the wing with elliptic circulation distribution. The reason for this is that in the wing-tip region 
the section drag becomes negative (thrust rather than drag), which gives a positive (proverse) con-
tribution to the yawing moment. This is advantageous for turning flight, since this leads to a smaller 
vertical tail surface, or even elimination of the vertical tail. Note that the optimisation scenario (b), 
minimizing induced drag for prescribed lift and starboard-span-integrated section-bending-moment, 

that resulted in the bell-shaped circulation distribution (1 − 𝜂2)3 2⁄ , featured a starboard-yawing mo-

ment, for 𝜏 = 1, equal to 𝑀𝑧,𝑜𝑝𝑡 |𝑀𝑧,𝑒|⁄ ≈ −0.5599, i.e.,10% less favourably in terms of amplitude. 

 
Figure 8 presents results for three values of 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒: 𝜆 = 1.0, 1.05 and 1.1, values in the same range 

as the ones used in Figure 7. Furthermore, for the dimensionless wing span 𝜎 = 𝑏 𝑏𝑒⁄ , we choose, 

for each value of 𝜆, the value for which the induced drag is minimal: 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = (4 3)𝜆⁄ . This 

implies that the corresponding circulation distributions satisfy Γ1 = −0.5Γ0, corresponding to bell-



FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP 

 

 

18  

shaped distributions Γ𝑜𝑝𝑡(𝜂) = 1

2
Γ0[√1 − 𝜂2 − 𝜂2ln

1+√1−𝜂2

|𝜂|
], with 

 Γ0

 Γ0,𝑒
=

9

4𝜆
. Results are compared with re-

sults for the elliptic circulation distribution Γ(𝜂) = Γ0,𝑒√1 − 𝜂2. Figure 8 shows that with increasing 𝜆 =

𝑀𝑥/𝑀𝑥,𝑒 the dimensionless section circulation Γ𝑜𝑝𝑡(𝑦 /0.5𝑏𝑒) Γ0,𝑒⁄ , which is proportional to the dimen-

sionless section lift: ℓ (𝑦 0.5𝑏𝑒)⁄ 𝑞
∞
𝑏𝑒⁄ = 2Γ (𝑦 0.5𝑏𝑒)⁄ 𝑞

∞
𝑏𝑒⁄ , see Table 1, decreases near the wing root, 

which is due to the increase in dimensionless span 𝜎 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄  at constant total lift 𝐿𝑒 distribution.  

          
Figure 8 - Results optimisation scenario (c): minimisation of induced drag 𝐷, for prescribed free-stream condi-

tions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and root-bending-moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒: yielding two-term circulation distribution Γ(𝜂) =

Γ0√1 − 𝜂2 + Γ1{√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
}. Results are shown for 𝜆 = 1.0(0.05)1.1, from black-to-red-to-blue coloured 

curves. 𝜂 = (𝑦 0.5𝑏𝑒)/𝜎⁄ ; Minimum drag: 𝜎 = 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = (4/3)𝜆, Γ1 = −0.5Γ0. Top-left: spanwise distribu-

tions dimensionless circulation Γ𝑜𝑝𝑡(𝑦/0.5𝑏𝑒) Γ0,𝑒⁄  vs. 𝑦 0.5𝑏𝑒⁄ ; Bottom-left: spanwise distributions dimensionless 

upwash velocity [𝑤𝑖𝑛 (𝑦 0.5𝑏𝑒)⁄ 𝑈∞⁄ ]/[Γ0,𝑒 𝑈∞𝑏𝑒⁄ ] vs. 𝑦 0.5𝑏𝑒⁄ ; Top-right: spanwise dimensionless vortex distrib-

ution [𝛾𝑥 (𝑦 0.5𝑏𝑒)⁄ 𝑈∞⁄ ]/[Γ0,𝑒 𝑈∞𝑏𝑒⁄ ] vs. 𝑦 0.5𝑏𝑒⁄ ; Bottom-right: spanwise distributions dimensionless upwash 

velocity [𝑤𝑖𝑛 (𝑦 0.5𝑏𝑒)⁄ 𝑈∞⁄ ]/[Γ0,𝑒 𝑈∞𝑏𝑒⁄ ] vs. 𝑦 0.5𝑏𝑒⁄  on lifting line and its extension  𝑦 > 𝑏/2. Vertical dashed 

lines: location COV. Results for elliptic circulation distribution: black dotted curves. 

 
Figure 8 illustrates that the present bell-shaped distribution of the circulation gives a linear distribution 
of the upwash 𝑤𝑖𝑛 (𝑦 0.5𝑏𝑒)⁄ 𝑈∞⁄  along the lifting line, negative in the wing-root portion of the wing, 
positive in about 40-percent of the outboard part of the semi-span. The elliptic circulation distribution 
generates a constant (negative) upwash. As will be clear later on, this difference in upwash distribu-
tion has implications for the roll-up of the wake of the wing.  
The vortex distribution along the lifting line decreases in peak value with increasing value of 𝜆. The 
location of the peak, at 𝑦𝑝𝑒𝑎𝑘 0.5𝑏𝑒⁄ = 0.55243(4 3)𝜆⁄ , as well as the location of the center-of-vorticity 

(COV) at 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄ = (2𝜋 9)⁄ 𝜆 < 𝑦𝑝𝑒𝑎𝑘 0.5𝑏𝑒⁄ , move outboard with increasing 𝜆. For 1.0663 =
3𝜋 (16 × 0.552434)⁄ < 𝜆 < 9 8⁄ = 1.125. the COV for the elliptic distribution, at 𝑦𝐶𝑂𝑉,𝑒 0.5𝑏𝑒⁄ = 𝜋/4, is 

situated between 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄  and 𝑦𝑝𝑒𝑎𝑘 0.5𝑏𝑒⁄ . For 𝜆 > 9 8⁄ = 1.125, 𝑦𝐶𝑂𝑉,𝑒 0.5𝑏𝑒⁄ < 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄ , so inboard 

of both 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄  and 𝑦𝑝𝑒𝑎𝑘 0.5𝑏𝑒⁄ . 

Figure 8 also presents the upwash distribution for 𝑦 > 𝑏/2, the outward extension of the lifting line. It 
shows that, characteristic for bell-shaped circulation distributions, the upwash distribution:  
(i) is continuous in function value across the wing tip;  
(ii) is slope-discontinuous across the wing tip: the slope is finite at the inboard side of the wing tip, but 
has a square-root singularity at the outboard side of the wing tip; 
(iii) tends to zero for points far outboard of the wing tip, as should be the case for any circulation 
distribution. 
 

Figure 9 shows that for the elliptic distribution Γ0,𝑒√1 − 𝜂2 of the circulation, the distribution of the 

section-drag 𝑑(𝑦 0.5𝑏𝑒⁄ ) 𝑞∞𝑏𝑒⁄  of the wing is positive along the whole span of the wing, while for the 

bell-shaped circulation distribution Γ𝑜𝑝𝑡(𝜂) = 1

2
Γ0[√1 − 𝜂2 − 𝜂2ln (1 + √1 − 𝜂2 |𝜂|⁄ )], with  Γ0  Γ0,𝑒⁄ = 9 (4𝜆⁄ ), 

the tip portion of the wing features much lower and even negative section-drag (section-thrust). In the 
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root portion of the wing, the bell-shaped circulation distribution generates a considerably higher 
section-drag, however, for the wing as a whole the net effect is a decrease in overall induced drag, 

like 1/𝜆2. It is also clear that increasing 𝜆 does not change the section-thrust in the tip region very 
much, while in the wing-root portion of the wing the section-drag decreases quite a bit. This is the 
reason that the overall induced drag decreases quadratically with increasing 𝜆. 
 

              
Figure 9 - Results optimisation scenario (c): minimisation of induced drag 𝐷, for prescribed free-stream condi-
tions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and root-bending-moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒: yielding two-term circulation distribution Γ(𝜂) =

Γ0√1 − 𝜂2 + Γ1{√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
}. Results are shown for 𝜆 = 1.0(0.05)1.1, from black-to-red-to-blue coloured 

curves. 𝜂 = (𝑦 0.5𝑏𝑒)/𝜎⁄ ; 𝜎 = 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = (4/3)𝜆, Γ1 = −0.5Γ0. Left-top: spanwise distributions dimensionless 

section drag [𝑑𝑜𝑝𝑡(𝑦/0.5𝑏𝑒) 𝑞∞𝑏𝑒⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ )2 vs. 𝑦 0.5𝑏𝑒⁄ ; Left-bottom: spanwise distributions dimensionless 

section yawing moment [𝑚𝑧,𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ )2 vs. 𝑦 0.5𝑏𝑒⁄ . Right-top: spanwise distributions dimen-

sionless root-bending-moment [𝑚𝑥,𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ ). Right-bottom: spanwise distributions dimen-

sionless integrated-bending-moment [𝑚𝑥,2𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ ). Results for elliptic circulation distribu-

tion: black dotted curves. 
 

As far as the section contribution 𝑚𝑧(𝑦 0.5𝑏𝑒⁄ ) 𝑞∞𝑏𝑒
2⁄  to the starboard-yawing moment 𝑀𝑧 𝑞∞⁄ 𝑏𝑒

3 is 
concerned, it is clear that for the bell-shaped distributions the yawing moment is much smaller in 
magnitude than that of the elliptic distribution of the circulation. For increasing 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒, the yaw-

ing moment quite drastically decreases in magnitude, like 1 𝜆⁄  because the contribution of the root 
portion of the wing, with negative, adverse, yawing moment, decreases. 
The plot of the distributions of the section contribution 𝑚𝑥(𝑦 0.5𝑏𝑒⁄ ) to the root-bending-moment 𝑀𝑥 
indicates that the root-bending moment due to the bell-shaped distributions and that due to the elliptic 
circulation distribution differ in amplitude and in shaped. For 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒 = 1, the elliptic circulation 

distribution has the same 𝑀𝑥/𝑀𝑥,𝑒 = 1, while the distribution 𝑚𝑥(𝑦 0.5𝑏𝑒)⁄  is quite different. 

For 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒 > 1 the distribution 𝑚𝑥(𝑦 0.5𝑏𝑒⁄ ) keeps about the same amplitude, which moves 

slowly in the direction of the wing tip, which itself moves outward, while the prescribed 𝑀𝑥/𝑀𝑥,𝑒 in-

creases linearly with 𝜆. With increasing 𝜆 the distribution 𝑚𝑥,2(𝑦 0.5𝑏𝑒⁄ ) of the section-contribution to 

the starboard-side integrated-bending-moment 𝑀𝑥,2,𝑜𝑝𝑡 increases in amplitude, while simultaneously 

the distribution stretches in outboard direction because of the increasing span. This causes 𝑀𝑥,2 to 

increase quadratically with increasing 𝜆: for 𝜆 = 1, 𝑀𝑥,2,𝑜𝑝𝑡/𝑀𝑥,2,𝑒 ≈ 1.0667, for 𝜆 = 1.1, 𝑀𝑥,2,𝑜𝑝𝑡/

𝑀𝑥,2,𝑒 ≈ 1.2907 an increase by 21%.  

Therefore, increasing 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒, in optimisation scenario (c), results in a quadratic increase with 𝜆 

in the integrated section-bending-moment 𝑀𝑥,2/𝑀𝑥,2,𝑒, while increasing the prescribed 𝜏 = 𝑀𝑥,2/𝑀𝑥,2,𝑒 in 

optimisation scenario (b) results in a modest square-root increase with 𝜏 in the root-bending moment 
𝑀𝑥/𝑀𝑥,𝑒. Note: Jones [17] Figure 5, presents a plot similar to Figure 6 (upper-left) above, though 

using a different notation for the parameter 𝜆 used in the present study. Furthermore, the specific 
condition at the wing tip, of a bell-shaped circulation distribution is not discussed. 
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Comparison with results of Drela [23] 
In [23], the minimum-induced-drag problem is described in a form similar to that of scenario (c), 
though for more general configurations. The solution of the optimisation problem is obtained by nu-
merically through a panel method which approximates the integral that provides the upwash 𝑤𝑖𝑛(𝑦) 
as function of the vortex distribution 𝛾𝑥(𝑦), i.e., the Biot-Savart law Eq. (1d). In effect the relation 
between upwash and vortex distribution is inverted numerically, rather than analytically as in Eq. (2a). 

               
Figure 10 – Minimisation of induced drag 𝐷, for prescribed free-stream conditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and root-

bending moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒, here 𝜆 = 1, yielding circulation distribution Γ(𝜂) = Γ0√1 − 𝜂2 + Γ1{√1 − 𝜂2 +

𝜂2ln
1+√1−𝜂2

|𝜂|
}. Comparison present results with results obtained in [23]. Left-top: circulation distributions for 3 

values of dimensionless span: 𝜎 = 𝑏 𝑏𝑒⁄ = 1.0, 𝜎 = 1.1 and 𝜎 = 𝜎𝑜𝑝𝑡 = 4 3⁄ . Left-bottom: distributions induced 

upwash for same dimensionless spans, for 0 ≤ 𝑦 0.5𝑏𝑒⁄ ≤ 𝑏 𝑏𝑒⁄  and for 𝑦 0.5𝑏𝑒⁄ ≥ 𝑏 𝑏𝑒⁄ . Right-bottom: Com-

parison induced drag 𝐷 𝐷𝑒⁄  derived in present study with data (open circles) from [23]. 

 
In [23], the scaled induced drag 𝐷/𝐷𝑒 is given for three discrete values of the scaled span 𝜎 = 𝑏/𝑏𝑒, 

see table in above Figure 10, with 𝑏𝑒 the span of the wing carrying lift 𝐿 = 𝐿𝑒, generated by the elliptic 
distribution of the circulation Γ(𝑦) = Γ0,𝑒(1 − 𝜂2)1 2⁄ , with 𝜂 = 𝑦 0.5𝑏⁄ . In the optimisation problem the lift 

is fixed at 𝐿𝑒 and the root-bending-moment at 𝑀𝑥 = 𝑀𝑥,𝑒, i.e., in terms of the present formulation 𝜆 = 1.  

The expressions in Table 6 are used to calculate, for 𝜆 = 1, the value of the induced drag for the three 
discrete dimensionless wing spans 𝜎 = 𝑏 𝑏𝑒⁄  used in [23], see table in Figure 10 above. Note, that 
the value 𝜎 = 𝑏 𝑏𝑒⁄ = 1.3 is close to the optimal value of the span, which is equal to 𝑏 𝑏𝑒⁄ = 4 3⁄ =
1.3333…. 
Comparison of the circulation distributions obtained in the present study, presented in Figure 10, with 
the ones presented in [23] Figure 5.16, page 120, shows a very good correlation. The three distribu-
tions shown are the elliptic distribution 𝜎 = 1, the distribution 𝜎 = 1.3 that is quite close to the bell-
shaped distribution for 𝜎 = 𝑏 𝑏𝑒⁄ = 𝜎𝑜𝑝𝑡 = 4 3⁄  and a distribution at an intermediate 𝜎 = 1.1. At the wing 

tip, each of the three distributions has zero function value Γ(𝜎) = 0 and a square-root singularity 
𝑑Γ 𝑑𝑦⁄ → ∞ for 𝑦 0.5𝑏𝑒⁄ ↑ 𝜎. Only in case 𝜎 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = 𝜎𝑜𝑝𝑡 the derivative and therewith the vortex 

distribution, equals zero at the wing tip. 
Comparison of the distributions of the upwash, linear for 0 < 𝑦 0.5𝑏⁄ < 1, obtained in the present 
study, presented in Figure 10, with the ones presented in [23], Figure 5.16, page 120, shows a very 
good correlation. In [23] the upwash distribution outboard of the wing tip has not been provided. 
Except the distribution for 𝜎 = 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = 𝜎𝑜𝑝𝑡, the upwash is discontinuous at the wing tip: finite for 

𝑦 0.5𝑏𝑒⁄ ↑ 𝜎 and a square-root singularity for 𝑦 0.5𝑏𝑒⁄ ↓ 𝜎. So, also for 𝜎 = 1.3 the upwash distribution 
features this singularity.  
Figure 10 presents the closed-form expression for induced drag 𝐷 𝐷𝑒⁄  as function of 𝜎 = 𝑏 𝑏𝑒⁄ , derived 
in the present study, in comparison with the numerical data given in [23], Figure 5.17, p. 120. The 
discrete data are in close agreement with the analytic results. Included in the plot for 𝐷(𝜎) 𝐷𝑒⁄  is the 

envelope of the optimal (minimum) values of 𝐷𝑜𝑝𝑡(𝜎) 𝐷𝑒⁄ , proportional to 1 𝜎𝑜𝑝𝑡
2⁄ , with 𝜎𝑜𝑝𝑡 = (4 3)𝜆⁄ , 

with here 𝜆 = 1. 



FLYING WING CIRCULATION DISTRIBUTIONS, AERODYNAMIC PERFORMANCE AND WAKE ROLL-UP 

 

 

21  

Also included in Figure 10 above, as well as in [23], in the plot 𝐷(𝜎) 𝐷𝑒⁄  is the curve corresponding to 
the induced drag of the wing of span 𝑏 and lift 𝐿𝑒, with elliptic circulation distribution. The induced 
drag of a wing of span 𝑏 = 𝑏𝑒, with elliptic circulation distribution Γ(𝑦) = Γ0,𝑒(1 − 𝜂2)1 2⁄  has, according 

to Table 2, lift 𝐿 = 𝐿𝑒 =
𝜋

2
(𝑞∞ 𝑈∞)𝑏𝑒Γ0,𝑒⁄ , induced drag 𝐷𝑒 =

𝜋

4
(𝑞∞ 𝑈∞

2 )Γ0,𝑒
2⁄  and root-bending-moment 

𝑀𝑥,𝑒 =
1

6
(𝑞∞ 𝑈∞)𝑏𝑒

2Γ0,𝑒⁄ . The wing with span 𝑏 and elliptic circulation distribution Γ(𝑦) = Γ0(1 − 𝜂2)1 2⁄  has 

lift 𝐿 =
𝜋

2
(𝑞∞ 𝑈∞)𝑏Γ0⁄ , induced drag 𝐷 =

𝜋

4
(𝑞∞ 𝑈∞

2 )Γ0
2⁄  and root-bending-moment 𝑀𝑥 =

1

6
(𝑞∞ 𝑈∞)𝑏2Γ0⁄ . 

Therefore, the amplitude Γ0 of the elliptic distribution on wing with span 𝑏 and lift 𝐿𝑒 equals Γ0 =

(𝑏𝑒 𝑏⁄ )Γ0,𝑒, so that its induced drag equals 𝐷 =
𝜋

4
(𝑞∞ 𝑈∞

2 )Γ0,𝑒
2 (𝑏𝑒

2 𝑏2⁄ ) = 𝐷𝑒(𝑏𝑒
2 𝑏2⁄ )⁄ , see plot in Figure 10 

above, and its root-bending-moment 𝑀𝑥 =
1

6
(𝑞∞ 𝑈∞)𝑏𝑒

2Γ0,𝑒 (𝑏 𝑏𝑒)⁄⁄ = 𝑀𝑥,𝑒 (𝑏 𝑏𝑒)⁄ . The analysis shows that 

the induced drag of a wing with elliptic circulation distribution Γ(𝜂) = Γ0√1 − 𝜂2 of fixed lift 𝐿𝑒 and uncon-
strained root-bending-moment 𝑀𝑥, decreases quadratically with wing span, while its root-bending-
moment increases, unbounded, linearly with wing span. In contrast, the induced drag of a wing with 

circulation distribution Γ(𝜂) = Γ0√1 − 𝜂2 + Γ1{√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
} of fixed lift 𝐿𝑒 and constrained root-

bending-moment 𝜆𝑀𝑥,𝑒, decreases increasingly slower with increasing wing span, up to wing span 

𝜎 = 𝜎𝑜𝑝𝑡 = (4 3)𝜆⁄ : the wing span for which the circulation distribution is the bell-shaped distribution, 

Γ(𝜂) =
1

2
Γ0[√1 − 𝜂2 − 𝜂2ln

1+√1−𝜂2

|𝜂|
], with Γ0 = 9 (4𝜆)⁄ . For wing spans beyond the optimal one, the present 

solution is invalid because the circulation distribution is not positive along its whole span. 
However, the present study does show that allowing a higher root-bending-moment than 𝑀𝑥,𝑒, the one 

associated with the wing with elliptic circulation distribution (𝜆 > 1) constraint, translates into a lower 
induced drag. 
 

3.4 Minimization Induced Drag for prescribed Lift, prescribed Root-Bending Moment (Shear 
Force) in Combination with prescribed Span-integrated Section-Bending-Moment 

For scenario (d), the optimisation is for constant lift L, for constant starboard-side root-bending mo-
ment 𝑀𝑥 (equivalent to span-integrated section-shear-force 𝐹𝑧) in combination with constant star-
board-side span-integrated section-bending-moment 𝑀𝑥,2. In this case the variation 𝛿𝐿 of the lift L in 

combination with the variation 𝛿𝑀𝑥 of 𝑀𝑥 and 𝛿𝑀𝑥,2 of 𝑀𝑥,2, due to the variation of Γ(𝑦), i.e., the 

optimisation comprises, see Appendix B: 

𝛿𝐷 = −2𝜌∞ ∫ 𝑤𝑖𝑛(𝑦)δΓ(𝑦)𝑑𝑦
𝑏 2⁄

−𝑏 2⁄
= 0, subject to         (5) 

𝛿𝐿 = 𝜌∞𝑈∞ ∫ δΓ(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
= 0,                   (18a) 

𝛿𝑀𝑥 = 𝜌∞𝑈∞ ∫ 𝑦δΓ(𝑦)𝑑𝑦
𝑏/2

0
= 0 and.                  (18b) 

𝛿𝑀𝑥,2 =
1

2
𝜌∞𝑈∞ ∫ 𝑦2δΓ(𝑦)𝑑𝑦

𝑏/2

0
= 0.        (18c) 

 
To force 𝛿𝐷 = 0 in Eq. (5), for arbitrary δΓ(𝑦) obeying Eqs. (18a-c), it is to be prescribed that: 

𝑤𝑖𝑛(𝑦) = 𝑈∞[𝐴 + 𝐵
𝑏

2
|𝜂| + 𝐶𝜂2], for |𝑦| < 𝑏 2⁄ .                (18d) 

From the analysis carried out for the preceding three optimisation scenarios, it follows that the dis-
tribution of the section-circulation Γ(𝜂) will be equal to 

Γ(𝜂) = Γ0√1 − 𝜂2 + Γ1 (√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
) + Γ2(1 − 𝜂2)3/2,               (19a) 

while, in this notation, the distribution of the upwash equals  
𝑤𝑖𝑛(|𝜼|<𝟏)

𝑈∞
= −

1

2𝑈∞𝑏
[Γ0 + Γ1𝜋|𝜂| + 3Γ2(

1

2
− 𝜂2)], for |𝜂| < 1.               (19b) 

Furthermore, it follows that 

𝛾𝑥(𝜂) =
2

𝑏
[Γ0

𝜂

√1−𝜂2
+ 2Γ1 (

𝜂

√1−𝜂2
− 𝜂ln

1+√1−𝜂2

|𝜂|
) + 3Γ2𝜂√1 − 𝜂2].               (19c) 

In terms of the expression for the circulation distribution Γ(𝜂), the lift 𝐿, the starboard root-bending 

moment 𝑀𝑥 (equal to the starboard span-integrated section-shear-force 𝐹𝑧), the starboard span-inte-
grated section-bending-moment 𝑀𝑥,2 and the induced drag 𝐷, have been listed in Table 7. 

 
Following Klein and Viswanathan ([19], [24]), the prescribed lift 𝐿 = 𝐿𝑒 is expressed in terms of the lift 

𝐿𝑒 generated by an elliptic distribution of the circulation at the same free-stream conditions of a wing 

with given span 𝑏𝑒. The amplitude Γ0,𝑒 of the distribution of this imaginary wing is Γ(𝜂) = Γ0,𝑒√1 − 𝜂2. 

Using the expression for the lift of such a distribution, found in Table 2, i.e., 
𝐿𝑒

𝒒∞𝑏𝑒
2 =

𝜋

2

Γ0,𝑒

𝑈∞𝑏𝑒
,  defines Γ0,𝑒. 
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The prescribed root-bending-moment 𝑀𝑥 is expressed as a factor 𝜆 times the root-bending moment 

𝑀𝑥,𝑒 of the elliptic distribution as 𝑀𝑥 = 𝜆𝑀𝑥,𝑒, see Table 7: 
𝑀𝑥,𝑒

𝒒∞𝑏𝑒
3 =

1

6

Γ0,𝑒

𝑈∞𝑏𝑒
. 

 

Table 7 – Aerodynamic performance for scenario (d): minimisation of induced drag 𝐷, for prescribed free-stream 

conditions (𝑈∞, 𝑞∞), lift 𝐿, root-bending moment 𝑀𝑥, and span-integrated section-bending-moment 𝑀𝑥,2, yielding 

circulation distribution Γ(𝜂) = Γ0√1 − 𝜂2 + Γ1 {√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
} + Γ2(1 − 𝜂2)3/2. 

 

Similarly, the prescribed span-integrated section-bending-moment 𝑀𝑥,2 is coupled to 𝑀𝑥,2,𝑒 of the el-

liptic distribution of circulation as 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒, with, see Table 7: 

 
𝑀𝑥,2,𝑒

𝒒∞𝑏𝑒
4 =

𝜋

128

Γ0,𝑒

𝑈∞𝑏𝑒
. 

Then a system of linear equations is constructed for the three parameters (Γ0, Γ1, Γ2) in the expression, 

Eq. (19a), for the circulation distribution, with, Γ̂𝑘 = Γ𝑘/Γ0,𝑒 and 𝜎 = 𝑏/𝑏𝑒: 

 (

1 4/3 3/4
1 3/2 3/5
1 8/5 1/2

)(

Γ̂0

Γ̂1
Γ̂2

) = (

1 /𝜎

𝜆 /𝜎2

𝜏/𝜎3

), so that (
Γ̂0

Γ̂1
Γ̂2

) = (
126 −320 195
−60 150 −90
−60 160 −100

)(

1 /𝜎

𝜆 /𝜎2

𝜏/𝜎3

).             (20a) 

Substitution of Eq. (20a) in the expression for the induced drag 
𝐷

𝑞∞𝑏2
 in Table 7, divided by the induced 

drag 
𝐷𝑒

𝑞∞𝑏𝑒
2 =

𝜋

4
(

Γ0,𝑒

𝑈∞𝑏𝑒
)
2
 of the wing with elliptic circulation distribution, yields, upon some algebra: 

𝐷

𝐷𝑒
= Γ̂0

2 +
8

3
 Γ̂0 Γ̂1 +

3

2
Γ̂0 Γ̂2 + 2Γ̂1

2 +
8

5
Γ̂1 Γ̂2 +

3

4
Γ̂2

2                  (20b) 

     =
4

𝜎6 [9𝜎4 − 40𝜆𝜎3 + (
45

2
𝜏 + 50𝜆2)𝜎2 − 60𝜆𝜏𝜎 +

75

4
𝜏2]     (20c) 

The relation presented in Eq. (20c) is identical to the relation presented by Klein & Viswanathan ([19], 
16]), as Eq. (19), when substituting 𝜆 = 1 and 𝜏 = 1.  
Pate & German [30] considered Klein & Viswanathan’s ([19], [24]) three-term circulation distribution 
for the case that the span-integrated section bending-moment and the root-bending-moment are 
parameters. In their notation 𝜀IBM ≡ 𝐶IBM 𝐶IBM|𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐⁄  and 𝜀RBM ≡ 𝐶RBM 𝐶RBM|𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐⁄  denote 𝜏 and 𝜆, 

respectively, in the notation of the present study. Note that in their study the span of the wing is fixed 
at the span of the wing with elliptic circulation distribution at the prescribed lift, i.e., 𝜎 ≡ 𝑏 𝑏𝑒⁄ = 1. 
Therefore, substituting Eq. (20c) for 𝜎 = 1 in the so-called induced-drag parameter 𝛿, defined as 𝛿 ≡
𝐷 𝐷𝑒⁄ − 1, gives 𝛿 = 5(7 − 32𝜆 + 18𝜏 + 40𝜆2 + 15𝜏2 − 48𝜆𝜏), which agrees with Eq. (16) in [30].  
The choice of 𝜎 = 1 in [30] implies that bell-shaped circulation distributions, with zero first derivative 
of the circulation distribution at the tip, do not show up in the analysis in [30]. 
 
To complete the optimisation, consider the first derivative of the induced drag, Eq. (20c), with respect 
to variable 𝜎, with 𝜆 and 𝜏 parameters: 

𝑑

𝑑𝜎

𝐷

𝐷𝑒

=
−2

𝜎7
[36𝜎4 − 240𝜆𝜎3 + (180𝜏 + 400𝜆2)𝜎2 − 600𝜆𝜏𝜎 + 225𝜏2],  

which can be re-expressed as:  
𝑑

𝑑𝜎

𝐷

𝐷𝑒
= −

2

𝜎7 (6𝜎2 − 20𝜆𝜎 + 15𝜏)
2
= −

72

𝜎7 [(𝜎 −
5

3
𝜆)

2

−
5

2
(
10

9
𝜆2 − 𝜏)]2 = 0.              (20d) 

𝚪(𝜼) = 𝚪𝟎√𝟏 − 𝜼𝟐 + 𝚪𝟏 (√𝟏 − 𝜼𝟐 + 𝜼𝟐𝐥𝐧
𝟏+√𝟏−𝜼𝟐

|𝜼|
) + 𝚪𝟐(𝟏 − 𝜼𝟐)𝟑/𝟐  

𝒘𝒊𝒏(|𝜼|<𝟏)

𝑼∞
  

−1

2
[

Γ0

𝑈∞𝑏
+

Γ1

𝑈∞𝑏
𝜋|𝜂| +

Γ2

𝑈∞𝑏
3(

1

2
− 𝜂2)]  

𝒘𝒊𝒏(|𝜼|>𝟏)

𝑼∞
  −1

2
[

Γ0

𝑈∞𝑏
(1 −

|𝜂|

√𝜂2−1
) +

2Γ1

𝑈∞𝑏
(

−|𝜂|

√𝜂2−1
+ 𝜂arcsin(

1

𝜂
)) +

Γ2

𝑈∞𝑏
3(

1

2
− 𝜂2 + |𝜂|√𝜂2 − 1)]  

𝑳

𝒒∞𝒃𝟐  
𝜋

2
[

Γ0

𝑈∞𝑏
+

4

3

Γ1

𝑈∞𝑏
+

3

4

Γ2

𝑈∞𝑏
]  

 
𝑫

𝒒∞𝒃𝟐  
𝜋

4
[(

Γ0

𝑈∞𝑏
)
2

+
8

3

Γ0

𝑈∞𝑏

Γ1

𝑈∞𝑏
+

3

2

Γ0

𝑈∞𝑏

Γ2

𝑈∞𝑏
+ 2(

Γ1

𝑈∞𝑏
)
2

+
8

5

Γ1

𝑈∞𝑏

Γ2

𝑈∞𝑏
+

3

4
(

Γ2

𝑈∞𝑏
)
2

]   

𝑴𝒙

𝒒∞𝒃𝟑  
1

6
[

Γ0

𝑈∞𝑏
+

3

2

Γ1

𝑈∞𝑏
+

3

5

Γ2

𝑈∞𝑏
]   

𝑴𝒙,𝟐

𝒒∞𝒃𝟒   
𝜋

128
[

Γ0

𝑈∞𝑏
+

8

5

Γ1

𝑈∞𝑏
+

1

2

Γ2

𝑈∞𝑏
]  

𝑴𝒛

𝒒∞𝒃𝟑  
−1

12
[(

Γ0

𝑈∞𝑏
)
2

+
3

2
(1 +

𝜋2

8
)

Γ0

𝑈∞𝑏

Γ1

𝑈∞𝑏
+

9

10

Γ0

𝑈∞𝑏

Γ2

𝑈∞𝑏
+

3𝜋2

10
(

Γ1

𝑈∞𝑏
)
2

+
1

4
(1 +

3𝜋2

8
)

Γ1

𝑈∞𝑏

Γ2

𝑈∞𝑏
+

27

70
(

Γ2

𝑈∞𝑏
)
2

]  

𝒚𝑪𝑶𝑽 𝟎. 𝟓𝒃⁄   𝜋

4
[Γ0 +

4

3
Γ1 +

3

4
Γ2] /(Γ0 + Γ1 + Γ2)  
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The right-most expression in Eq. (20d) directly provides the two roots of 
𝑑

𝑑𝜎

𝐷

𝐷𝑒
= 0, i.e., the dimension-

less wing span 𝜎 at which 𝐷 𝐷𝑒⁄  is minimal: 

𝜎𝑜𝑝𝑡,1,2 =
5

3
𝜆 ± √

5

2
(
10

9
𝜆2 − 𝜏), for 𝜏 ≤

10

9
𝜆2.                  (20e) 

The condition 𝜏 ≤
10

9
𝜆2 in Equation (20e) indicates the constraint on the choice of the value of 𝜏 =

𝑀𝑥,2 𝑀𝑥,2,𝑒⁄  in relation to the value of 𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄ . The relation for the induced drag 𝐷 𝐷𝑒⁄  in Eq. (20b) 

can also be expressed in a form similar to the one in Eq. (20e), after some algebra involving partial 
integration of Eq. (20d), it is found that: 

𝐷

𝐷𝑒
=

4

𝜎6 [3 [(𝜎 −
5

3
𝜆)

2
−

5

2
(
10

9
𝜆2 − 𝜏)]

2

+
3

5
[(𝜎 −

5

3
𝜆)

2
−

5

2
(
10

9
𝜆2 − 𝜏)] 𝜎 (7𝜎 −

20

3
𝜆) +

9

5
𝜎2 [(𝜎 −

5

9
𝜆)

2
+

5

3
(
25

27
𝜆2 − 𝜏)]].  

             (20f) 
The value of the relative span, 𝜎𝑜𝑝𝑡,1,2 = 𝑏𝑜𝑝𝑡,1,2/𝑏𝑒, for which the first derivative of the induced drag 

with respect to dimensionless wing span 𝜎 = 𝑏/𝑏𝑒 equals zero, is the value for which the induced 
drag is at a local minimum. Substituting Eq. (20e) in Eq. (20f) yields: 

𝐷𝑜𝑝𝑡,1,2

𝐷𝑒
= 12[

5

2
(
4

3
𝜆2−𝜏)±

4

3
𝜆√

5

2
(
10

9
𝜆2−𝜏)

[
5

3
𝜆±√

5

2
(
10

9
𝜆2−𝜏)]4

].                   (20g) 

Furthermore, it follows from Eq. (19c) that the vortex distribution 𝛾𝑥(𝜂), which is proportional to the 
first derivative of the circulation distribution Γ(𝜂), is zero at the wing tips if Γ̂0 + 2Γ̂1 = 0 and singular 

otherwise. Substitution in Eq. (19a) then reveals, since Γ̂0 + 2Γ̂1 = 6𝜎2 − 20𝜆𝜎 + 15𝜏, which is zero 
according to Eq. (20d), that for minimal induced drag at 𝜎 = 𝜎𝑜𝑝𝑡,1,2, the circulation distribution is a 

bell-shaped distribution: the one considered in section 3.3, but with the additional term Γ2(1 − 𝜂2)3/2:  

Γ(𝜂) =
1

2
Γ0{√1 − 𝜂2 − 𝜂2ln

1+√1−𝜂2

|𝜂|
} + Γ2(1 − 𝜂2)3/2,                 (20h) 

at 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡/𝑏𝑒. This is the sum of the second and first bell-shaped distributions: √1 − 𝜂2 − 𝜂2ln
1+√1−𝜂2

|𝜂|
 

and (1 − 𝜂2)3/2, respectively, found in the present study. 
For 𝜆 = 1 and 𝜏 = 1, i.e., the case considered in [19], [24], the analytic expression Eq. (20e) gives 

𝜎𝑜𝑝𝑡,1 ≈ 1.1396 and 𝜎𝑜𝑝𝑡,2 ≈ 2.1936, for which Eq. (20g) gives 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄ ≈ 0.9292 and 𝐷𝑜𝑝𝑡,2 𝐷𝑒⁄ ≈ 0.7959, 

respectively. Klein & Viswanathan’s ([19], [24]) values for their first optimum (𝜎𝑜𝑝𝑡,1 ≈ 1.160 and 

(𝐷𝑜𝑝𝑡,1 /𝐷𝑒) ≈ 0.929) are slightly different, while the second optimum, at a much larger, probably non-

feasible, span, is not provided. As already clear from Eq. (20d), giving the first derivative of the in-
duced drag, the second derivative of the induced drag  

𝑑2

𝑑𝜎2

𝐷

𝐷𝑒
=

2

𝜎8
(6𝜎2 − 20𝜆𝜎 + 15𝜏)(18𝜎2 − 100𝜆𝜎 + 105𝜏)  

           =
216

𝜎8 [(𝜎 −
5

3
𝜆)

2

−
5

2
(
10

9
𝜆2 − 𝜏)][(𝜎 −

25

9
𝜆)

2

−
35

6
(
250

189
𝜆2 − 𝜏)]              (20i) 

is also zero at 𝜎𝑜𝑝𝑡,1,2. This reveals that both (local) minima in the induced drag are, again, at inflection 

points of the curve 𝐷 𝐷𝑒⁄  as function of 𝜎 = 𝑏/𝑏𝑒.  

From Eq. (20e) also surfaces that in case 𝜎𝑜𝑝𝑡,1 = 𝜎𝑜𝑝𝑡,2 =
5

3
𝜆, i.e., in case the two roots of 

𝑑

𝑑𝜎

𝐷

𝐷𝑒
= 0 

coincide, the parameters 𝜆 and 𝜏, that govern the magnitude of the prescribed root-bending-moment 

𝑀𝑥 and the span-integrated section-bending-moment 𝑀𝑥,2, respectively, are related through 𝜏 =
10

9
𝜆2. 

Eq. (20g) then yields:  
𝐷𝑜𝑝𝑡,1,2

𝐷𝑒
|
𝜏=

10

9
𝜆2

=
108

125

1

𝜆2,          (20j) 

which, for 𝜆 = 1 results in 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄ = 𝐷𝑜𝑝𝑡,2 𝐷𝑒⁄  = 0.8640, a value substantially lower than the 0.9292 

for the case (𝜆, 𝜏) = (1,1) of Klein & Viswanathan ([19], [24]). 
 

Further analysis gives that in the case of coinciding optimal values of 𝜎𝑜𝑝𝑡, the relation −2Γ̂1 + 3Γ̂2 =

0, equivalent to Γ̂0 + 3Γ̂2 = 0, is valid, which results, with Γ̂0 + 2Γ̂1 = 0, in the circulation distribution: 

Γ(𝜂) = Γ0[
1

2
{√1 − 𝜂2 − 𝜂2ln

1+√1−𝜂2

|𝜂|
} −

1

3
(1 − 𝜂2)

3

2].                 (20k) 

At the wing tips this distribution features zero function value, zero first derivative and zero second 
derivative of the circulation distribution, i.e., the third bell-shaped distribution: a super-bell-shaped 
distribution. Table 8 summarizes the expressions derived so far in this section. 
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Table 8 – Summary solution scenario (d): minimisation of induced drag 𝐷, for prescribed free-stream conditions 

(𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒, root-bending moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒, and span-integrated section-bending-moment 𝑀𝑥,2 =

𝜏𝑀𝑥,2,𝑒, yielding circulation distribution Γ(𝜂) = Γ0√1 − 𝜂2 + Γ1 {√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
} + Γ2(1 − 𝜂2)3/2. 

Note: Optimal solution with +sign is invalid solution since resulting Γ(𝜂) not positive over part of span. 

 
Figure 11 presents results for the induced drag 𝐷 𝐷𝑒⁄  and the distribution of the circulation 

Γ(𝑦 0.5𝑏𝑒)⁄ /Γ𝑒 as function of the relative span 𝜎 = 𝑏 𝑏𝑒⁄  and of the spanwise coordinate 𝑦 0.5𝑏𝑒⁄ , res-
pectively. Four cases are considered:  

(i) The case of Klein & Viswanathan ([19], [24]), their Figure 1, i.e., for (𝜆, 𝜏) = (1,1). The present 

result is the black curve in Figure 11. It shows that at 𝜎 = 𝜎𝑜𝑝𝑡,1 = (10 − √10) 6⁄ ≈ 1.14, the curve 

𝐷(𝜎) 𝐷𝑒⁄ features an inflection point (both first and second derivative with respect to 𝜎 are zero) at the 
point where 𝐷 𝐷𝑒⁄ ≈ 0.9292. Further down along the curve, the induced drag decreases to still lower 

values, until at 𝜎 = 𝜎𝑜𝑝𝑡,2 = (10 + √10) 6⁄ ≈ 2.1936, a second local minimum occurs, again an inflect-

ion point. However, beyond 𝜎 = 𝜎𝑜𝑝𝑡,1 the section-circulation is negative along part of the span, which 

invalidates the solution. Furthermore, though for these values of 𝜎 = 𝑏 𝑏𝑒⁄  the induced drag 𝐷 𝐷𝑒⁄ ≈
0.7959 is substantially lower, the large span required to realise this result is not considered to be 
realistic. Figure 11 – right presents, as reference, the circulation distribution for the elliptic distribution 
(dotted line), which at the wing tip has a square-root singularity in the first derivative. The circulation 
distribution for (𝜆, 𝜏) = (1,1) plotted as black curve, illustrates the two local minimums: one for 𝜎 =
𝜎𝑜𝑝𝑡,1 (solid black curve) and one for 𝜎 = 𝜎𝑜𝑝𝑡,2 (dashed black curve). In both cases, the distribution 

has zero function value and zero first derivative at the wing tip: giving a bell-shaped distribution. 
However, for 𝜎 = 𝜎𝑜𝑝𝑡,2, the distribution is negative in the region next to the wing tip. Actually, this is 

true for all cases with 𝜎𝑜𝑝𝑡,1 < 𝜎 ≤ 𝜎𝑜𝑝𝑡,2, while for still larger spans the region with negative load 

moves inboard, away from the wing tip. For all such distributions, the integrals of moments of the load 
(proportional to Γ(𝜂)) should be taken as integrals of the absolute value of the load, not of the load 
itself, as has been done in the present study. This invalidates the present analysis for prescribed 𝑀𝑥 

and 𝑀𝑥,2, for  𝜎 > 𝜎𝑜𝑝𝑡,1. 

𝚪(𝜼) = 𝚪𝟎√𝟏 − 𝜼𝟐 + 𝚪𝟏 (√𝟏 − 𝜼𝟐 + 𝜼𝟐𝐥𝐧
𝟏+√𝟏−𝜼𝟐

|𝜼|
) + 𝚪𝟐(𝟏 − 𝜼𝟐)𝟑/𝟐  
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Figure 11 – Results optimisation scenario (d): minimisation of induced drag 𝐷, for prescribed free-stream con-
ditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒 and root-bending-moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒 and span-integrated section-bending-moment 

𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒, for 4 combinations of 𝜆 and 𝜏. Left: Induced drag 𝐷/𝐷𝑒 vs. span 𝜎 = 𝑏/𝑏𝑒. Right: Distribution 

circulation Γ(𝑦 0.5𝑏𝑒)⁄ /Γ0,𝑒. Black line, present result Eq. (20c) for (𝜆 = 1, 𝜏 = 1), identical to result of [19], [24]. 

Red line: Eq. (20c) for (𝜆 = 1, 𝜏 = 10

9
𝜆2) Bluish line: Eq. (20c) for (𝜆 = (9𝜏 10⁄ )1/2, 𝜏 = 1). Ochre line: Eq. (20c) for 

(𝜆 = 1.05, 𝜏 = 10𝜆2 9⁄ ). Dashed part of curves: invalid solution because Γ < 0 for part of span. Vertical dashed 

lines in the left plot indicate the location of optimal values of 𝜎 for minimal induced drag. 
 

(ii) The new case (𝜆, 𝜏) = (√9 10⁄ , 1), corresponding to the bluish curves in Figure 11. This is the first 

of three examples of cases for which 𝜏 = (10 9⁄ )𝜆2, i.e., the expression in Eq. (20e) implies that the 

roots of 
𝑑

𝑑𝜎

𝐷

𝐷𝑒
= 0, Eq. (20d), features a zero discriminant. For such cases the two local minimums of 

𝐷(𝜎) 𝐷𝑒⁄  coincide, while, since also 
𝑑2

𝑑𝜎2

𝐷

𝐷𝑒
= 0 at this point, see Eq. (20i), the minimum is an inflection 

point as well. Actually, as can be deduced from Eq. (20i), since for 𝜏 =
10

9
𝜆2, 𝜎 = 𝜎𝑜𝑝𝑡,1 = 𝜎𝑜𝑝𝑡,2 =

5

3
𝜆, 

the derivative of Eq. (20i) with respect to 𝜎, i.e., 
𝑑3

𝑑𝜎3

𝐷

𝐷𝑒
, is zero as well. 

The present result is the bluish curve in Figure 11 - left. It shows that at 𝜎 = 𝜎𝑜𝑝𝑡,1 = 𝜎𝑜𝑝𝑡,2 =
5

3
𝜆 ≈

1.5811, the curve indeed features a super-inflection point at which not only the first and second de-

rivative of 𝐷(𝜎) 𝐷𝑒⁄  with respect to 𝜎 are zero, but also the third derivative. The result is that in a 

relatively large range around 𝜎 = 𝜎𝑜𝑝𝑡, 𝐷(𝜎) 𝐷𝑒⁄  is about constant at 
108

125

1

𝜆2 = 
120

125
= 0.96, a modest 

value, in spite of the 58% increase in wing span with respect to the wing with the elliptic loading. 
The bell-shaped distribution of the circulation is included in Figure 11 – right, with at the wing tip, zero 
function value, zero first and zero second derivative with respect to the spanwise coordinate. 
 
(iii) The next case of a super-bell-shaped is (𝜆, 𝜏) = (1,10/9), corresponding to the red curves in Figure 

9. The optimal span is found to be 𝜎𝑜𝑝𝑡 =
5

3
𝜆 = 5/3 ≈ 1.6667, somewhat longer than the one of case 

(ii). This longer span pays off in the optimum induced drag, which is now 10% lower than for case (ii), 

i.e., 𝐷 𝐷𝑒⁄ =
108

125
≈ 0.8640 and lower than 𝐷 𝐷𝑒⁄  for case (i), the case of Klein & Viswanathan ([19], [24]). 

But for the longer span, the distribution of the circulation is similar to the each of the three cases with 

𝜏 = (10 9⁄ )𝜆2. 
 
(iv) The final case of super-bell-shaped distributions considered, is for a higher value of 𝜆, namely 𝜆 = 

1.05, which translates into a longer optimal span of 𝜎𝑜𝑝𝑡 =
5

3
𝜆 = 1.75. The results are indicated by the 

ochre-colored curves in Figure 11. The optimum induced drag achieved equals 𝐷 𝐷𝑒⁄ =
108

125

1

𝜆2 ≈ 0.7837, 

due to the longer span required for this wing to obey the prescribed constraints. 
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Figure 12 – Results for optimisation scenario (d): prescribed free-stream conditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒, root-

bending moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒 and span-integrated section-bending-moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒 in (𝜆,𝜏)-plane. Left: 

Solid lines are iso-contours 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄ = 0.77(0.01)0.95 of optimal values of induced drag 𝐷𝑜𝑝𝑡,1/𝐷𝑒 given in Eq. 

(20g). Dotted lines are iso-contours 𝜎𝑜𝑝𝑡,1 = 𝑏𝑜𝑝𝑡,1/𝑏𝑒 = 1.0(0.1)1.7. Black dashed line is boundary of domain of 

validity 𝜏 ≤
10

9
𝜆2. The four crosses-inside-box symbols correspond to the four combinations (𝜆, 𝜏)-combinations 

discussed above. Red dashed line 𝜏 =
16

15
𝜆2 with open circles representing ensemble of optimal (𝜆, 𝜏)-combina-

tions. Right-upper: Vertical cross-sections 𝜆 = 0.98(0.02)1.04, of iso-𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄  lines. Right-lower: Vertical cross-

sections 𝜆 = 0.98(0.02)1.04 of iso-𝜎𝑜𝑝𝑡,1 lines. Black dashed lines with open circles are the ensemble of values 

of (𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄ )𝑜𝑝𝑡 and (𝜎𝑜𝑝𝑡,1)𝑜𝑝𝑡. 

 

To provide an overview of the present results, Figure 12-left presents iso-contours in the (𝜆, 𝜏)-plane, 

obtained from Eq. (20g), of the optimum-induced-drag 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄  and of the optimum span 𝜎𝑜𝑝𝑡,1 =

𝑏𝑜𝑝𝑡,1/𝑏𝑒 The induced drag has been minimised for prescribed lift 𝐿 = 𝐿𝑒, prescribed root-bending mo-

ment 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒 and prescribed span-integrated section-bending-moment 𝜏 = 𝑀𝑥,2/𝑀𝑥,2,𝑒. All results 

shown feature bell-shaped distributions of the circulation along the span of the wing. Figure 12-right 
presents vertical cross-sections of the results in Figure 12-left, which will help in the analysis and 
interpretation of the results. The herring-bone pattern of the 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄  iso-contours illustrates that in 

the (𝜆, 𝜏)-plane, there is a band-like, valley-type, region of steadily decreasing values of the induced 
drag. The envelope of the points at the bottom of the valley are found by taking the derivative of 𝐷 𝐷𝑒⁄  

with respect to 𝜏 at 𝜎 = 𝜎𝑜𝑝𝑡. With Eq. (20c): 

𝑑

𝑑𝜏

𝐷

𝐷𝑒
= [

𝑑

𝑑𝜎

𝐷

𝐷𝑒
]
𝜕𝜎

𝜕𝜏
+

𝜕

𝜕𝜏

𝐷

𝐷𝑒
=

𝜕

𝜕𝜏

𝐷

𝐷𝑒
 since at 𝜎 = 𝜎𝑜𝑝𝑡 =

5

3
𝜆 − √

5

2
(

10

9
𝜆2 − 𝜏), Eq. (20d) gives 

𝑑

𝑑𝜎

𝐷

𝐷𝑒
= 0. 

Therefore, 
𝜕

𝜕𝜏

𝐷

𝐷𝑒
=

4

𝜎6

45

2
[𝜎2 −

8

3
𝜆𝜎 +

5

3
𝜏] = 0, leading to 𝜎 =

4

3
𝜆 ±

1

2
√

20

3
(
16

15
𝜆2 − 𝜏). 

Then it follows that along the bottom of the valley: 𝜏 =
16

15
𝜆2, while 𝜎𝑜𝑝𝑡 =

4

3
𝜆.   (20l) 

In geographically terms, the valley runs from south-west to north-east, with the optimum induced drag 
decreasing from south-west to north-east along the bottom of the valley 𝜏 = (16 15⁄ )𝜆2. The iso-con-
tours can be interpreted as altitude lines running clockwise along the flanks of the valley. On the 
steep, southerly side of the valley the contours are closely packed lines, running in negative 𝜆-direc-

tion, from east to south. Then the iso-contours turn north, in positive 𝜏-direction. Subsequently the 
iso-contours cross the valley and turn in positive 𝜆-direction, in north-easterly direction, along the 
less-steep northerly side of the valley. Finally, the iso-contours abruptly end at the dashed-black curve 
𝜏 = (10 9⁄ )𝜆2. At this “barrier” the discriminant of Eq. (20e) equals zero, becoming negative north of 
this curve. At all points on the “barrier” 𝜏 = (10 9⁄ )𝜆2, i.e., the distribution of the circulation is of the 
super-bell-shaped type, given in Eq. (20k), at all other points in the (𝜆, 𝜏)-plane, south of the “barrier”, 
the distribution of the circulation is of the bell-shaped type, given in Eq. (20h). 
Within the chosen ranges 0.95 < 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒 < 1.05 and 0.9 < 𝜏 = 𝑀𝑥,2/𝑀𝑥,2,𝑒 < 1.25, the induced drag 

has values between 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄  = 0.95 at the left side of the plot and 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄  = 0.77 at the right side of 
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the plot. So, it becomes clear that increasing 𝜆, i.e., the root-bending-moment and increasing 𝜏, i.e., 
the span-integrated section-bending-moment, along the bottom 𝜏 = (16 15⁄ )𝜆2 of the valley, leads to 
increasingly lower values of the induced drag. Klein & Viswanathan’s ([19], [24]) analysis for just the 
single combination (𝜆 = 1, 𝜏 = 1) turns out to be a case for which not much reduction in induced drag 
can be achieved: 𝐷𝑜𝑝𝑡,𝐾𝑙𝑒𝑖𝑛&𝑉𝑖𝑠𝑤𝑎𝑛𝑡ℎ𝑎𝑛 𝐷𝑒⁄  = 0.929. For example, increasing, for fixed 𝜆 = 1, the span-

integrated section-bending-moment (𝜏) by 5% to 𝜏 = 1.05 reduces the induced drag to 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄  = 0.85. 

Simultaneously decreasing, at fixed 𝜏 = 1, the root-bending-moment (𝜆) by 2% to 𝜆 = 0.98 would re-
duce the induced drag to 𝐷𝑜𝑝𝑡,1 𝐷𝑒⁄  = 0.89.  

Included in the iso-contour plot are iso-contours (dotted black lines running in north-easterly direction) 
of the span 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡/𝑏𝑒 required for achieve the optimum values of the induced drag. This reveals 

that in the valley of lowest values of the induced drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ , the span of the wing is in between the 

reasonable values 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = 1.3 and 𝑏𝑜𝑝𝑡 𝑏𝑒⁄ = 1.5. 

     
Figure 13 – Results for scenario (d): prescribed free-stream conditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒, root-bending mo-

ment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒 and span-integrated section-bending-moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒. Left-upper: Circulation distribu-

tion Γ(𝑦 0.5𝑏𝑒)⁄ ; Right-upper: vortex distribution 𝛾𝑥(𝑦 0.5𝑏𝑒)⁄ ; Left-lower: distribution upwash 𝑤𝑖𝑛(𝑦 0.5𝑏𝑒)⁄  for 

0 < 𝑦 0.5𝑏⁄ < 1; Right-lower: distribution upwash 𝑤𝑖𝑛(𝑦 0.5𝑏𝑒)⁄  for 0 < 𝑦 0.5𝑏⁄ < 3/𝜎. Solid black and red 

curves: ”bottom valley” 𝜏 = (16 15)𝜆2⁄ ; Dashed black and red lines: “barrier” 𝜏 = (10 9)𝜆2⁄ . Solid-black line 
(𝜆, 𝜏) = (1, (16 15)𝜆2)⁄ ; Dashed-black line (𝜆, 𝜏) = (1, (10 9)𝜆2)⁄ ; Solid-red line (𝜆, 𝜏) = (1.05, (16 15)𝜆2)⁄ ; 

dashed-red line (𝜆, 𝜏) = (1.04, (10 9)𝜆2)⁄ ; dotted-black line: elliptic distribution circulation and wake vortex dis-
tribution. 
 
Figure 13 presents detailed results of four (𝜆, 𝜏) combinations, selected from Figure 12: two (solid 

lines) combinations on the “optimum-optimorum” curve (“bottom valley”) 𝜏 = (16 15)𝜆2⁄  and two (dash-

ed-line) combinations on the “barrier” curve 𝜏 = (10 9)𝜆2⁄ , each pair for 𝜆 = 1 (black) and 𝜆 = 1.05 (red). 

Eqs. (20g) and (20e) show that along the “optimum-optimorum” curve 𝜏 = (16 15)𝜆2⁄  the induced drag 
equals 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ = (27 32)𝜆−2⁄ , while the wing span equals 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡/𝑏𝑒 = (4 3)𝜆⁄ . Similarly, along the 

“barrier”-curve 𝜏 = (10 9)𝜆2⁄ , the induced drag is somewhat (factor 1.024) higher, equal to 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ =

(108 125)𝜆−2⁄ , even though the wing span is substantially longer (factor 1.25), equal to 𝜎𝑜𝑝𝑡 = 𝑏𝑜𝑝𝑡/𝑏𝑒 =

(5 3)𝜆⁄ , see Table 9.  
 
The circulation distribution at points on the “optimum-optimorum”-curve does not include the 
(1 − 𝜂2)3/2-term, just the first two terms, see Table 9. This solution is equivalent to the solution for 
scenario (c) investigated in section 3.3: a bell-shaped distribution. with at the wing tips zero function 
value and zero first derivative. The circulation distribution at points on the “barrier” curve in the (𝜆, 𝜏)-

plane is also a bell-shaped distribution. This distribution includes all three terms, such that at the wing 
tips the function value, the first and the second derivatives of the circulation distribution are equal to 
zero. This is accompanied by, compared to the “optimum-optimorum” case, a longer span, which is 
lightly loaded in the tip region in combination with higher loads (section circulation) in the wing-root 
region.  
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 𝚪(𝜼) = 𝚪𝟎√𝟏 − 𝜼𝟐 + 𝚪𝟏 (√𝟏 − 𝜼𝟐 + 𝜼𝟐𝐥𝐧
𝟏+√𝟏−𝜼𝟐

|𝜼|
) + 𝚪𝟐(𝟏 − 𝜼𝟐)𝟑/𝟐  

“Optimum-optimorum” “Barrier” 

𝚪(𝜼)  Γ0

Γ0,𝑒
=

9

4𝜆
; Γ1 = −1

2
Γ0; Γ2 = 0  

Γ0

Γ0,𝑒
=

36

25𝜆
; Γ1 = −1

2
Γ0; Γ2 = −1

3
Γ0  

𝝉𝒐𝒑𝒕  
16

15
𝜆2  10

9
𝜆2  

𝝈𝒐𝒑𝒕 = 𝒃𝒐𝒑𝒕/𝒃𝒆  
4

3
𝜆  5

3
𝜆  

𝑳 𝑳𝒆⁄   1 1 

𝑫𝒐𝒑𝒕 𝑫𝒆⁄   27

32

1

𝜆2  
108

125

1

𝜆2  

𝑴𝒙,𝒐𝒑𝒕 𝑴𝒙,𝒆⁄   𝜆  𝜆  

𝑴𝒙,𝟐,𝒐𝒑𝒕 𝑴𝒙,𝟐,𝒆⁄   𝜏 =
16

15
𝜆2  𝜏 =

10

9
𝜆2

  

𝑴𝒛,𝑜𝑝𝑡 |𝑴𝒛,𝒆|⁄   −
27

16
(1 −

3

40
𝜋2)

1

𝜆
  −

522

175
(1 −

21

232
𝜋2)

1

𝜆
  

𝒚𝑪𝑶𝑽,𝒐𝒑𝒕 𝟎. 𝟓𝒃𝒆⁄   𝜋

6
𝜎𝑜𝑝𝑡=

𝜋

4
 
8

9
𝜆  𝜋

8
𝜎𝑜𝑝𝑡 =

𝜋

4
 
5

6
𝜆  

Table 9 – Summary characteristics solutions on “optimum-optimorum” curve and on “barrier” curve. Scenario 
(d): minimisation of induced drag 𝐷, for prescribed free-stream conditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒, root-bending-

moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒, and span-integrated section-bending-moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒, yielding circulation distribu-

tion Γ(𝜂) = Γ0√1 − 𝜂2 + Γ1 {√1 − 𝜂2 + 𝜂2ln
1+√1−𝜂2

|𝜂|
} + Γ2(1 − 𝜂2)3/2. 

 

The wake-vortex distribution 𝛾𝑥(𝑦 0.5𝑏𝑒)⁄ , proportional to −𝑑Γ 𝑑𝑦⁄ , shows that the principal difference 
between the two types of bell-shaped distributions of the circulation is the behavior at the wing tip: 
(a) The “optimum-optimorum” vortex distribution has zero function value and infinite slope, which 
results in an upwash distribution that is continuous in function value but discontinuous in its slope, i.e. 
a finite slope inboard and a square-root singularity outboard. 
(b) The “barrier” vortex distribution has zero function value and zero slope at the wing tip, which 
results in an upwash distribution that is continuous in function value as well as in its slope, but dis-
continuous in higher derivatives. 
The upwash 𝑤𝑖𝑛(𝑦 0.5𝑏𝑒)⁄  induced along the span of the wing by the optimum-optimorum” distribution 
is a linear distribution, negative in the wing-root region, positive in the tip region. At the wing tip the 
upwash distribution is continued slope-discontinuously outboard of the wing tip, see Figure 13. The 
upwash induced by the 3-term “barrier” circulation distribution is quadratic along the span of the wing, 
compared to the “optimum-optimorum” distribution, more negative in the wing-root region and less 
positive in the wing-tip region. At the wing tip, the upwash distribution is continued slope-continuously 
outboard of the wing tip. For both distributions, the upwash tends to zero in the far-field.  
For the “optimum-optimorum” vortex distribution the COV is at 𝑦𝐶𝑂𝑉 𝑦𝐶𝑂𝑉,𝑒⁄ = 8𝜆 9⁄ , while for the “bar-

rier” distribution the COV is more inboard at 𝑦𝐶𝑂𝑉 𝑦𝐶𝑂𝑉,𝑒⁄ = 5𝜆 6⁄ . 

 

Figure 14 Left-top presents the distribution of the dimensionless section-induced-drag coefficient 
𝑑(𝜂) 𝑞∞⁄ 𝑏𝑒, equal to: 
𝑑(𝜂)

𝑞∞𝑏𝑒
=

Γ0,𝑒
2

𝑈∞
2 𝑏𝑒

2

𝑏𝑒

𝑏
[Γ̂0 + Γ̂1𝜋|𝜂| + Γ̂23(

1

2
− 𝜂2)][Γ̂0√1 − 𝜂2 + Γ̂1 {√1 − 𝜂2 + 𝜂2ln

1+√1−𝜂2

|𝜂|
} + Γ̂2(1 − 𝜂2)

3

2],             (20m) 

for the pair of points on the “optimum-optimorum” curve 𝜏 = (16 15)𝜆2⁄  and the pair of points on the 

“barrier” curve 𝜏 = (10 9)𝜆2⁄ . Figure 14 shows that for the elliptic distribution Γ0,𝑒√1 − 𝜂2 of the circula-

tion the distribution of the section-drag 𝑑(𝑦 0.5𝑏𝑒⁄ ) 𝑞∞𝑏𝑒⁄  of the wing is positive along the whole span 
of the wing. For the 2-term “optimum-optimorum” bell-shaped circulation distributions Γ𝑜𝑝𝑡(𝜂) =
1

2
Γ0[√1 − 𝜂2 − 𝜂2ln (1 + √1 − 𝜂2 |𝜂|⁄ )], with  Γ0  Γ0,𝑒⁄ = 9 (4𝜆⁄ ), the tip portion of the wing features much 

lower and even negative section-drag (section-thrust). In the root portion of the wing, the 2-term bell-
shaped circulation distribution generates a considerably higher section-drag, however, for the wing 

as a whole the net effect is a decrease in overall induced drag, like 1/𝜆2. It is also clear that increasing 
𝜆 does not change the section-thrust in the tip region very much, while in the wing-root portion of the 
wing the section-drag decreases quite a bit. This is the reason that the overall drag decreases qua-
dratically with increasing 𝜆. For the 3-term “barrier” bell-shaped circulation distributions Γ𝑜𝑝𝑡(𝜂) =
1

2
Γ0[√1 − 𝜂2 − 𝜂2 ln(1 + √1 − 𝜂2 |𝜂|⁄ ) − 2

3
(1 − 𝜂2)3/2], with  Γ0  Γ0,𝑒⁄ = 36 (25𝜆⁄ ), the tip portion of the wing fea-

tures similar magnitudes of section-thrust as the 2-term optimum-optimorum” 2-term distribution. 
However, in the root-section of the wing the 3-term “barrier” distribution shows higher levels of section 
drag than the 2-term distribution, resulting in a higher overall induced drag: 108 (125𝜆2)⁄  for 3-term vs. 
27 (32𝜆2)⁄  for 2-term distribution, i.e., an increase in induced drag of 2.4%. 
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As far as the section contribution 𝑚𝑧(𝑦 0.5𝑏𝑒⁄ ) 𝑞∞𝑏𝑒
2⁄  to the starboard-yawing moment 𝑀𝑧 𝑞∞⁄ 𝑏𝑒

3 is con-
cerned, it is clear that for both bell-shaped distributions the yawing moment is much smaller in mag-
nitude than that of the elliptic circulation distribution. For increasing 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒, the yawing moment 

quite drastically decreases in magnitude, like 1 𝜆⁄  because the contribution of the root portion of the 
wing, with negative, adverse, yawing moment, decreases. The 3-term, “barrier”, circulation distribu-
tion, with its longer span 𝜎 = 𝑏 𝑏𝑒⁄ , features, at equal = 𝑀𝑥/𝑀𝑥,𝑒 a 27.5% lower magnitude of yawing 

moment than the 2-term optimum-optimorum” circulation distribution.  
The plot of the distributions of the section contribution 𝑚𝑥(𝑦 0.5𝑏𝑒⁄ ) to the root-bending-moment 𝑀𝑥 
indicates that the root-bending moment due to the bell-shaped distributions and that due to the elliptic 
circulation distribution differ in amplitude and in shape. For 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒 = 1, the elliptic circulation dis-

tribution and the two bell-shaped distributions have identical 𝑀𝑥/𝑀𝑥,𝑒 = 1, while the distributions of 

𝑚𝑥(𝑦 0.5𝑏𝑒)⁄  is quite different. For the bell-shaped distributions, the longer wing span and the wing-tip 
continuity conditions result in a shift of the outboard half of the distributions of 𝑚𝑥(𝑦 0.5𝑏𝑒)⁄ . The am-
plitude of the distribution 𝑚𝑥(𝑦 0.5𝑏𝑒⁄ ) depends stronger on the type of bell-shaped distribution than on 

𝜆. With increasing 𝜆 the distribution 𝑚𝑥,2(𝑦 0.5𝑏𝑒⁄ ) of the section-contribution to the starboard-side inte-

grated-bending-moment 𝑀𝑥,2,𝑜𝑝𝑡 increases in amplitude, while simultaneously the distribution stretch-

es in outboard direction because of the increasing span. For the “optimum-optimorum” distribution 
this causes 𝑀𝑥,2 to increase quadratically with increasing 𝜆: for 𝜆 = 1, 𝑀𝑥,2,𝑜𝑝𝑡/𝑀𝑥,2,𝑒 ≈ 1.0667, for 𝜆 =

1.05, 𝑀𝑥,2,𝑜𝑝𝑡/𝑀𝑥,2,𝑒 ≈ 1.1760 an increase by 10%.  

Therefore increasing 𝜆 = 𝑀𝑥/𝑀𝑥,𝑒
, in optimisation scenario (d), results in a quadratic increase with 𝜆 

in the integrated section-bending-moment 𝑀𝑥,2/𝑀𝑥,2,𝑒, similar to scenario (c). Of course, choosing for 

a somewhat higher root-bending moment, of span-integrated section-bending-moment pays off in a 
considerable decrease in induced drag. 

       
Figure 14 - Results optimisation scenario (d): minimisation of induced drag 𝐷, for prescribed free-stream con-

ditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒, root-bending-moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒 and span-integrated section-bending-moment 

𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒. Solid black and red curves: ”optimum-optimorum” 𝜏 = (16 15)𝜆2⁄ ; Dashed black and red lines: 

“barrier” 𝜏 = (10 9)𝜆2⁄ . Solid-black line (𝜆, 𝜏) = (1, (16 15)𝜆2)⁄ ; Dashed-black line (𝜆, 𝜏) = (1, (10 9)𝜆2)⁄ ; Solid-

red line (𝜆, 𝜏) = (1.05, (16 15)𝜆2)⁄ ; dashed-red line (𝜆, 𝜏) = (1.04, (10 9)𝜆2)⁄ ; dotted-black line: results for elliptic 
distribution circulation. Left-top: spanwise distributions dimensionless section drag  [𝑑𝑜𝑝𝑡(𝑦/0.5𝑏𝑒) 𝑞∞𝑏𝑒⁄ ]/

(Γ0,𝑒 𝑈∞𝑏𝑒⁄ )2 vs. 𝑦 0.5𝑏𝑒⁄ ; Left-bottom: spanwise distributions dimensionless section yawing moment 

[𝑚𝑧,𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ )2 vs. 𝑦 0.5𝑏𝑒⁄ . Right-top: spanwise distributions dimensionless root-bending-

moment [𝑚𝑥,𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ ). Right-bottom: spanwise distributions dimensionless integrated-

bending-moment [𝑚𝑥,2𝑜𝑝𝑡 (𝑦 0.5𝑏𝑒)⁄ 𝑞∞𝑏𝑒
2⁄ ]/(Γ0,𝑒 𝑈∞𝑏𝑒⁄ ). Sub-tables provide integrated: drag, starboard-yawing-

moment, root-bending moment and span-integrated section-bending-moment, see Table 9. 
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Finding the distribution of the twist angle 
In order to generate the circulation distribution that produces the prescribed lift 𝐿𝑒, root-bending-mo-
ment 𝜆𝑀𝑥,𝑒 and integrated section-bending-moment 𝜏𝑀𝑥,2,𝑒 at minimum induced drag, the wing is 

required to possess twist. The distribution of the section chord 𝑐(𝑦) is specified. The wing selected 
has a linear distribution of the chord: 

𝑐(𝜂) 𝑏𝑒⁄ = (𝑐𝑟 𝑏𝑒⁄ )(1 − 𝜂) + (𝑐𝑡 𝑏𝑒⁄ )𝜂, with 𝑐𝑟 𝑏𝑒⁄ = 0.16 and 𝑐𝑡 𝑏𝑒⁄ = 0.04.              (20n) 
The geometric mean chord is equal to 𝑐̅ 𝑏𝑒⁄ = [𝑐𝑟 𝑏𝑒⁄ + 𝑐𝑡 𝑏𝑒⁄ ]/2. 
 
The spanwise distribution of the section Δ𝛼 follows from Δ𝛼(𝑦 0.5⁄ 𝑏𝑒) = 𝛼 − 𝛼0(𝑦 0.5⁄ 𝑏𝑒) + 𝛽(𝑦 0.5⁄ 𝑏𝑒), 

with 𝛼 the wing angle-of-attack, 𝛼0(𝑦) the section zero-lift angle and 𝛽 the section twist angle. The 
section Δ𝛼(𝑦 0.5⁄ 𝑏𝑒)follows from Eq. (4b) as 

Δ𝛼(𝑦) =
2

𝑎0

Γ0,𝑒

𝑈∞𝑏𝑒

𝑏𝑒

𝑐(𝑦)

Γ(𝑦)

Γ0,𝑒
−

𝑤𝑖𝑛(𝑦)

𝑈∞
  

              =
2

𝜋
𝐶𝐿,𝑒[

2

𝑎0

𝑐̅

𝑐(𝜂)
{Γ̂0√1 − 𝜂2 + Γ̂1 (√1 − 𝜂2 + 𝜂2ln

1+√1−𝜂2

|𝜂|
) + Γ̂2(1 − 𝜂2)3 2⁄ } +

1

2

𝑐̅

𝑏𝑒

𝑏𝑒

𝑏
{Γ̂0 + Γ̂1𝜋|𝜂| + Γ̂23 (

1

2
− 𝜂2)}], (20o) 

with 𝐶𝐿,𝑒 = 𝐿𝑒 𝑞∞𝑏𝑒𝑐̅⁄ , the lift coefficient of the wing with the elliptic loading. Note that 𝐶𝐿 = 𝐿 𝑞∞𝑏𝑐̅⁄ =

𝐶𝐿,𝑒 𝑏𝑒 𝑏⁄ = 𝐶𝐿,𝑒/𝜎. Figure 15 shows the resulting distributions of Δ𝛼(𝑦 0.5⁄ 𝑏𝑒) for the “optimum-optimo-

rum” distribution and for the “barrier” distribution. Included in Figure 15 is the result for the elliptic 
distribution of the circulation, obtained by substituting 𝑏 = 𝑏𝑒, Γ̂1 = 0 and Γ̂2 = 0 in Eq. (20o). For the 
elliptic distribution the section-drag is positive all along the span of the wing, due to the induced (neg-
ative) upwash being constant along the entire span. 

                              
Figure 15 – Scenario (d): prescribed free-stream conditions (𝑈∞, 𝑞∞), lift 𝐿 = 𝐿𝑒, root-bending moment 𝑀𝑥 =
𝜆𝑀𝑥,𝑒 and span-integrated section-bending-moment 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒. Chord 𝑐(𝜂): linear distribution, see Section 

4. Distribution required section Δ𝛼(𝑦 0.5⁄ 𝑏𝑒) = 𝛼 − 𝛼0(𝑦 0.5⁄ 𝑏𝑒) + 𝛽(𝑦 0.5⁄ 𝑏𝑒), with 𝛼 angle-of-attack, 𝛼0 

section zero-lift angle and 𝛽 the section twist angle, for two points on “optimum-optimorum” curve 𝜏 = (16 15)𝜆2⁄  

and two points on “barrier” curve 𝜏 = (10 9)𝜆2⁄ . Solid-black line (𝜆, 𝜏) = (1, (16 15)𝜆2)⁄ ; dashed-black line 
(𝜆, 𝜏) = (1, (10 9)𝜆2)⁄ ; solid-red line (𝜆, 𝜏) = (1.05, (16 15)𝜆2)⁄ ; dashed-red line (𝜆, 𝜏) = (1.05, (10 9)𝜆2)⁄ ; dotted-
black line elliptic distribution. 
 
Figure 15 illustrates that, in order to achieve the optimum distributions of the circulation, the distribu-
tion of Δ𝛼(𝑦 0.5⁄ 𝑏𝑒) = 𝛼 − 𝛼0(𝑦 0.5⁄ 𝑏𝑒) + 𝛽(𝑦 0.5⁄ 𝑏𝑒), i.e., the distribution of the wing-twist angle 
𝛽(𝑦 0.5⁄ 𝑏𝑒), is required to adjust considerably from a high value in the root region to a lower and even 

negative value in the tip region, with a wash-out of the twist angle in case of (𝜆, 𝜏)-values on the 
“barrier”-curve. The distribution of Δ𝛼(𝑦 0.5⁄ 𝑏𝑒) required to achieve the elliptic distribution of the circu-
lation, given by  

Δ𝛼(𝑦) =
2

𝜋
𝐶𝐿,𝑒[

2

𝑎0

𝑐̅

𝑐(𝑦)
√1 − 𝜂2 +

1

2

𝑐̅

𝑏𝑒
],                  (20p) 

is of quite different from that required for the bell-shaped distributions of the circulation. 
 
 
3.5 Comparison performance bell-shaped distributions circulation 

Apart from the elliptic distribution Γ(𝜂) = Γ0(1 − 𝜂2)1 2⁄ ,                 (21a) 

associated with a constant (negative) upwash distribution 
𝑤𝑖𝑛(|𝜂|<1)

𝑈∞
= −

1

2

Γ0

𝑈∞𝑏
,              (21b) 

considered in section 3.1, in the present study three bell-shaped distributions of the circulation have 
been discussed: 
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    (1) Γ(𝜂) = Γ22(1 − 𝜂2)3 2⁄ , also, as Γ(𝜂) = Γ2(1 − 𝜂2)3 2⁄ ,                 (21c) 

         associated with a quadratic upwash distribution 
𝑤𝑖𝑛(|𝜂|<1)

𝑈∞
= −

1

2

Γ2

𝑈∞𝑏
3(

1

2
− 𝜂2),             (21d) 

         discussed in section 3.2 and also, section 3.3, respectively;  

    (2) Γ(𝜂) =
1

2
Γ0[(1 − 𝜂2)1 2⁄ − 𝜂2ln {(1 + (1 − 𝜂2)1 2⁄ ) |𝜂|⁄ }],                 (21e) 

         associated with a linear upwash distribution 
𝑤𝑖𝑛(|𝜂|<1)

𝑈∞
= −

1

2

Γ0

𝑈∞𝑏
(1 −

𝜋

2
|𝜂|),              (21f) 

         discussed in section 3.3 and section 3.4; and 

    (3) Γ(𝜂) =
1

2
Γ0[(1 − 𝜂2)1 2⁄ − 𝜂2ln {(1 + (1 − 𝜂2)1 2⁄ ) |𝜂|⁄ } −

2

3
(1 − 𝜂2)3 2⁄ ],              (21g) 

         associated with a quadratic upwash distribution 
𝑤𝑖𝑛(|𝜂|<1)

𝑈∞
= −

1

2

Γ0

𝑈∞𝑏
[1 −

𝜋

2
|𝜂| − 2 (

1

2
− 𝜂2)],(21h) 

         discussed in section 3.4. 
    (4) In addition, here a fourth bell-shaped distribution is introduced: Γ(𝜂) = Γ3(1 − 𝜂2)5 2⁄ , (21i) 
         that satisfies the conditions at the wing tip of distribution (3), namely zero function value, zero  
         first and zero second derivative. This distribution generates a quartic-polynomial upwash distri 
         bution: 

 
𝑤𝑖𝑛(|𝜂|<1)

𝑈∞
= −

1

2

Γ3

𝑈∞𝑏
5[

3

8
− 𝜂2 (

3

2
− 𝜂2)].        (21j) 

 
Table 10 collects the expressions for the performance of the four bell-shaped distributions and in 
addition, the “stretched” elliptic distribution for wings of span 𝑏. The parameter in these four express-

ions is the relative span 𝜎 = 𝑏 𝑏𝑒⁄ .  

Table 10 – Performance, relative to performance wing of span 𝑏𝑒 with elliptic circulation distribution 
Γ0,𝑒(1 − 𝜂̂2)1 2⁄ , where 𝜂̂ = 𝑦 0.5𝑏𝑒⁄ , of optimised bell-shaped circulation distributions considered in present study. 

Most-left to most-right columns list wings of span 𝑏 and 𝜂 = 𝑦 0.5𝑏⁄ : Stretched elliptic distribution Γ0(1 − 𝜂2)1 2⁄  

(reference); 3 2⁄ -power distribution Γ2(1 − 𝜂2)3 2⁄ ; “optimum-optimorum” distribution 
1

2
Γ0[√1 − 𝜂2 − 𝜂2ln(

1+√1−𝜂2

|𝜂|
)]; “barrier” 

distribution 
1

2
Γ0[√1 − 𝜂2 − 𝜂2ln (

1+√1−𝜂2

|𝜂|
) −

2

3
(1 − 𝜂2)3 2⁄ ]; 5 2⁄ -power distribution Γ3(1 − 𝜂2)5 2⁄ . Relative span: 𝜎 = 𝑏 𝑏𝑒⁄ .  

 
Figure 16 presents the three moments induced by the four bell-shaped circulation distributions, con-
sidered in the present study, as function of the induced drag. From the plots it becomes clear that for 
prescribed root-bending moment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒, the “optimum-optimorum” distribution (red curve), for 

which 𝜏 = 16 (15⁄ 𝜆2), yields the lowest values of the induced drag, with reductions up to 30% with 
respect to the induced drag of the wing of span 𝑏𝑒 with elliptic circulation distribution.  
In the (𝐷𝑜𝑝𝑡 𝐷𝑒⁄ , 𝜆)-plane the results for the four bell-shaped circulation distributions are quite close 

together, i.e., within 2.5% in induced drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ . The result for the additional fourth distribution 

(blue) is within 0.2%, i.e., nearly identical, to the result for the “optimum-optimorum” distribution (red). 
Increasing the relative span 𝜎 = 𝑏 𝑏𝑒⁄  of the wing with elliptic circulation distribution by 10% decreases 
the induced drag by 17.5%, while the span-integrated section-bending-moment increases by 22.5%. 
 
 

 Γ0√1 − 𝜂2  

(reference 
distribution) 

Γ2(1 − 𝜂2)3 2⁄ , or 

Γ2,2(1 − 𝜂2)3 2⁄   

1

2
Γ0[√1 − 𝜂2 −

𝜂2ln(
1+√1−𝜂2

|𝜂|
)]  

1

2
Γ0[√1 − 𝜂2 −

𝜂2ln (
1+√1−𝜂2

|𝜂|
) −

2

3
(1 − 𝜂2)3 2⁄ ]  

Γ3(1 − 𝜂2)5 2⁄   

(additional bell-
shaped distribution) 

𝐿
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𝜎
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𝜎
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Figure 16 – Root-bending-moment 𝑀𝑥, span-

integrated section-bending-moment 𝑀𝑥,2 and 

yawing moment 𝑀𝑧, all presented as function 

of induced drag 𝐷𝑜𝑝𝑡, for four bell-shaped cir-

culation distributions described in sections 3.2 
to 3.4 for minimising induced drag for pre-
scribed free-stream conditions (𝑈∞, 𝑞∞) and lift 

𝐿 = 𝐿𝑒 , in combination with (1) prescribed 
span-integrated section-bending-moment 
𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒; (2) prescribed root-bending mo-

ment 𝑀𝑥 = 𝜆𝑀𝑥,𝑒; (3) both 𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒and 

𝑀𝑥 = 𝜆𝑀𝑥,𝑒. See table 10. 

Solid-black curves: distribution (1); solid-red 
curves: “optimum-optimorum” distribution (2); 
solid-green curves: “barrier” distribution (3), 
and; dashed-blue curves: additional, fourth, 
bell-shaped distribution (4). For reference, re-
sults for elliptic circulation distribution (black-
dotted curves).  
Horizontal/vertical straight dashed lines indi-
cate how for given 𝜆 or 𝜏 the value of 𝑀𝑥,2 or 

𝑀𝑥, respectively, of 𝑀𝑧 and of induced drag 

𝐷𝑜𝑝𝑡 can be found. 

 

 
In the (𝐷𝑜𝑝𝑡 𝐷𝑒 ,⁄ 𝜏)-plane the results for the four bell-shaped circulation distributions are also close 

together, i.e., within 7.5%, with the result for the additional fourth distribution (blue) exactly identical 
to the result for the “optimum-optimorum” distribution (green). Here the result for the first bell-shaped 
distribution (black) gives the most reduction in induced drag. Figure 16 also shows that, compared to 
the result for the stretched elliptic circulation distribution, for all four bell-shaped distributions, the 
yawing-moment is substantially, order 50%, smaller in magnitude. 
 
Comparison at equal lift and equal induced drag 
To compare the aerodynamic performance of wings with bell-shaped distributions of the circulation 
from a different perspective, the dimensionless induced drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄  is set at 0.8. Table 10 shows 

that the dimensionless induced drag is proportional to 1 𝜎2⁄ , so that the relative wing span 𝜎 is pro-

portional to 1 √𝐷𝑜𝑝𝑡 𝐷𝑒⁄⁄ . Then the amplitude of the circulation distribution Γ(𝑦 𝑏𝑒⁄ ), the root-bending 

moment 𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄ , the span-integrated section-bending-moment 𝜏 = 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ , the yawing-mo-

ment 𝑀𝑧 |𝑀𝑧,𝑒|⁄  and 𝑦𝐶𝑂𝑉, the center of the vortex distribution are found. Figure 17 presents the four 

bell-shaped distributions, as well as the ”stretched” elliptic distribution, of the circulation and the cor-
responding upwash distributions. The stretched-elliptic, ½-power, distribution has the smallest span 
of 𝜎 = 𝑏 𝑏𝑒⁄  of the four distributions. Compared to the stretched-elliptic distribution, in order to maintain 
the span-integrated value (lift), the bell-shaped distributions have higher sectional-circulation near the 
wing root and lower sectional-circulation near the wing tip, i.e., the center-of-gravity of the distribution 
shifted in inboard direction. That allows the distribution to feature zero first-derivative (first two distrib-
utions) plus even zero second-derivative (other two distributions). Note that the “optimum-optimorum” 
distribution ((3)-red) and the 5/2-power ((4)-blue) distribution coincide over the middle part of the 
semi-span and are close near the root and near the tip.  
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 𝑳 𝑳𝒆 = 𝟏⁄  and 𝑫𝒐𝒑𝒕 𝑫𝒆 = 𝟎. 𝟖⁄  

𝚪(𝜼)  𝝈 = 𝒃 𝒃𝒆⁄   𝝀 = 𝑴𝒙 𝑴𝒙,𝒆⁄   𝝉 = 𝑴𝒙,𝟐 𝑴𝒙,𝟐,𝒆⁄   𝑴𝒛 |𝑴𝒛,𝒆|⁄   𝒚𝑪𝑶𝑽 𝟎. 𝟓𝒃𝒆⁄   

𝟒

𝟑𝝈
(𝟏 − 𝜼𝟐)𝟑 𝟐⁄   1.2910 1.0328 1.1111 -0.5312 0.7605 

𝟑

𝝈

𝟏

𝟐
[√𝟏 − 𝜼𝟐 − 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
]  

1.3693 1.0270 1.125 -0.4269 0.7170 

𝟏𝟐

𝝈

𝟏

𝟐
[√𝟏 − 𝜼𝟐 − 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
−

𝟐

𝟑
(𝟏 − 𝜼𝟐)𝟑 𝟐⁄ ]  

1.7321 1.0392 1.2 -0.3061 0.6802 

𝟖

𝟓𝝈
(𝟏 − 𝜼𝟐)𝟓 𝟐⁄   1.5 1.0286 1.125 -0.4479 0.7363 

𝟏

𝝈
√𝟏 − 𝜼𝟐  1.1180 1.1180 1.25 -0.8944 0.8781 

Figure 17 – Top plot: Optimal distributions of circulation, see Figure 16. Bottom-plot: Corresponding upwash 
distributions. Solid-black curve: 3/2-power distribution (1); solid-red curve: “optimum-optimorum” distribution (2); 
solid-green curve: “barrier” distribution (3), and; dashed-blue curve: 5/2-power bell-shaped distribution (4). 
Black-dotted curve: stretched elliptic circulation distribution. Solid triangular symbols along horizontal axis indi-
cate location wing tip. Open triangular symbols indicate location COV. Table provides numerical values for: 
dimensionless span 𝜎 = 𝑏 𝑏𝑒⁄ ; dimensionless root-bending moment 𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄ ; dimensionless span-integrated 

section-bending-moment 𝜏 = 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ ; dimensionless yawing moment 𝑀𝑧 |𝑀𝑧,𝑒|⁄ ; location 𝑦𝐶𝑂𝑉 𝑏𝑒⁄  along span. 

 
Noteworthy, in spite of a difference in the behavior of the distributions at the wing tip: the second 
derivative of the circulation is zero for the 5/2-power distribution and infinite for the “optimum-optimo-
rum” (red) distribution. For induced-drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ = 0.8, the wing tip of the 5/2-power distribution is 

located in between that of the “optimum-optimorum” distribution (red) and that of the “barrier” distrib-
ution (green). At the wing tip of the latter distribution both first and second derivative of the distribution 
are zero, which in order to preserve the prescribed lift, forces the wing tip to a more outboard location 
than the tip of the “optimum-optimorum” distribution.  
The table in Figure 17 provides the numerical data for the performance indicators. Clearly, the 
“stretched” elliptic distribution, in spite of its shorter span, leads to substantial higher values of the 
root-bending-moment 𝑀𝑥 𝑀𝑥,𝑒⁄  and the span-integrated section-bending-moment 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ , as well 

as the magnitude of the yawing-moment 𝑀𝑧 |𝑀𝑧,𝑒|⁄ . The “optimum-optimorum” distribution (red) and 

the 5/2-power distribution (blue) result in the lowest values of the root-bending-moment 𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄ , 

the span-integrated section-bending-moment 𝜏 = 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄  and the magnitude of the yawing moment 

𝑀𝑧 |𝑀𝑧,𝑒|⁄ . For these two distributions the root-bending moments differ 0.0016 (0.16%), the span-inte-

grated section-bending-moments are identical and the yawing moments differs 0.0210 (4.7%).  
The center of the vortex distribution COV, which is approximately the center of roll-up of the trailing 
vortex wake, is most inboard, at 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄ = 0.6802, i.e., 𝑦𝐶𝑂𝑉 0.5𝑏⁄ = 0.3927, for the very stretched 
“barrier” circulation distribution (green triangle). The COV of the other three bell-shaped distributions 
are at 𝑦𝐶𝑂𝑉 0.5𝑏⁄ = 0.5236, 0.4909 and 0.5890, for the “optimum-optimorum” distribution (red), 5/2-
power distribution and 3/2-power distribution, respectively, so, around 50% semi-span of these dis-
tributions. The stretched-elliptic distribution has its COV at 𝑦𝐶𝑂𝑉 0.5𝑏⁄ = 0.7854, about three-quarter 
semi-span, i.e., much closer to the wing tip than the COV of the bell-shaped distributions. 
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Comparison at equal lift and equal span 
An alternative to compare results for equal induced drag, is to consider the span of the wing fixed and 
determine the performance of the four bell-shaped distributions. The span of the wing with the 5/2-
power distribution of the circulation has been chosen as the reference case. So, all wings have di-
mensionless span 𝜎 = 𝑏 𝑏𝑒⁄  = 1.5. Subsequently the last row in Table 10 gives 𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄  and 𝜏 =

𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ , different for each distribution. Figure 18 presents the plot with the distributions as function 

of 𝑦 0.5𝑏𝑒⁄ . In addition, the Table in Figure 18 gives the numerical values of the aerodynamic perform-
ance indicators: induced drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ , root-bending-moment 𝑀𝑥 𝑀𝑥,𝑒⁄ , span-integrated section-bend-

ing-moment 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ , as well as the magnitude of the yawing-moment 𝑀𝑧 |𝑀𝑧,𝑒|⁄ . Also, the location 

of 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄ is listed in the table. 

                                     
 𝑳 𝑳𝒆 = 𝟏⁄  and 𝝈 = 𝒃 𝒃𝒆⁄ = 𝟏. 𝟓 

𝚪(𝜼)  𝝈 = 𝒃 𝒃𝒆⁄   𝑫𝒐𝒑𝒕 𝑫𝒆⁄   𝝀 = 𝑴𝒙 𝑴𝒙,𝒆⁄   𝝉 = 𝑴𝒙,𝟐 𝑴𝒙,𝟐,𝒆⁄   𝑴𝒛 |𝑴𝒛,𝒆|⁄   𝒚𝑪𝑶𝑽 𝟎. 𝟓𝒃𝒆⁄   

𝟒

𝟑𝝈
(𝟏 − 𝜼𝟐)𝟑 𝟐⁄   1.5 0.5926 1.2 1.5 -0.4571 0.8836 

𝟑

𝝈

𝟏

𝟐
[√𝟏 − 𝜼𝟐 − 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
]  

1.5 0.6667 1.125 1.35 -0.3897 0.7854 

𝟏𝟐

𝝈

𝟏

𝟐
[√𝟏 − 𝜼𝟐 − 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
−

𝟐

𝟑
(𝟏 − 𝜼𝟐)𝟑 𝟐⁄ ]  

1.5 1.0667 0.9 0.9 -0.3534 0.5891 

𝟖

𝟓𝝈
(𝟏 − 𝜼𝟐)𝟓 𝟐⁄   1.5 0.8 1.0286 1.125 -0.4479 0.7363 

𝟏

𝝈
√𝟏 − 𝜼𝟐  1.5 0.4444 1.5 2.25 -0.6667 1.1781 

Figure 18 – Top: Optimal distributions of circulation Γ(𝑦 0.5𝑏𝑒)⁄ /Γ0,𝑒, see Figure 16. Bottom: Upwash distribution 

[𝑤𝑖𝑛(𝑦 0.5𝑏𝑒)/𝑈∞⁄ ]/(Γ0,𝑒 𝑈∞⁄ 𝑏𝑒). Solid-black curve: 3/2-power distribution (1); solid-red curve: “optimum-opti-

morum” distribution (2); solid-green curve: “barrier” distribution (3), and; dashed-blue curve: additional, 5/2-
power bell-shaped distribution (4). Black-dotted curve: stretched elliptic circulation distribution. Solid red triang-
ular symbol on horizontal axis indicates location wing tip for all 5 distributions: 𝑦 0.5𝑏𝑒⁄ = 1.5. Open triangular 
symbols indicate location COV. Table provides numerical values for: dimensionless span 𝜎 = 𝑏 𝑏𝑒⁄ ; dimension-
less induced drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ ; dimensionless root-bending moment 𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄ ; dimensionless span-integrated 

section-bending-moment 𝜏 = 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ ; dimensionless yawing moment 𝑀𝑧 |𝑀𝑧,𝑒|⁄  and; location COV. 

 
The top plot in Figure 18 shows that near the wing tip the black (1) 3/4-power distribution and the red 
(3) “optimum-optimorum” distribution behave similarly: at the wing tip zero function value and zero 
first derivative, but a square-root singularity in the second derivative of the distribution. Near the wing 
tip the 3/2-power distribution (1) is above the “optimum-optimorum” distribution. In the wing-root 
region this is the other way around. The 5/2-power distribution (4) and the “barrier” distribution (2) 
behave in a similar fashion, although at the wing tip, these two distributions have, apart from zero 
function value and zero first derivative, in addition zero second derivative. The lower plot in Figure 18 
presents the upwash distributions corresponding with the circulation distributions. Note that also a 
small part of the distribution for 𝜂 > 1 has been included, revealing the continuation of the upwash 
distribution outboard of the wing tip. Note that the section-induced-drag equals minus section-circu-
lation times section-upwash. Since the circulation always has positive sign, negative section-upwash 
corresponds to positive section drag and positive section upwash corresponds to negative section-
drag (i.e., section-thrust). For example, in case of the “barrier” distribution (green), section-drag is 
negative in the region between 𝑦 0.5𝑏𝑒⁄  = 0.65 and the tip at 𝑦 0.5𝑏𝑒⁄  = 1.5. However, since the 
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section-circulation has high values in the inboard part of the span, the section-thrust is not large 
enough to render the overall induced drag small, i.e., 𝐷𝑜𝑝𝑡 𝐷𝑒⁄  = 1.0667. The other three bell-shaped 

distributions do result in a sizable reduction of the induced drag.  
The induced drag of the 3/2-power distribution is lower than that of the “optimum-optimorum” distrib-
ution, which is associated with the lower strength of the vortex distribution 𝛾𝑥 (minus first derivative 
circulation) of the 3/2-power distribution in the mid semi-span region. Similarly, the induced drag of 
the “barrier” distribution (2) is higher (even > 1) than that of the 5/2-power distribution (4) because of 
the higher strength of the vortex distribution in the mid semi-span region. Clearly, the induced drag of 
the stretched-elliptic distribution is lowest because of the low level of circulation in the root region of 
the wing. However, the magnitude of the root-bending-moment, the span-integrated section-bending-
moment and the yawing moment are substantially larger than those of the bell-shaped distributions.  
As far as the COV is concerned, the “barrier” distribution (green) has its COV most inboard, at 
𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄  = 0.5891, i.e., 𝑦𝐶𝑂𝑉 0.5𝑏⁄  = 0.3927= 𝜋 8⁄ . The COV of the stretched-elliptic distribution is 

most outboard at 𝑦𝐶𝑂𝑉 0.5𝑏⁄  = 0.7854 = 𝜋 4⁄ . The remaining three bell-shaped distribution have their 
COV around 𝑦𝐶𝑂𝑉 0.5𝑏𝑒⁄  = 0.8, i.e., 𝑦𝐶𝑂𝑉 0.5𝑏⁄  = 0.53 = 𝜋 6⁄   

                                       
 𝑳 𝑳𝒆 = 𝟏⁄  and 𝑴𝒙 𝑴𝒙,𝒆⁄ = 𝝀 = 𝟏. 𝟎𝟓 

𝚪(𝜼)  𝝈 = 𝒃 𝒃𝒆⁄   𝑫𝒐𝒑𝒕 𝑫𝒆⁄   𝝀 = 𝑴𝒙 𝑴𝒙,𝒆⁄   𝝉 = 𝑴𝒙,𝟐 𝑴𝒙,𝟐,𝒆⁄   𝑴𝒛 |𝑴𝒛,𝒆|⁄   𝒚𝑪𝑶𝑽 𝟎. 𝟓𝒃𝒆⁄   

𝟒

𝟑𝝈
(𝟏 − 𝜼𝟐)𝟑 𝟐⁄   1.3125 0.7740 1.05 1.1484 -0.5225 0.7731 

𝟑

𝝈

𝟏

𝟐
[√𝟏 − 𝜼𝟐 − 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
]  

1.4 0.7653 1.05 1.1760 -0.4175 0.7330 

𝟏𝟐

𝝈

𝟏

𝟐
[√𝟏 − 𝜼𝟐 − 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
−

𝟐

𝟑
(𝟏 − 𝜼𝟐)𝟑 𝟐⁄ ]  

1.75 0.7837 1.05 1.225 -0.3029 0.6872 

𝟖

𝟓𝝈
(𝟏 − 𝜼𝟐)𝟓 𝟐⁄   1.5313 0.7677 1.05 1.1724 -0.4388 0.7517 

𝟏

𝝈
√𝟏 − 𝜼𝟐  1.05 0.9070 1.05 1.1025 -0.9524 0.8247 

Figure 19 – Top: Optimal distributions of circulation Γ(𝑦 0.5𝑏𝑒)⁄ /Γ0,𝑒, see Figure 16. Bottom: Upwash distribution 

[𝑤𝑖𝑛(𝑦 0.5𝑏𝑒)/𝑈∞⁄ ]/(Γ0,𝑒 𝑈∞⁄ 𝑏𝑒). Solid-black curve: 3/2-power distribution (1); solid-red curve: “optimum-opti-

morum” distribution (2); solid-green curve: “barrier” distribution (3), and; dashed-blue curve: additional, 5/2-
power bell-shaped distribution (4). Black-dotted curve: stretched elliptic circulation distribution. Solid red triang-
ular symbols on horizontal axis indicate location wing tips. Open triangular symbols indicate location COV. 
Table provides numerical values for: dimensionless span 𝜎 = 𝑏 𝑏𝑒⁄ ; dimensionless induced drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ ; dimen-

sionless root-bending moment 𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄ ; dimensionless span-integrated section-bending-moment 

𝜏 = 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ ; dimensionless yawing moment 𝑀𝑧 |𝑀𝑧,𝑒|⁄  and; location COV along span of wing. 

 

For the case that the four bell-shaped circulation distribution have equal root-bending moment 𝜆 =
𝑀𝑥 𝑀𝑥,𝑒⁄ =1.05, the circulation distributions are close to each other, but for the wing-tip region, where 

the differences in the tip conditions affect the wing span 𝜎 = 𝑏 𝑏𝑒⁄ . The induced drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄  of the 

four bell-shaped distributions does not differ very much, all are in the narrow range [0.7677,0.7837]. 
Actually, this was already evident from the results for 𝑀𝑥 𝑀𝑥,𝑒⁄  vs. 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ , presented in Figure 16, 

which illustrate the closeness of the curves for the four bell-shaped distributions. The induced drag of 
𝐷𝑜𝑝𝑡 𝐷𝑒⁄  = 0.9070 for the stretched-elliptic distribution is 15% above that of the bell-shaped distribu-

tions. Similarly, the results in Figure 17 for constant induced drag show values of 𝑀𝑥 𝑀𝑥,𝑒⁄  that are 

within a narrow band in the (𝐷𝑜𝑝𝑡 𝐷𝑒 ,⁄ 𝑀𝑥 𝑀𝑥,𝑒⁄ )-plane. In the table in Figure 19, the values of the span-
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integrated section-bending-moment 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄  of the bell-shaped circulation distributions are within a 

slightly wider band. The results for the smallest-span 3/2-power (black) distribution are the best. 

                                       
 𝑳 𝑳𝒆 = 𝟏⁄  and 𝑴𝒙,𝟐 𝑴𝒙,𝟐,𝒆⁄ = 𝝉 = 𝟏. 𝟏 

𝚪(𝜼)  𝝈 = 𝒃 𝒃𝒆⁄   𝑫𝒐𝒑𝒕 𝑫𝒆⁄   𝝀 = 𝑴𝒙 𝑴𝒙,𝟐,𝒆⁄   𝝉 = 𝑴𝒙,𝟐 𝑴𝒙,𝟐,𝒆⁄   𝑴𝒛 |𝑴𝒛,𝒆|⁄  𝒚𝑪𝑶𝑽 𝟎. 𝟓𝒃𝒆⁄   

𝟒

𝟑𝝈
(𝟏 − 𝜼𝟐)𝟑 𝟐⁄   1.2845 0.8081 1.0276 1.1 -0.5338 0.7566 

𝟑

𝝈

𝟏

𝟐
[√𝟏 − 𝜼𝟐 − 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
]  

1.3540 0.8182 1.0155 1.1 -0.4317 0.7090 

𝟏𝟐

𝝈

𝟏

𝟐
[√𝟏 − 𝜼𝟐 − 𝜼𝟐𝐥𝐧

𝟏+√𝟏−𝜼𝟐

|𝜼|
−

𝟐

𝟑
(𝟏 − 𝜼𝟐)𝟑 𝟐⁄ ]  

1.6583 0.8772 0.9950 1.1 -0.3197 0.6512 

𝟖

𝟓𝝈
(𝟏 − 𝜼𝟐)𝟓 𝟐⁄   1.4832 0.8182 1.0171 1.1 -0.4530 0.7281 

𝟏

𝝈
√𝟏 − 𝜼𝟐  1.0488 0.9091 1.0488 1.1 -0.9535 0.8237 

Figure 20 – Top: Optimal distributions of circulation Γ(𝑦 0.5𝑏𝑒)⁄ /Γ0,𝑒, see Figure 16. Bottom: Upwash distribution 

[𝑤𝑖𝑛(𝑦 0.5𝑏𝑒)/𝑈∞⁄ ]/(Γ0,𝑒 𝑈∞⁄ 𝑏𝑒). Solid-black curve: 3/2-power distribution (1); solid-red curve: “optimum-opti-

morum” distribution (2); solid-green curve: “barrier” distribution (3), and; dashed-blue curve: additional, 5/2-
power bell-shaped distribution (4). Black-dotted curve: stretched elliptic circulation distribution. Solid red triang-
ular symbol on horizontal axis indicates location wing tip for all 5 distributions: 𝑦 0.5𝑏𝑒⁄ = 1.5. Open triangular 
symbols indicate location COV. Table provides numerical values for: dimensionless span 𝜎 = 𝑏 𝑏𝑒⁄ ; dimension-
less induced drag 𝐷𝑜𝑝𝑡 𝐷𝑒⁄ ; dimensionless root-bending moment 𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄ ; dimensionless span-integrated 

section-bending-moment 𝜏 = 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ ; dimensionless yawing moment 𝑀𝑧 |𝑀𝑧,𝑒|⁄  and; location COV. 

 
Finally, Figure 20 presents the comparison of the aerodynamic performance of the four bell-shaped 
distributions for the case the span-integrated section-bending-moment is kept the same for each dis-
tribution at 𝜏 = 𝑀𝑥,2 𝑀𝑥,2,𝑒⁄ = 1.1. For this case the induced drag for all bell-shaped distributions but the 

“barrier” distribution, falls within the narrow band [0.8081,0.8182]. The “barrier” distribution, with its 
longer span, features a 6% higher induced drag, while the stretched-elliptic distribution’s induced drag 
is 10% higher. The table in Figure 20 also shows that the variation in the root-bending-moment 
𝜆 = 𝑀𝑥 𝑀𝑥,𝑒⁄  is small.  

 

4 Prandtl-D wing 

In the literature the aerodynamics of the so-called Prandtl-D wing has received quite some attention. 

Such a flying wing has a bell-shaped distribution of the circulation: the 3/2-power distribution.  

       
From the report of Bowers [6] the specification of the trapezoidal wing of the RC sub-scale flying-
wing aircraft (25% Horten H Xc glider) has been extracted as: 
Span:  𝑏 = 3.7356 m; 
Chord:  𝑐(𝜂) = 𝑐𝑟(1 − |𝜂|) + 𝑐𝑡|𝜂|, with 𝑐𝑟 = 0.4m and 𝑐𝑡 = 0.1m, so that 𝑐̅ = 0.25m;            (22a) 

Aspect ratio: AR = 14.9422; 
Sweep:  not taken into account in present study; 
Wing dihedral: not taken into account in present study. 
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The specified data on root-section and (symmetric) tip section have been used to determine, using 
a panel method, the zero-lift angle of attack as: 

𝛼0(𝜂) = −0.1178(1 − |𝜂|) deg.                (22b) 
The list with the distribution of the wing-twist angle has been least-squares fitted in the third-degree 
polynomial: 

𝛽(𝜂) = 8.2580 + 6.1981|𝜂| − 12.8295|𝜂|2 − 3.5759|𝜂|3              (22c) 

                                   
Figure 21 – Prandtl-D wing: section wing-twist angle 𝛽(𝜂).  
 

Figure 21 shows the excellent agreement of the present fit with the data from Bowers’ report [6], with 
the L2-norm of the difference equal to 0.01 deg. The geometric twist of the wing increases the section 
angle of attack in the root section and lowers it in the tip region. Such type of distribution of 𝛽(𝜂), with 
unloading the tip region, is necessary to generate a bell-shaped distribution of the circulation. 
 
Now all data, except the angle-of-attack 𝛼 of the wing, required to solve Prandtl’s Lifting-line integro-
differential equation (1c) is available. In dimensionless form Prandtl’s equation becomes: 

Γ(𝜂)

𝑈∞𝑐̅
=

1

2

𝑐(𝜂)

𝑐̅
𝑎0[𝛼 − 𝛼0(𝜂) + 𝛽(𝜂) +

𝑤𝑖𝑛(𝜂)

𝑈∞
], for |𝜂| < 1 and Γ(|𝜂| ↑ 1) = 0,              (23a) 

with 𝑎0 the slope of the 2D-section-lift curve, chosen here as a constant 𝑎0 = 2𝜋. 

The upwash 𝑤𝑖𝑛(𝜂), induced at the lifting line by the wake vortex sheet downstream of the lifting line, 
expressed as the Cauchy-Principle-Value integral, follows from Eq. (1d) as 

𝑤𝑖𝑛

𝑈∞
(|𝜂| < 1) =

1

4𝜋
CPV∫

𝛾𝑥

𝑈∞
(𝜂′)

𝑑𝜂′

𝜂−𝜂′

1

−
.                 (23b) 

The x-component of the wake vortex distribution equals 
𝛾𝑥(𝜂′)

𝑈∞
= −

2

AR

𝑑

𝑑𝜂′

Γ(𝜂′)

𝑈∞𝑐̅
(𝜂′).             (23c) 

Eq. (23a) is solved numerically employing a second-order panel method that provides the solution 
in the form of function value, first and second derivative of the circulation at the midpoints of the 
panels used to discretise the lifting line.  

Eq. (23) has been applied for a sequence of angles-of-attack, for which the lift coefficient and the 
induced-drag coefficient have been obtained, see Figure 20. 

        
Figure 22 – Prandtl-D wing: Lift coefficient 𝐶𝐿 = 𝐿/𝑞∞𝑏𝑐̅ and induced-drag coefficient 𝐶𝐷 = 𝐷/𝑞∞𝑏𝑐̅ vs. angle-
of-attack 𝛼.  

 
Figure 22 shows, as expected, the linear dependence of the lift coefficient 𝐶𝐿 on angle-of-attack 𝛼 
and the quadratic dependence of induced drag on angle-of-attack 𝛼 and thus on lift coefficient 𝐶𝐿. 

The numerical results show that the zero-lift angle-of-attack of the wing 𝛼𝐿=0 is close to -7.3 deg, 
while the design lift coefficient, according to Bowers [6], is 𝐶𝐿,𝑑𝑒𝑠𝑖𝑔𝑛= 0.6, which is achieved for 𝛼 = -

1 deg. The slope of the lift curve is 𝑑𝐶𝐿 𝑑𝛼⁄ = 1.74𝜋. The results in Figure 22 correlate with the wind-
tunnel data of Zelenka et al. [31] (Figure 5) acquired for a Prandtl-D test model, at 𝑅𝑒𝑚.𝑎.𝑐.= 210k. 
 
The distribution of the circulation and the distribution of the upwash, computed for design condition 
𝐶𝐿,𝑑𝑒𝑠𝑖𝑔𝑛= 0.6, are presented in Figure 23.  
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Figure 23 – Prandtl-D wing at 𝐶𝐿,𝑑𝑒𝑠𝑖𝑔𝑛= 0.6. Left: Distribution dimensionless circulation Γ(𝜂)/𝑈∞𝑐̅ vs. 𝜂 =

𝑦 /0.5𝑏. Middle: Distribution dimensionless upwash 𝑤𝑖𝑛(𝜂)/𝑈∞ vs. 𝜂 = 𝑦 /0.5𝑏. Right: Table with coefficients 
in series expansion circulation and upwash distributions. Black open circles: numerical solution. Solid red 
curve: Four term least-squares fit. Number of panels: 𝑁 = 80. 
 

In order to obtain insight in the character of the found circulation distribution, the numerical solution 
has been subjected to a least-squares fit consisting of four terms, for the circulation distribution: 

Γ(𝜂)

𝑈∞𝑐̅
= 𝐴0(1 − 𝜂2)1 2⁄ + 𝐴2(1 − 𝜂2)3 2⁄ + 𝐴4(1 − 𝜂2)5 2⁄ + 𝐴6(1 − 𝜂2)7 2⁄ .             (24a) 

Using the expressions for the upwash induced by each of these terms yields:  
𝑤𝑖𝑛(𝜂)

𝑈∞
=

−1

2AR
[𝐴0 + 3𝐴2(−

1

2
+ 𝜂2) + 5𝐴4(

3

8
−

3

2
𝜂2 + 𝜂4) + 7𝐴6(

5

16
−

15

8
𝜂2 +

5

2
𝜂4 − 𝜂6)]             (24b) 

L2-norm fit circulation distribution: 1.37×10-3 and upwash distribution: 1.41×10-3, respectively. 

Figure 23 shows that the circulation distribution generated for the prescribed wing planform and 
prescribed Δ𝛼 = 𝛼 − 𝛼0(𝜂) + 𝛽(𝜂) is indeed a bell-shaped distribution, e.g., compare Figure 23 and 
black lines in Figure 20. The least-squares four-term fit consisting of the elliptic distribution and three 
bell-shaped distributions illustrates that indeed, the dominating term is Horten’s bell-shaped distrib-
ution 𝐴2(1 − 𝜂2)3 2⁄ . 

The series for the upwash, Eq. (24b), consists of the polynomial upwash generated by the corres-
ponding terms in Eq. (24a). The first three have been calculated in section 3. Computing the 7/2-
power term requires some algebra, but is not too cumbersome, see also Appendix C. Note that the 
order of the even-degree polynomials in the expression for the upwash corresponds to the order of 
the corresponding terms in the circulation distribution written as (1 − 𝜂2)(𝑘+1) 2⁄ = 𝑃2𝑘(𝜂)(1 − 𝜂2)1 2⁄ , for 
k = 0, 2, 4 and 6. 
 
Determination distribution required twist 
So far, the aerodynamic analysis of the Prandtl-D wing has been carried out for the distribution of 
the section twist angle 𝛽(𝜂), specified in Figure 19. Subsequently it was shown that the resulting 
distribution of the circulation is dominated by the bell-shaped distribution (1 − 𝜂2)3 2⁄  In a wing-design 
process, one has to determine the distribution of the twist angle 𝛽(𝜂) that generates the bell-shaped 
circulation distribution. This process would determine the twist angle distribution from Prandtl’s inte-
gro-differential equation, Eq. (23a), by substituting: 

1. the required circulation distribution Γ(𝜂) = Γ2(1 − 𝜂2)3 2⁄ ; 

2. the corresponding upwash distribution 
𝑤𝑖𝑛(𝜂)

𝑈∞
=

−1

2AR
Γ2(−

1

2
+ 3𝜂2); 

3. the chosen distribution of the section chord 𝑐(𝜂); and 
4. the chosen distribution of the section zero-lift angle 𝛼0(𝜂). 
For the present case one obtains: 

Δ𝛼(𝜂) = 𝛼 − 𝛼0(𝜂) + 𝛽(𝜂) =
Γ2

𝑈∞𝑐̅
[

2

𝑎0

𝑐̅

𝑐(𝜂)
(1 − 𝜂2)3/2 +

3

2𝐴𝑅
(
1

2
− 𝜂2)], with 𝐴𝑅 = 𝑏/𝑐̅. 

From Table 3 it follows, with Γ20 = 0, Γ22 = Γ2 and 
Γ2

𝑈∞𝑐̅
=

8

3𝜋
𝐶𝐿, that, with Eq. (20n): 

Δ𝛼(𝜂) =
8

3𝜋
𝐶𝐿

1

2
(𝑐𝑟 + 𝑐𝑡) [

2

𝑎0

(1−𝜂2)3/2

𝑐𝑟(1−|𝜂|)+𝑐𝑡|𝜂|
+

3

2𝑏
(
1

2
− 𝜂2)]      (25) 

Substituting 𝐶𝐿 = 0.6, 𝑐𝑟 = 0.4m, 𝑐𝑡 = 0.1m, 𝑎0 = 2𝜋 and 𝑏 =  3.7356m yields the curve for Δ𝛼(𝜂) in 
Figure 24. Adding 𝛼0(𝜂), given in Eq. (22b) and subtracting the design angle-of-attack of -1 deg, 
results in the desired curve for 𝛽(𝜂). 

k 𝐴𝑘  

0 -0.05068 

2 0.582149 

4 0.002621 

6 -0.01013 
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Figure 24 – Prandtl-D wing at 𝐶𝐿,𝑑𝑒𝑠𝑖𝑔𝑛= 0.6, 𝛼𝑑𝑒𝑠𝑖𝑔𝑛 = −1 deg: Comparison computed distribution desired wing 

twist angle 𝛽(𝜂), required to generate bell-shaped circulation distribution, with distribution used by Bowers [6]. 

Also presented Δ𝛼(𝜂) = 𝛼 − 𝛼0(𝜂) + 𝛽(𝜂). 
 
Figure 24 presents the results for the desired wing twist angle vs. 𝜂. The agreement with the distrib-
ution used by Bowers [6] is quite reasonable. Only in the tip region the two results diverge giving a 
difference of 1 degree at the tip. 
 

5. Wing Robotic Bird Robird 
The wind-tunnel model of the Robird (Figure 1f) is a wing-only half-model. Its spanwise distribution of 
the chord c(y) (Figure 25) has been simplified to a piece-wise linear distribution, symmetric with res-
pect to the plane-of-symmetry 𝑦 = 0. The semi-span is subdivided in three parts, see Figure 25: 

𝑦 ∈ [0.0, 0.182] m     : 𝑐(𝑦) = 0.2 m 
𝑦 ∈ [0.182, 0.476] m: 𝑐(𝑦) = [0.200(0.476 − 𝑦) + 0.102(𝑦 − 0.182)]/0.294 m 

𝑦 ∈ [0.476, 0.560] m: 𝑐(𝑦) = [0.102(0.560 − 𝑦) + 0.010(𝑦 − 0.476)]/0.084 m 

Figure 25 provides the dimensions of the wing planform.  
 

 
Figure 25 - Spanwise distribution of chord 𝑐(𝑦/0.5𝑏) of simplified planform of wind-tunnel model Robird. Table 
provides the main geometric parameters. 
 
In the present analysis the gap between the root of the wing and the wall of the wind tunnel is closed 
for reasons of convenience of modeling. Therefore, the span of the wing of the simplified configura-
tion extends from the plane of symmetry 𝑦 = 0 to the tip of the wing. 
Furthermore, it is assumed that: 

Section zero-lift angle-of-attack 𝛼0(𝑦) = −5 deg is constant; 

Section twist angle 𝛽(𝑦) = 0; and  
Angle of attack, equal to wing pitch angle, is in the range 𝛼 = −10(5)15 deg. 
 

In the left plot of Figure 26 the symbols denote the spanwise distribution of the dimensionless circu-
lation Γ(𝑦 0.5𝑏⁄ ) 𝑈∞𝑐̅⁄  as numerically solved from Eq. (24a) for 𝛼 = 5 deg. The red solid line repre-

sents the four-term least-squares fit, in terms of the sum 𝐴2𝑘(1 − 𝜂2)(𝑘+1) 2⁄ , 𝑘 = 0, 2, 4 and 6 of the 
calculated circulation distribution. This fit agrees quite well with the numerical solution. The coeffici-
ents in the expansion have been determined through the least-squares fit and are listed in the table 
in Figure 26. It shows that the first three terms are dominant, i.e., the elliptic and two bell-shaped 
distributions: the 3/2-power and the 5/2-power distributions. Rewriting the circulation distribution in 
terms of a polynomial times the square-root yields 𝐵2𝑘𝜂

2𝑘(1 − 𝜂2)1 2⁄ , with 𝑘 = 0, 2, 4 and 6. It reveals 
that the first term, 𝐵0(1 − 𝜂2)1 2⁄ , with 𝐵0 = 𝐴0 + 𝐴2 + 𝐴4 + 𝐴6, is the dominant term. 
 

b 1.12 m 

c(0) 0.2 m 

𝒄̅  0.1527 m 

AR 7.34 
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Figure 26 - Lifting-line solution for gliding flight Robird. Left: Spanwise distribution circulation Γ 𝑈∞𝑐̅⁄  vs. 𝜂 =
𝑦/0.5𝑏. Symbols denote numerical solution (N = 80); red lines denote four-term least-squares fits based on 

Eqs. (24a, b). Right: spanwise distribution induced upwash 𝑤𝑖𝑛 𝑈∞⁄  vs. 𝜂 = 𝑦/0.5𝑏. 𝛼 = 5 deg, 𝛼0 = −5 deg. 
Table provides constants 𝐵𝑘, k = 0, 2, 4, 6 in Eqs. (24a, b). L2-norm fit equals 4.2×10-3 and 4.9×10-3 for the 
circulation distribution and the upwash distribution, respectively. 
 

Figure 26–right, shows that the four-term fit gives a reasonable match of the numerical solution of 
the upwash 𝑤𝑖𝑛(𝜂) 𝑈∞⁄ . Note that the numerical upwash distribution features discontinuities in the 
slope at locations at which the distribution of the chord 𝑐(𝜂) is slope-discontinuous, see Figure 25. 

                                    
Figure 27 - Lifting-line solution for gliding flight Robird. Spanwise distribution section drag coefficient 
𝑐𝑑(𝜂)𝑐(𝜂) 𝑐̅⁄  vs. 𝜂 = 𝑦/0.5𝑏. Symbols denote numerical solution; solid red line denotes four-term least-squares 

fit based on Eqs. (24a, b). 𝛼 = 5 deg, 𝛼0 = −5 deg. N = 80. 

 
The distribution of the section-drag coefficient 𝑐𝑑(𝜂)𝑐(𝜂) 𝑐̅⁄ = −2 [𝑤𝑖𝑛(𝜂) 𝑈∞⁄ ][Γ(η) 𝑈∞𝑐̅⁄ ], see Table 1, 
is presented in Figure 27, derived from the numerical solution (symbols), as well as from Eqs. (24a, 
b) (red line). This shows that the four-term least-squares fit of the product of the circulation distribu-
tion and that of the upwash distribution, matches the numerical results quite reasonably (L2-norm 
difference equals 3.3×10-3). The location of the slope discontinuities corresponds to the location of 
the discontinuities in the chord distribution 𝑐(𝜂). Note that the section drag is positive along almost 
the entire span, only very close to the wing tips the section-drag turns into section-thrust. However, 
as illustrated in [9], [32], for the case of flapping flight. the Robird generates, cycle-integrated, not 
only lift, but also thrust, as shown by utilising the unsteady-flow extension of the lifting-line theory. 

      
Figure 28 - Lifting-line solution for gliding flight Robird. Left: Overall lift coefficient 𝐶𝐿 as function of angle-of-
attack α, calculated from numerical solution. Right: Overall (induced) drag coefficient 𝐶𝐷 as function of angle-

of-attack, calculated from numerical solution. 𝛼0 = −5 deg. N = 80. 
 

In Figure 28 the overall lift coefficient 𝐶𝐿 and the overall (induced-)drag coefficient 𝐶𝐷 are presented 
as function of angle-of-attack 𝛼, derived from the numerical values obtained from the method based 

on the lifting-line theory. The lift coefficient is linear in terms of 𝛼 − 𝛼0, the induced drag coefficient 
is quadratic in 𝛼 − 𝛼0. i.e., quadratic in lift coefficient 𝐶𝐿. Given the numerical data, or using the 

expressions from the 4-term fit of the circulation distribution, the lift coefficient 𝐶𝐿 and the induced-

k 𝐴𝑘  

0 0.43063 

2 0.33502 

4 -0.3493 

6 0.14641 
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drag coefficient 𝐶𝐷 can be expressed to give a perfect fit, as  

𝐶𝐿 =
𝑎0

1+
𝑎0

𝜋AR𝑒ℓ

(𝛼 − 𝛼0), and 𝐶𝐷 =
𝐶𝐿

2

𝜋AR𝑒𝑑
, respectively,       (26) 

with the span-efficiencies for lift and drag, 𝑒ℓ = 0.9594 and 𝑒𝑑 = 0.9642, respectively.  
 

6. Vortex Wake Roll-Up 

The distribution of the circulation Γ(𝜂) of the lifting line, or rather, the associated vortex distribution 
𝛾𝑥(𝑦)

𝑈∞
=

−1

𝑈∞

𝑑

𝑑𝑦
Γ(𝑦) along the span, determines not only the flow field, it also determines the way in which 

the vortex wake rolls up. In the present notation 
𝛾𝑥(𝜂)

𝑈∞
=

Γ0,𝑒

𝑈∞𝑏𝑒

−2

𝜎

𝑑

𝑑𝜂

Γ(𝜂)

Γ0,𝑒
. To get insight in the tendency of 

the wake to roll up, consider the induced velocity at points along the lifting line |𝜂| < 1 and at points 

on its extension from the wing tip outwards |𝜂| > 1. Considered are three cases: Stretched elliptic 
circulation distribution, the 3/2-power bell-shaped distribution and the 5/2-power bell-shaped distribu-
tion, i.e., a selection from the solutions presented in Figure 18.  

Table 11 – Expressions for elliptic and two bell-shaped distributions: Circulation distribution Γ(𝜂) Γ0,𝑒⁄ ; vortex 

distribution [ 𝛾𝑥(𝜂) 𝑈∞⁄ ] [Γ0,𝑒 𝑈∞𝑏𝑒]⁄⁄  and upwash distribution [ 𝑤𝑖𝑛(𝜂) 𝑈∞⁄ ] [Γ0,𝑒 𝑈∞𝑏𝑒]⁄⁄  along lifting line (|𝜂| < 1) 
and along extensions (|𝜂| > 1).  

 

The expressions for the induced upwash were included in Tables 2 - 8. Table 11 provides a summary 
of the expressions for circulation distribution Γ(𝜂), the vortex distribution 𝛾𝑥(𝜂) and the upwash dis-

tribution 𝑤𝑖𝑛(𝜂) for the three cases considered. The lift (𝐿/𝑞
∞
𝑏𝑒

2)/(Γ0,𝑒/𝑈∞𝑏𝑒) = 𝜎∫ [Γ(𝜂) Γ0,𝑒⁄ ]𝑑𝜂
1

−1
 and span 

𝑏 are identical for these three distributions. The distribution of the circulation and of the upwash along 
the wing span were presented in Figure 18. For the sake of completeness, Figure 29 again presents 
the vortex distribution along the wing span, as well as the induced upwash distribution not only along 
the wing span but also along its outward extension.  

                        
Figure 29 – Comparison of vortex distributions and upwash distributions induced by elliptic and two bell-
shaped circulation distributions, see Table 11. Note that the dimensionless spanwise coordinate, for these 
wings of equal span 𝑏, is chosen as 𝜂 = 𝑦 𝑏⁄ , with 𝜎 = 𝑏 𝑏𝑒⁄ = 1.5. The red triangle denotes the location of the 
wing tip, the open triangles denote the location of COV, the center of the vortex distribution. 
 

 Elliptic 3/2-power bell-shaped 5/2-power bell-shaped 
Γ(𝜂)
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8
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2

𝜎
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𝑈∞
/

Γ0,𝑒

𝑈∞𝑏𝑒
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𝜎

−1
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−1
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3

8
−

3

2
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𝑈∞
/

Γ0,𝑒
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𝜎
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Figure 29 shows that the upwash is (negative-)constant along the span; quadratic, partly negative, 
partly positive; and quartic, partly negative, partly positive, for the elliptic, 3/2-power and 5/2-power 
distributions. The latter two are bell-shaped circulation distributions. For all three distributions, along 
the extension of the lifting line, the upwash tends to zero quite quickly.  
For the stretched-elliptic distribution the upwash distribution is discontinuous, as well as singular at 
the wing tip, when approaching the tip along the extension from outside. For the 3/2-power distribution, 
for which at the wing tip the vortex distribution is zero, but its derivative is infinite and discontinuous, 
the upwash distribution is continuous, but its derivative is discontinuous across |𝜂| = 1. For the 5/2-
power distribution for which at the wing tip the vortex distribution is zero in function value and in its 
first derivative, the upwash distribution is continuous in function value and in its first derivative, result-
ing in a relatively smooth upwash distribution.  

 

Remarkably, the upwash distribution presented by Bowers et al. [6] (Figure 1b, page 2) for the 3/2-
power bell-shaped circulation distribution is quite different near the wing tip for |𝜂| > 1. As also stated 
in their text, the upwash distribution is not only continuous in function value, but also in its first deri-
vative, which is not the case in our analysis. Unfortunately for |𝜂| > 1 a formula for the upwash distrib-
ution has not been provided in their report. 
 
In the context of lifting-line theory, vortex wake roll-up is approximated by converting it to a 2D time-
dependent problem, in which the evolution is followed of the cross-section of a double-infinite, 𝑥 ∈
(−∞,∞), wake vortex sheet of constant cross-section, with 𝑡 ∝ 𝑏 𝑈∞⁄ . At each time step this results 

in a 2D flow field (𝑣,𝑤) in the plane of the cross-section The initial condition of the cross-section of 
the vortex sheet is the projection of the wing trailing edge on the cross-flow plane perpendicular to the 
𝑥-axis. At the next time step the cross-section of the wake vortex sheet is convected, within the cross-
sectional plane, with the local velocity induced by the 2D wake vortex sheet. This yields the updated 
shape of the cross-section of the wake vortex sheet. The vortex distribution is convected as an inva-
riant with the velocity field. Next the velocity field induced by the new shape of the wake vortex sheet 
is computed, the vortex sheet and vortex distribution are convected with the flow to their next position, 
etc. The method [33], [34] used to compute the velocity field induced by the wake-vortex sheet is a 
second-order panel method that employs a curvature-adaptive discretization scheme for 2D time-
dependent vortex sheets. The segmented vortex sheets include single and double-branched discrete 
vortices that represent tightly rolled-up parts of the vortex sheets. 

 
Figure 30 - Computed roll-up of starboard side of vortex wake for elliptic circulation distribution (left), 3/2-
power bell-shaped distribution (middle) and 5/2-power bell-shaped distribution of circulation (right). Amplitude 
distributions warrants equal lift and span. Here 𝜎 = 𝑏 𝑏𝑒⁄ = 1.5. The time step is kept constant. 

 

Figure 30- left shows results for the wake roll-up for the elliptic distribution of circulation. Since the 
velocity field is singular and discontinuous at the wing tip, see Figure 29, at the tip the wake rolls up 
instantaneously at t = 0+. For that problem Kaden [35] developed a similarity solution, that can be, or 
should be used, as initial de-singularised solution for the rolled-up vortex-wake spiral. Figure 30-left 
shows that for the elliptic circulation distribution, just one single-branch spiral wake-vortex evolves, 
located just outboard of the COV of the vortex distribution. As time progresses, more and more of the 
vortex distribution is convected into the spiral vortex core, which ultimately has circulation equal to 
Γ0,𝑒 𝜎⁄  and ends up at the location of the COV of the initial vortex sheet: 𝜂𝐶𝑂𝑉 = 𝑦𝐶𝑂𝑉/0.5𝑏 = 𝜋/4 ≈
0.785.  
Figure 30-middle gives the initial evolution for the 3/2-power bell-shaped circulation distribution. For 
this case at the wing tip the initial flow field is continuous, see Figure 29, with a weaker singularity 
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than for the elliptic circulation distribution. This is evident in the vortex sheet remaining smooth at the 
wing tip, i.e., no single-branched spiral-type of roll-up. For this case, the vortex distribution, e.g., see 
Figure 29, has a plateau region in the vortex distribution of maximum strength, around 𝜂 =
𝑦𝐶𝑂𝑉/0.5𝑏 ≈ 0.7. At this spanwise location the vortex sheet appears to feature a Kelvin-Helmholtz type 
of instability that results in two double-branched centers of roll-up, which rotate around 𝜂 ≈ 0.7. The 

COV for this vortex distribution is at 𝜂 = 𝑦𝐶𝑂𝑉/0.5𝑏 = 3𝜋/16 = 0.59, which, compared to the elliptic 
distribution, is further inboard. 
Figure 30-right presents the initial evolution of the roll-up of the wake-vortex sheet for the 5/2-power 
bell-shaped circulation distribution. For this case Figure 29 shows that at the wing tip the initial flow 
field is slope-continuous, with a singularity that is even weaker than for the 3/2-power bell-shaped 
circulation distribution. The vortex sheet remains smooth in the wing-tip region, with no tendency to 
roll-up. However, for this case the strength of the vortex distribution peaks near the mid-semi-span 
location, where a center of roll-up forms as a double-branched vortex, which ultimately collects all 
vorticity of the starboard side of the vortex sheet. The COV for this vortex distribution is, not surprising-
ly, at 𝜂 = 𝑦𝐶𝑂𝑉/0.5𝑏 = 5𝜋/32 = 0.49. 
 
Bembrekar et al. [36] analysed a constant-airfoil-section (NACA0012) wing of modest AR = 6.6667, 
𝑐𝑡 𝑐𝑟⁄  = 0.2 and sweep angle 𝛬 = 24deg. Similarly to Bowers [6], see section 4 above, the spanwise 
distribution of geometric twist was constructed such that the distribution of section-circulation is bell-
shaped: i.e., a 3/2-power distribution. A Vortex-Latice-Method was used to compute the wing-surface-
pressure distribution, lift and induced-drag. The roll-up of the wake-vortex-sheet of this wing is pre-
sented up to about 8 chord lengths behind the wing. This result illustrates the gradual development 
of a center of roll-up at about 2/3 semi-span, which is in reasonable agreement with the corresponding 
present result in Figure 30.  
 
Hammer & Garmann [37], [38] carried out RaNS computations for a Prandtl-D wing, see section 4 
above, with an aspect-ratio of 15.5 and slightly rounded wing tips. The distribution of the geometric 
twist ([37], Figure 3) is very similar to the distribution computed in the present study, see Figure 8, as 
is the 3/2-power bell-shaped distribution of the section-circulation. Contours of the vortical wake are 
shown in two crossflow-planes, i.e., at 0.5𝑐̅ and 2.82𝑐̅ downstream of the wing. At the design angle-
of-attack of 8 deg, this part of the wake does not appear to feature any roll-up of the wake. However, 
at off-design angles-of-attack a tip-vortex structure develops rapidly, but a mid-semi-span double-
branched vortex does not appear.  
 

7 Concluding Remarks 

1) The application of Prandtl’s lifting-line theory, for the incompressible, inviscid, irrotational, steady 
flow about thin, mildly-cambered, high-aspect-ratio, non-swept wings, has brought much insight in 
the aerodynamic performance associated with bell-shaped distributions of section-circulation. 

2) In the optimisation, the use of the inverted Biot-Savart law on the relation between vortex distribu-
tion and upwash distribution facilitates the direct determination of the vortex distribution and there-
with the circulation distribution, required to achieve the minimal induced drag subject to various 
structure-related constraints.  

3) The solution of four analysis/design problems has been pursued of minimisation of induced drag, 
subject to: 

(i) prescribed lift and span;  

(ii) prescribed lift and span-integrated section-bending-moment;  

(iii) prescribed lift and root-bending moment (equal to span-integrated section-shear-
force), and;  

(iv) prescribed lift, root-bending-moment and span-integrated section-bending-moment. 

4) For these cases detailed expressions have been derived for circulation distribution and distribution 
of upwash along the lifting line and its outward extension. Furthermore, expressions have been 
derived for the span of the wing (for cases (ii), (iii) and (iv)), overall lift, drag, span-integrated 
section-bending-moment, root-bending-moment and yawing-moment, as well as location of the 
center of the vortex distribution (COV). The latter is relevant for vortex-wake roll-up.  

5) The elliptic distribution of the circulation √1 − 𝜂2 is the classical solution of the first minimisation 

problem. The solution of the three further minimisation problems brings to light four bell-shaped 
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distributions of the section circulation: 

(i) (1 − 𝜂2)3 2⁄ ;  

(ii) √1 − 𝜂2 − 𝜂2ln
1+√1−𝜂2

|𝜂|
;  

(iii) 
1

2
{√1 − 𝜂2 − 𝜂2ln

1+√1−𝜂2

|𝜂|
} −

1

3
(1 − 𝜂2)3 2⁄  and;  

(iv) (1 − 𝜂2)5 2⁄ . 

These four distributions have zero function value and zero first derivative at the wing tip. The last 
two distributions have in addition zero second derivative of the circulation distribution at the tip. 
This has a large effect on the induced upwash distribution, as well as vortex-wake roll-up. 

6) The prescribed span-integrated section-bending-moment and root-bending moment are express-
ed as a factor (𝜆 and 𝜏,  respectively) times their value for a wing with elliptic circulation distribution 
and identical lift. In literature the factor is taken to be unity. In the present study the factor is arbitrary 
and its value is shown to have a significant effect on the outcome of the optimization: an increase 
in the factor results in a decrease of the minimum induced drag. During wing design, this facilitates 
a trade-off between aerodynamic performance and structural weight. 

7) Successful verification of the methodology has been achieved by application of the developed 
expressions to cases considered in literature by Prandtl, Munk, Jones, Nickel and Klein & Viswa-
nathan. Furthermore, the present methodology has been applied with success to the Prandtl-
D(rag) wing of Bowers et al. [6], a design based on Prandtl’s (1 − 𝜂2)3 2⁄  bell-shaped circulation 
distribution.  

8) The present lifting-line methodology has been applied, with success, to the analysis of the aero-
dynamic performance of the wing planform of the robotic bird Robird;  

9) For all circulation distributions the corresponding upwash distributions along the lifting line and 
along its outward extensions have been obtained in closed form. Results for the initial roll-up of 
the vortex wake of wings with a bell-shaped distribution of the circulation have been obtained. 

10) The observation in Figure 1 (j) of the wake downstream of the trailing-edge of the wing of the 
model of the B747-8 in our wind tunnel triggered the present study. Though the section-circulation 
distribution of the wing (AR = 8.5) is not known, it is hypothesized that the location of the tuft 
(𝑦 0.5𝑏⁄ ≈ 0.8) corresponds with the change in sign of the upwash distribution typical for a bell-
shaped distribution of the section-circulation. 
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APPENDIX A: Aerodynamic Performance Indicators 
 

Quantities are made dimensionless using: 

𝑞∞: Free-stream dynamic pressure 
1

2
𝜌∞𝑈∞

2    

𝑈∞: Free-stream velocity   
𝜌∞: Free-stream density 
and quantities of the wing with elliptic circulation distribution with prescribed span 𝑏𝑒 and lift 𝐿𝑒: 

𝑏𝑒 Span of wing with elliptic loading and lift 𝐿𝑒 

Γ0,𝑒 Amplitude elliptic circulation distribution Γ(𝑦) = Γ0,𝑒(1 − (𝑦 0.5𝑏𝑒⁄ )2)1 2⁄  

 
Section forces and moments: 
1.1. Section lift force ℓ(𝑦) = 𝜌∞𝑈∞Γ(𝑦) 

ℓ(𝑦) = [𝑞∞𝑏𝑒][
Γ0,𝑒

𝑈∞𝑏𝑒
]2

Γ(𝑦)

Γ0,𝑒
  

1.2. Section drag force 𝑑(𝑦) = −𝜌∞𝑤𝑖𝑛(y)Γ(𝑦) 

𝑑(𝑦) = −[𝑞∞𝑏𝑒] [(
Γ0,𝑒

𝑈∞𝑏𝑒
)2] 2

𝑤𝑖𝑛(y) 𝑈∞⁄

Γ0,𝑒 𝑈∞𝑏𝑒⁄

Γ(𝑦)

Γ0,𝑒
  

1.3. Section contribution starboard-side root-bending-moment 𝑚𝑥(𝑦) = 𝑦ℓ(𝑦) 

𝑚𝑥(𝑦) = [𝑞∞𝑏𝑒
2][

Γ0,𝑒

𝑈∞𝑏𝑒
]
Γ(𝑦)

Γ0,𝑒

𝑦

0.5𝑏𝑒
  

1.4. Section contribution starboard-side section-bending-moment 𝑚𝑥,2(𝑦) =
1

2
𝑦2ℓ(𝑦) 

𝑚𝑥,2(𝑦) = [𝑞∞𝑏𝑒
3][

Γ0,𝑒

𝑈∞𝑏𝑒
]

1

4

Γ(𝑦)

Γ0,𝑒
(

𝑦

0.5𝑏𝑒
)2  

1.5. Section contribution starboard-side section-yawing-moment 𝑚𝑧(𝑦) = −𝑦𝑑(𝑦)  

𝑚𝑧(𝑦) = [𝑞∞𝑏𝑒
2] [(

Γ0,𝑒

𝑈∞𝑏𝑒
)2]

𝑤𝑖𝑛(y) 𝑈∞⁄

Γ0,𝑒 𝑈∞𝑏𝑒⁄

Γ(𝑦)

Γ0,𝑒

𝑦

0.5𝑏𝑒
  

 
Full-span, or semi-span-integrated overall forces and moments, with 𝑏/𝑏𝑒 the dimensionless span: 

2.1. Full-span lift force 𝐿 = ∫ ℓ(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
 

𝐿 = [𝑞∞𝑏𝑒
2][

Γ0,𝑒

𝑈∞𝑏𝑒
] ∫ 2

Γ(𝑦)

Γ0,𝑒
𝑑

𝑦

0.5𝑏𝑒

𝑏/𝑏𝑒

0
  

2.2. Full-span drag force 𝐷 = ∫ 𝑑(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
 

𝐷 = −[𝑞∞𝑏𝑒
2] [(

Γ0,𝑒

𝑈∞𝑏𝑒
)2] ∫ 2

𝑤𝑖𝑛(y) 𝑈∞⁄

Γ0,𝑒 𝑈∞𝑏𝑒⁄

Γ(𝑦)

Γ0,𝑒
𝑑

𝑦

0.5𝑏𝑒

𝑏/𝑏𝑒

0
  

2.3. Starboard-side root-bending-moment 𝑀𝑥 = ∫ 𝑚𝑥(𝑦)𝑑𝑦
𝑏/2

0
 

𝑀𝑥 = [𝑞∞𝑏𝑒
3][

Γ0,𝑒

𝑈∞𝑏𝑒
]
1

2
∫

Γ(𝑦)

Γ0,𝑒

𝑦

0.5𝑏𝑒
𝑑

𝑦

0.5𝑏𝑒

𝑏/𝑏𝑒

0
  

2.4 Starboard-side integrated-bending-moment 𝑀𝑥,2 = ∫ 𝑚𝑥(𝑦)𝑑𝑦
𝑏/2

0
 

𝑀𝑥,2 = [𝑞∞𝑏𝑒
4][

Γ0,𝑒

𝑈∞𝑏𝑒
]
1

2
∫

1

4
 
Γ(𝑦)

Γ0,𝑒
(

𝑦

0.5𝑏𝑒
)2𝑑

𝑦

0.5𝑏𝑒

𝑏/𝑏𝑒

0
  

2.5 Starboard-side integrated-yawing-moment 𝑀𝑧 = ∫ 𝑚𝑧(𝑦)𝑑𝑦
𝑏/2

0
 

𝑀𝑧 = [𝑞∞𝑏𝑒
3] [(

Γ0,𝑒

𝑈∞𝑏𝑒
)2]

1

2
∫

𝑤𝑖𝑛(y) 𝑈∞⁄

Γ0,𝑒 𝑈∞𝑏𝑒⁄

Γ(𝑦)

Γ0,𝑒

𝑦

0.5𝑏𝑒
𝑑

𝑏/𝑏𝑒

0

𝑦

0.5𝑏𝑒
  

2.6 Starboard-side center of vortex distribution 

𝑦𝐶𝑂𝑉 ≡ ∫ 𝛾𝑥(𝑦)𝑦𝑑𝑦 
𝑏/2

0
/ ∫ 𝛾𝑥(𝑦)𝑑𝑦

𝑏/2

0
=

1

Γ(0)
∫ Γ(𝑦)𝑑𝑦

𝑏 2⁄

0
=

0.5𝑏𝑒

Γ(0) Γ0,𝑒⁄
∫

Γ(𝑦)

Γ0,𝑒
𝑑

𝑦

0.5𝑏𝑒

𝑏 𝑏𝑒⁄

0
.  
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Appendix B: Variational Formulation 
 
This Appendix considers the variational expressions of lift 𝐿, induced-drag 𝐷, root-bending-moment 𝑀𝑥 
and span-integrated section-bending-moment 𝑀𝑥,2. The analysis is based on Prandtl and Munk [14], 

Prandtl and Betz [15], Nickel [21], Jones [17], Klein & Viswanathan [19], [24], Drela [23], … 
 
Lifting-line Theory 
The lifting line geometry considered consists of a discrete, y-symmetric, line-vortex, circulation Γ(𝑦), with 
attached to it the downstream flat wake-vortex-sheet of strength 𝛾𝑥(𝑥, 𝑦) = −𝑑Γ 𝑑𝑦⁄ , in the plane 𝑧 =
0, which extends from the lifting line to infinity downstream. This vortex system defines the velocity po-

tential 𝜑(𝑥, 𝑦, 𝑧) and induced velocity field 𝑢⃗ (𝑥, 𝑦, 𝑧) = ∇⃗⃗ 𝜑 in the whole 3D space. In the present study 
the lifting line is taken as the straight line 𝑥 = 0, |𝑦| ≤ 𝑏 2⁄ , 𝑧 = 0. 

Γ(𝑦) is the distribution of the circulation: Γ(𝑦) = 𝜑(0, 𝑦, 0+) − 𝜑(0, 𝑦, 0−) = Δ𝜑(𝑦) in terms of the per-

turbation velocity potential, with 𝑢⃗ (0, 𝑦, 𝑧) = ∇⃗⃗ 𝜑 in the (𝑦, 𝑧)-plane. The perturbation velocity potential 

satisfies Laplace’s equation ∇⃗⃗ . (∇⃗⃗ 𝜑) = 0. 

 
The lift, induced drag, root-bending-moment and the span-integrated section-bending-moment follow 
from Table 1 and Appendix A. The lift of the wing is expressed as 

𝐿 = 𝜌∞𝑈∞ ∫ Γ(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
.          (B.1) 

The induced-drag is given by  

𝐷 = −𝜌∞ ∫ 𝑤𝑖𝑛(𝑦)Γ(𝑦)𝑑𝑦
𝑏 /2

−𝑏 /2
,         (B.2 

with the upwash distribution 𝑤𝑖𝑛(|𝑦| < 𝑏/2) along the lifting line expressed as 

𝑤𝑖𝑛(|𝑦| < 𝑏/2) = 𝑤(0, 𝑦, 0) =
1

4𝜋
CPV∫ 𝛾𝑥(𝑦′)

𝑑𝑦′

𝑦−𝑦′

𝑏/2

−𝑏/2
.      (B3) 

The distribution of the upwash 𝑤𝑖𝑛(𝑦) along the lifting-line is continuous over the wake-vortex-sheet: 

𝑤𝑖𝑛(𝑦) =
𝜕𝜑

𝜕𝑧
(0, 𝑦, 0+) =

𝜕𝜑

𝜕𝑧
(0, 𝑦, 0−).        (B.4) 

The root-bending-moment 𝑀𝑥, see Table 1 and Appendix A, equals: 

𝑀𝑥 = 𝜌∞𝑈∞ ∫ Γ(𝑦)𝑦𝑑𝑦
𝑏/2

0
=

1

2
𝜌∞𝑈∞ ∫ Γ(𝑦)|𝑦|𝑑𝑦

𝑏/2

−𝑏 2⁄
,       (B.5) 

while the span-integrated section-bending-moment follows from 

𝑀𝑥,2 =
1

2
𝜌∞𝑈∞ ∫ Γ(𝑦)𝑦2𝑑𝑦

𝑏/2

0
=

1

4
𝜌∞𝑈∞ ∫ Γ(𝑦)𝑦2𝑑𝑦

𝑏/2

−𝑏 2⁄
      (B.6) 

                             
Figure B.1 – Trefftz-plane at 𝑥 → ∞. Area 𝐴 is in plane 𝑥 = constant, with 𝐶 = 𝜕𝐴 closed contour forming its 

boundary, which wraps around cross-section of wake-vortex-sheet (𝐶𝐿𝐿
+ , 𝐶𝐿𝐿

− ). It is connected to contour 𝐶∞ in 

far-field by cut consisting of parallel, closely-spaced, curves 𝐶1 and 𝐶2. 𝑛⃗  is unit normal on 𝐶 pointing out of 𝐴, 
𝑠 denotes coordinate along contour 𝐶. Within 𝐴 perturbation potential 𝜑(𝑦, 𝑧) is continuous and satisfies 
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Laplace’s equation 𝛻2𝜑 = 0. Distribution of circulation lifting line: Γ(𝑠) = Δ𝜑(𝑠) = 𝜑+(𝑠) − 𝜑−(𝑠). 

In the further analysis, the expressions for lift, induced-drag, root-bending-moment and span-inte-
grated section-bending-moment are generalised in terms of expressions in the so-called Trefftz-
plane: the (𝑦, 𝑧)-plane at 𝑥 → ∞, see Figure B.1. This yields: 

𝐿 = 𝜌∞𝑈∞ ∫ 𝜑(𝑠) |
𝑑𝑦⃗ 

𝑑𝑠
| 𝑑𝑠

⬚

𝐶
, with 𝑦 (𝑠) = 𝑦(𝑠)𝑒 𝑦 + 𝑧(𝑠)𝑒 𝑧,     (B.7) 

𝑀𝑥 =
1

2
𝜌∞𝑈∞ ∫ 𝜑(𝑠)|𝑦(𝑠)| |

𝑑𝑦⃗ 

𝑑𝑠
| 𝑑𝑠

⬚

𝐶
 and       (B.8) 

𝑀𝑥,2 =
1

4
𝜌∞𝑈∞ ∫ 𝜑(𝑠)𝑦2(𝑠) |

𝑑𝑦⃗ 

𝑑𝑠
| 𝑑𝑠

⬚

𝐶
.         (B.9) 

In this notation, the contributions of the integration along 𝐶𝐿𝐿
+  and 𝐶𝐿𝐿

−  combine to 

𝐿𝐿𝐿 = 𝜌∞𝑈∞ ∫ Δ𝜑(𝑠)𝑑𝐶
⬚

𝐶𝐿𝐿
, with 𝑑𝐶 = |

𝑑𝑦⃗ 

𝑑𝑠
| 𝑑𝑠,                (B.10) 

𝑀𝑥,𝐿𝐿 =
1

2
𝜌∞𝑈∞ ∫ Δ𝜑(𝑠)|𝑦(𝑠)|𝑑𝐶

⬚

𝐶𝐿𝐿
 and                 (B.11) 

𝑀𝑥,2,𝐿𝐿 =
1

4
𝜌∞𝑈∞ ∫ Δ𝜑(𝑠)𝑦2(𝑠)𝑑𝐶

⬚

𝐶𝐿𝐿
, with Δ𝜑(𝑠) = 𝜑+(𝑠) − 𝜑−(𝑠) = Γ(𝑠).            (B.12) 

Furthermore, the contributions of the two sides of the cut, 𝐶1 and 𝐶2, cancel because 𝜑(𝑠) and 𝑦 (𝑠) 
are continuous across the cut. Finally, the contribution of 𝐶∞ equals zero because 𝜑(𝑠) → 0 along 𝐶∞, 
the far-field part of the closed contour. Therefore, the results in Eqs. (B.1), (B.5) and (B.6) are indeed 
equivalent to the results in Eqs. (B.7), (B.8) and (B.9), respectively. 
 
For the induced drag 𝐷, given in Eq. (B.2), the distribution of the upwash 𝑤𝑖𝑛(𝑠) along the closed 
contour, as given in Eq. B.4, can be expressed as the normal component of the induced velocity along 
𝐶 in the Trefftz-plane, i.e., 

𝑤𝑖𝑛(𝑠) = −
1

2
(∇⃗⃗ 𝜑. 𝑛⃗ ), with outward unit normal 𝑛⃗ =

𝑑𝑦⃗ 

𝑑𝑠
× 𝑒 𝑥.              (B.13) 

The factor 0.5 accounts for the upwash velocity induced in the Trefftz-plane (𝑥 → ∞), by the infinite 
wake-vortex-sheet extending from 𝑥 = 0 to 𝑥 → ∞, to be twice the upwash velocity induced by the semi-

infinite wake-vortex-sheet in the plane (𝑥 = 0) of the lifting-line. The generalized expression for the 
induced drag becomes: 

𝐷 =
1

2
𝜌∞ ∫ 𝜑(𝑠)(∇⃗⃗ 𝜑. 𝑛⃗ )𝑑𝐶

⬚

𝐶
.                  (B.14) 

In this notation, the contributions of the integration along 𝐶𝐿𝐿
+  and 𝐶𝐿𝐿

−  combine to the expression for 
the induced-drag given in Eq. (B.2). 
 
Calculus of Variations 
In the method of Calculus of Variations, the unknown function 𝜑(𝑠) is perturbed by an infinitesimal 
perturbation function δ𝜑(𝑠). For the case of the straight lifting-line, considered in detail in the present 

study, the result for prescribed lift 𝐿 is:  

𝐿 + 𝛿𝐿 = 𝜌∞ ∫ Δ𝜑(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
+ 𝜌∞ ∫ Δδ𝜑(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
,               (B.15) 

where 𝛿𝐿 = 𝜌∞ ∫ Δδ𝜑(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
= 𝜌∞ ∫ δΓ(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
 should be zero. 

For prescribed root-bending-moment 𝑀𝑥 it follows from Eq. (B.8): 

𝑀𝑥 + 𝛿𝑀𝑥 =
1

2
𝜌∞𝑈∞ ∫ |𝑦|Δ𝜑(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
+

1

2
𝜌∞𝑈∞ ∫ |𝑦|Δδ𝜑(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
,              (B.16) 

where 𝛿𝑀𝑥 =
1

2
𝜌∞ ∫ |𝑦|Δδ𝜑(𝑦)𝑑𝑦

𝑏/2

0
=

1

2
𝜌∞ ∫ |𝑦|δΓ(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
 should be zero.            (B.17) 

For prescribed span-integrated section-bending-moment 𝑀𝑥,2 it follows from Eq. (B.9): 

𝑀𝑥,2 + 𝛿𝑀𝑥,2 =
1

4
𝜌∞𝑈∞ ∫ 𝑦2Δ𝜑(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
+

1

4
𝜌∞𝑈∞ ∫ 𝑦2Δδ𝜑(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
,             (B.16) 

where 𝛿𝑀𝑥,2 =
1

4
𝜌∞ ∫ 𝑦2Δδ𝜑(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
=

1

4
𝜌∞ ∫ 𝑦2δΓ(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
 should be zero.            (B.17) 

 

For the induced drag it follows from Eq. (B.14) that: 

𝐷 + 𝛿𝐷 =
1

2
𝜌∞ ∫ 𝜑(𝑠)(∇⃗⃗ 𝜑. 𝑛⃗ )𝑑𝐶

⬚

𝐶
+

1

2
𝜌∞ ∫ [𝜑(𝑠)(∇⃗⃗ 𝛿𝜑. 𝑛⃗ ) + δ𝜑(𝑠)(∇⃗⃗ 𝜑. 𝑛⃗ )]𝑑𝐶

⬚

𝐶
+

                                
1

2
𝜌∞ ∫ 𝛿𝜑(𝑠)(∇⃗⃗ 𝛿𝜑. 𝑛⃗ )𝑑𝐶

⬚

𝐶
.                 (B.18) 

If the last integral in the right-hand-side, a second-order term in 𝛿𝜑, is neglected, the induced drag 
will be minimised if 

𝛿𝐷 =
1

2
𝜌∞ ∫ [𝜑(𝑠)(∇⃗⃗ 𝛿𝜑. 𝑛⃗ ) + δ𝜑(𝑠)(∇⃗⃗ 𝜑. 𝑛⃗ )]𝑑𝐶

⬚

𝐶
= 0.               (B.19) 

Applying the Divergence Theorem of Gauss for the 2D area 𝐴 with boundary 𝐶 = 𝜕𝐴: 
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∬ ∇⃗⃗ . 𝐹 𝑑𝐴
⬚

𝐴
= ∫ 𝐹 .

⬚

𝐶=𝜕𝐴
𝑛⃗ 𝑑𝐶,                  (B-20) 

to the integral with the first part of the integrand in Eq. (B.19), yields, with 𝐹 = 𝜑∇⃗⃗ 𝛿𝜑: 

∫ 𝜑(∇⃗⃗ 𝛿𝜑. 𝑛⃗ )𝑑𝐶
⬚

𝐶
= ∬ [∇⃗⃗ 𝜑. ∇⃗⃗ 𝛿𝜑 + 𝜑∇2𝛿𝜑]𝑑𝐴

⬚

𝐴
, resulting with ∇2𝛿𝜑 = 0 ∈ 𝐴 in  

                          = ∬ (∇⃗⃗ 𝜑. ∇⃗⃗ 𝛿𝜑)𝑑𝐴
⬚

𝐴
.                  (B.21) 

The integral with the second part of the integrand in Eq. (B.19) yields, with 𝐹 = 𝛿𝜑∇⃗⃗ 𝜑: 

∫ 𝛿𝜑(∇⃗⃗ 𝜑. 𝑛⃗ )𝑑𝐶
⬚

𝐶
= ∬ [∇⃗⃗ 𝛿𝜑. ∇⃗⃗ 𝜑 + 𝛿𝜑∇2𝜑]𝑑𝐴

⬚

𝐴
, resulting, with ∇2𝜑 = 0 ∈ 𝐴 in  

                          = ∬ (∇⃗⃗ 𝛿𝜑. ∇⃗⃗ 𝜑)𝑑𝐴
⬚

𝐴
.                  (B.22) 

This proves that the two contributions in Eq. (B.19) are identical, sometimes referred to as the Munk's 
Mutual Drag Theorem, see [15]. Using Eqs. (B.21) and B.22) results in the condition for optimality 
becoming: 

𝛿𝐷 = 𝜌∞ ∫ δ𝜑(∇⃗⃗ 𝜑. 𝑛⃗ )𝑑𝐶
⬚

𝐶
= 0.                  (B.23) 

For the case of the straight lifting-line considered in detail in the present study, upon converting ∇⃗⃗ 𝜑. 𝑛⃗  
into 𝑤𝑖𝑛(𝑦), condition (B.23) becomes: 

𝛿𝐷 = −2𝜌∞ ∫ 𝑤𝑖𝑛(𝑦)δΓ𝑑𝑦
𝑏 2⁄

−𝑏 2⁄
= 0.                  (B.24) 

Note that in Eq. (B.18) the induced drag 𝐷 and the neglected higher-order term in 𝛿𝐷, using the 
Divergence Theorem, can be expressed as: 

𝐷 = ∬ |∇⃗⃗ 𝜑|
2
𝑑𝐴

⬚

𝐴
 and 𝛿𝐷ℎ.𝑜.𝑡 = ∬ |∇⃗⃗ 𝛿𝜑|

2
𝑑𝐴

⬚

𝐴
, respectively. Both terms are positive. 

 
In summary for the flat, 𝑦-symmetric wake-vortex-sheet: 

𝛿𝐷 = −2𝜌∞ ∫ 𝑤𝑖𝑛(𝑦)δΓ𝑑𝑦
𝑏 2⁄

−𝑏 2⁄
= 0, subject to:             (B.25a) 

𝛿𝐿 = 𝜌∞ ∫ δΓ(𝑦)𝑑𝑦
𝑏/2

−𝑏/2
= 0,                 (B.25b) 

𝛿𝑀𝑥 =
1

2
𝜌∞ ∫ |𝑦|δΓ(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
= 0,                (B.25c) 

𝛿𝑀𝑥,2 =
1

4
𝜌∞ ∫ 𝑦2δΓ(𝑦)𝑑𝑦

𝑏/2

−𝑏/2
= 0, etc.,               (B.25d) 

Note that the infinitesimally small δΓ(y) is arbitrary but for the conditions in Eqs. (B.25b-d). Therefore, 

condition (B.25a) is satisfied by the upwash distribution 𝑤𝑖𝑛(𝑦) specified as 

𝑤𝑖𝑛(𝑦) = 𝑎0 + 𝑎1|𝑦| + 𝑎2𝑦
2 + ⋯ ,                (B.25e) 

for arbitrary constants 𝑎0, 𝑎1, 𝑎2, …. 
The inverted Biot-Savart relation then provides the corresponding terms in the vortex distribution 
𝛾𝑥(𝑦) that generates the upwash distribution 𝑤𝑖𝑛(𝑦) given in Eq. (B.25e). Integrating the relation 
𝛾𝑥(𝑦) = −𝑑Γ 𝑑𝑦⁄  results in the circulation distribution along the lifting line. 
 

Formulation in terms of Lagrangian function 
An alternative formulation is to force the Lagrangian function ℒ, which contains the induced drag 𝐷, as 

well as all constraints, to be stationary. The Lagrangian function ℒ is defined as: 

ℒ(Γ(𝑦), 𝜅0, 𝜅1, 𝜅2, … ) ≡ 𝐷 + 𝜅0(𝐿 − 𝐿𝑒) + 𝜅1(𝑀𝑥 − 𝜆𝑀𝑥,𝑒) + 𝜅2(𝑀𝑥,2 − 𝜏𝑀𝑥,2,𝑒) + ⋯,           (B.26) 

with 𝜅0, 𝜅1, 𝜅2, … the so-called Lagrangian multipliers associated with the constraints on lift 𝐿, root-bend-
ing-moment 𝑀𝑥, span-integrated section-bending-moment 𝑀𝑥,2, …, respectively, to be determined as 

part of the solution. 
The solution of the minimisation problem should be stationary with respect to variations in the circula-
tion distribution Γ(𝑦), i.e., 𝛿ℒ should be zero. This leads to 

𝛿ℒ = 𝛿𝐷 + 𝛿𝜅0(𝐿 − 𝐿𝑒) + 𝜅0𝛿𝐿 + 𝛿𝜅1(𝑀𝑥 − 𝜆𝑀𝑥,𝑒) + 𝜅1𝛿𝑀𝑥 + 𝛿𝜅2(𝑀𝑥,2 − 𝜏𝑀𝑥,2,𝑒) + 𝜅2𝛿𝑀𝑥,2 … = 0.     (B.27a) 

With the variations given in Eqs. (B.25a-d), it follows: 

𝛿ℒ = 𝜌∞ ∫ [−2𝑤𝑖𝑛(𝑦) + 𝜅0𝑈∞+
1

2
𝜅1𝑈∞|𝑦| + 

1

4
𝜅2𝑈∞𝑦2 + ⋯] δΓ(y)𝑑𝑦

𝑏 2⁄

−𝑏 2⁄
  

                                 +𝛿𝜅0(𝐿 − 𝐿𝑒) + 𝛿𝜅1(𝑀𝑥 − 𝜆𝑀𝑥,𝑒) + 𝛿𝜅2(𝑀𝑥,2 − 𝜏𝑀𝑥,2,𝑒) + ⋯ = 0.           (B.27b) 

Note that the variation of the span 𝑏 in the upper and lower limits of integration does not contribute in 
Eq. (B.27b) for 𝛿ℒ. 
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Therefore, since δΓ, 𝛿𝜅0, 𝛿𝜅1, 𝛿𝜅2, … are arbitrary, we find the system of relations: 

𝑤𝑖𝑛(𝑦) =
1

2
𝑈∞[𝜅0 +

1

2
𝜅1|𝑦| + 

1

4
𝜅2𝑦

2 + ⋯], for |𝑦| < 𝑏 2⁄ ,             (B.28a) 

𝐿 = 𝐿𝑒:  𝜌∞𝑈∞ ∫ Γ(𝑦)𝑑𝑦
𝑏 2⁄

−𝑏 2⁄
= 𝐿𝑒,               (B.28b) 

𝑀𝑥 = 𝜆𝑀𝑥,𝑒:  𝜌∞𝑈∞ ∫ |𝑦|Γ(𝑦)𝑑𝑦
𝑏 2⁄

0
= 𝜆𝑀𝑥,𝑒,              (B.28c) 

𝑀𝑥,2 = 𝜏𝑀𝑥,2,𝑒: 
1

2
𝜌∞𝑈∞ ∫ 𝑦2Γ(𝑦)𝑑𝑦

𝑏 2⁄

0
= 𝜏𝑀𝑥,2,𝑒, etc.             (B.28d) 

The relation for the induced upwash distribution 𝑤𝑖𝑛(𝑦), Eq. (B.28a), yields, through the inverted Biot-

Savart relation the vortex distribution 𝛾𝑥(𝑦) and subsequently the circulation distribution Γ(𝑦). These 
involve the yet unknown Lagrangian multipliers 𝜅0, 𝜅1, 𝜅2, …in a linear manner, i.e., 

Γ(𝑦) = 𝜅0Γ0(𝑦) + 𝜅1Γ1(𝑦) + 𝜅2Γ2(𝑦) + ⋯ ].              (B.28e) 
Substituting the circulation distribution Γ(𝑦) in the expressions for lift 𝐿, root-bending-moment 𝑀𝑥, span-

integrated section-bending-moment 𝑀𝑥,2, … in Eqs. (B.28b-d), gives as many linear equations as there 

are Lagrangian multipliers, 𝜅0, 𝜅1, 𝜅2, …involving the prescribed 𝐿𝑒, 𝜆𝑀𝑥,𝑒, 𝜏𝑀𝑥,2,𝑒, … as parameters. 

Furthermore, in these equations, the span 𝑏 of the wing is an additional variable. Substituting the 

resulting expressions for 𝜅0, 𝜅1, 𝜅2, … in the expression for the induced drag 𝐷, Eq. (B.2), provides the 
induced drag as function of 𝐿𝑒, 𝜆𝑀𝑥,𝑒, 𝜏𝑀𝑥,2,𝑒, … and span 𝑏, i.e., 

𝐷 = 𝐷(𝐿𝑒 , 𝜆𝑀𝑥,𝑒 , 𝜏𝑀𝑥,2,𝑒 , … ; 𝑏).                  (B.29 

The minimum induced drag 𝐷𝑜𝑝𝑡(𝐿𝑒 , 𝜆𝑀𝑥,𝑒 , 𝜏𝑀𝑥,2,𝑒 , … ; 𝑏𝑜𝑝𝑡) is found by setting 
𝜕

𝜕𝑏
𝐷(𝐿𝑒, 𝜆𝑀𝑥,𝑒 , 𝜏𝑀𝑥,2,𝑒 , … ; 𝑏) = 0,  

solving for optimal wing-span 𝑏𝑜𝑝𝑡(𝐿𝑒 , 𝜆𝑀𝑥,𝑒 , 𝜏𝑀𝑥,2,𝑒 , … ) and substitution of 𝑏𝑜𝑝𝑡in Eq. (B.29) for the in-

duced drag, which provides 𝐷𝑜𝑝𝑡. 
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APPENDIX C Some Integrals 
 
Integrals over circulation distributions and vortex distributions 

1.1.0 ∫
𝑑𝜂

√1−𝜂2

1

0
=

𝜋

2
  1.2.0 ∫ √1 − 𝜂2𝑑𝜂

1

0
=

𝜋

4
  1.3.0 ∫ (1 − 𝜂2)3/2𝑑𝜂

1

0
=

3𝜋

16
 

1.1.1 ∫
𝜂𝑑𝜂

√1−𝜂2

1

0
= 1  1.2.1 ∫ 𝜂√1 − 𝜂2𝑑𝜂

1

0
=

1

3
  1.3.1 ∫ 𝜂(1 − 𝜂2)3/2𝑑𝜂

1

0
=

1

5
 

1.1.2 ∫
𝜂2𝑑𝜂

√1−𝜂2

1

0
=

𝜋

4
  1.2.2 ∫ 𝜂2√1 − 𝜂2𝑑𝜂

1

0
=

𝜋

16
 1.3.2 ∫ 𝜂2(1 − 𝜂2)3/2𝑑𝜂

1

0
=

𝜋

32
 

1.1.3 ∫
𝜂3𝑑𝜂

√1−𝜂2

1

0
=

2

3
  1.2.3 ∫ 𝜂3√1 − 𝜂2𝑑𝜂

1

0
=

2

15
 1.3.3 ∫ 𝜂3(1 − 𝜂2)3/2𝑑𝜂

1

0
=

2

35
 

1.1.4 ∫
𝜂4𝑑𝜂

√1−𝜂2

1

0
=

3𝜋

16
  1.2.4 ∫ 𝜂4√1 − 𝜂2𝑑𝜂

1

0
=

𝜋

32
 1.3.4 ∫ 𝜂4(1 − 𝜂2)3/2𝑑𝜂

1

0
=

3𝜋

256
  

1.1.5 ∫
𝜂5𝑑𝜂

√1−𝜂2

1

0
=

8

15
      1.3.5 ∫ 𝜂5(1 − 𝜂2)3/2𝑑𝜂

1

0
=

8

315
  

        

1.4.0 ∫ (1 − 𝜂2)5/2𝑑𝜂
1

0
=

5𝜋

32
 1.5.0 ∫ (1 − 𝜂2)7/2𝑑𝜂

1

0
=

35𝜋

256
 1.6.0 ∫ (1 − 𝜂2)9/2𝑑𝜂

1

0
=

63𝜋

512
 

1.4.1 ∫ 𝜂(1 − 𝜂2)5/2𝑑𝜂
1

0
=

1

7
  1.5.1 ∫ 𝜂(1 − 𝜂2)7/2𝑑𝜂

1

0
=

1

9
 1.6.1 ∫ 𝜂(1 − 𝜂2)9/2𝑑𝜂

1

0
=

1

11
 

1.4.2 ∫ 𝜂2(1 − 𝜂2)5/2𝑑𝜂
1

0
=

5𝜋

256
  1.5.3 ∫ (1 − 𝜂2)7/2𝑑𝜂

1

0
=

7𝜋

512
 

1.4.3 ∫ 𝜂3(1 − 𝜂2)5/2𝑑𝜂
1

0
=

2

63
  1.5.4 ∫ 𝜂3(1 − 𝜂2)7/2𝑑𝜂

1

0
=

2

99
 

1.4.4 ∫ 𝜂4(1 − 𝜂2)5/2𝑑𝜂
1

0
=

3𝜋

512
  

1.4.5 ∫ 𝜂5(1 − 𝜂2)5/2𝑑𝜂
1

0
=

8

693
  

 

2.1.1 ∫ 𝜂ln
1+√1−𝜂2

𝜂
𝑑𝜂

1

0
=

1

2
  

2.1.2 ∫ 𝜂2ln
1+√1−𝜂2

𝜂
𝑑𝜂

1

0
=

𝜋

12
  

2.1.3 ∫ 𝜂3ln
1+√1−𝜂2

𝜂
𝑑𝜂

1

0
=

1

6
  

2.1.4 ∫ 𝜂4ln
1+√1−𝜂2

𝜂
𝑑𝜂

1

0
=

3𝜋

80
  

2.1.5 ∫ 𝜂5ln
1+√1−𝜂2

𝜂
𝑑𝜂

1

0
=

4

45
  

 

Integrals in upwash generated by vortex distributions |𝜂| < 1 

3.1.1  𝐼0,0(|𝜂| < 1) = CPV∫
𝑑𝜂′

𝜂−𝜂′

1

−1
(1 − 𝜂′2)

−1

2 = 0  

3.1.2  𝐼0,2(|𝜂| < 1) = CPV∫
𝑑𝜂′

𝜂−𝜂′

1

−1
(1 − 𝜂′2)

1

2 = 𝜋𝜂  

3.1.3 𝐼0,4(|𝜂| < 1) = CPV ∫
𝑑𝜂′

𝜂−𝜂′

1

−1
(1 − 𝜂′2)

3

2 = 𝜋𝜂(
3

2
− 𝜂2)  

3.1.4 𝐼0,6(|𝜂| < 1) = CPV ∫
𝑑𝜂′

𝜂−𝜂′

1

−1
(1 − 𝜂′2)

5

2 = 𝜋𝜂 (
15

8
−

5

2
𝜂2 + 𝜂4)  

 

Integrals in upwash generated by vortex distributions |𝜂| > 1 

3.2.1 𝐼0,0(|𝜂| > 1) = ∫
𝑑𝜂′

𝜂−𝜂′

1

−1
(1 − 𝜂′2)

−1

2 = 𝜋(𝜂2 − 1)−1/2  

3.2.2 𝐼0,2(|𝜂| > 1) = ∫
𝑑𝜂′

𝜂−𝜂′

1

−1
(1 − 𝜂′2)

1

2 = 𝜋𝜂 − 𝜋(𝜂2 − 1)1/2  

3.2.3 𝐼0,4(|𝜂| > 1) = ∫
𝑑𝜂′

𝜂−𝜂′

1

−1
(1 − 𝜂′2)

3

2 = 𝜋𝜂(
3

2
− 𝜂2) + 𝜋(𝜂2 − 1)3/2   

3.2.4 𝐼0,6(|𝜂| > 1) = ∫
𝑑𝜂′

𝜂−𝜂′

1

−1
(1 − 𝜂′2)

5

2 = 𝜋𝜂 (
15

8
−

5

2
𝜂2 + 𝜂4) − 𝜋(𝜂2 − 1)5/2   

 

Integrals in upwash generated by natural-logarithmic vortex distribution  

4.1.1 𝐽1(|𝜂| < 1) = CPV∫ ln
1+√1−𝜂̃2

|𝜂̃|
 
𝜂̃𝑑𝜂̃

𝜂−𝜂̃

1

−1
= 𝜋(−1 +

𝜋

2
|𝜂|)  

4.2.1 𝐽1(|𝜂| > 1) = ∫ ln
1+√1−𝜂′2

|𝜂′|

𝜂′𝑑𝜂′

𝜂−𝜂′

1

−1
= 𝜋[−1 + 𝜂arcsin (

1

𝜂
)]  


