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Abstract

The aircraft cabin is a highly dynamic environment due to its customizable nature, its short life cycle, its nu-
merous interfaces to aircraft systems, and the continuous integration of new technologies. This impacts the
common influence of cabin design and assembly which is highlighted by current industry requirements and
applications, such as the need for modularization, system integration and accessibility during installation, or re-
configuration for customized cabin designs and adaptable assembly resources. Therefore, the co-development
of cabin designs and assembly planning must be enabled so that both can be assessed and optimized si-
multaneously. Current methods for the integration of design and assembly focus on abstract business and
cost-oriented assessments or consider integration stages where detailed data, such as CAD, CAE, or CAM,
already exist. However, there is still a lack of approaches at the conceptual stage that support the technical
co-development and optimization of design and assembly. Moreover, there is a need for an automated inter-
pretation of dependencies and interactions between the cabin design and the assembly planning to support
the generation of architectural choices for trade-off analyses. This work aims to provide a methodology that
integrates conceptual architecture and knowledge models from cabin design and assembly planning to ad-
dress current research needs. For this purpose, concepts of Model-based Systems Engineering (MBSE) are
leveraged, and reusable modeling elements are defined. These depict abstract artifacts of the cabin products
and assembly system. The concepts of the two lifecycle stages are semantically mapped and integrated into a
consistent Knowledge-Graph (KG). The KG underlies a pre-defined ontology model that links and constrains
design and assembly concepts. A specific focus is set on the interfaces between the parts, considering these
elements as an intersection point between the product architecture, the emerging assembly processes, as well
as the required capabilities and skills of the assembly resources. Furthermore, a generic approach to inferring
and translating integrated information from the KG into an architectural design space is developed. This allows
for the computation of architecture optimization based on cabin Product-Process-Resources (PPR) variants.
It makes it possible to simultaneously plan the assembly processes, allocate the tasks to the resources and
enable product architecture trade-offs. This approach supports technical decision-making at an early develop-
mental stage and ensures that traceable, abstract architecture foundlings are available for subsequent detailed
analyses.
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1. Introduction
The aeronautical industry is encountering new challenges related to sustainability and the increasing
demand for commercial aircraft. Consequently, it must maintain its technological innovation capabil-
ity by incorporating revolutionary technologies such as hydrogen propulsion or smart systems. The
integration of such technologies has a significant impact on the overall aircraft architecture and ne-
cessitates early assessments not only in terms of design and construction but also in production
and assembly. Furthermore, airlines are seeking more customized, individual designs, leading to
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increased manufacturing lead time, cost, and complexity, hindering the possibility of boosting produc-
tion rates. This challenge is particularly notable for aircraft cabins, which are highly customizable,
have short life cycles, and predominantly undergo manual assembly [1, 2]. To assess new, cus-
tomized cabin designs in terms of production and swiftly plan new assembly processes, close linking
and co-development are required. In this context, the concept of a digital thread provides ways to
consistently and semantically integrate multidisciplinary modeling and optimization approaches. This
End-to-End approach supports the co-development process by enabling data availability and trace-
ability between different cabin design and production artifacts. The integration of detailed product de-
sign and production has been addressed by academia and industry, making significant progress with
approaches such as Product Lifecycle Management (PLM) [3], digital factory [4], or recent methods
such as Systems Lifecycle Management (SysLM) [5] or other similar digital approaches [6, 7, 8, 9].
Many of these approaches focus on business and cost-oriented assessments or consider integration
stages where detailed data (CAD/CAE/CAM) already exists, restricting solution space exploration by
design decisions already made. This limits, on one side, the assessment of all feasible product and
production designs and, on the other side, constrains the development of production processes and
resources to specific product configurations. However, integration should be enabled at earlier con-
ceptual stages where abstract interdependencies are identified and leveraged for co-development.
Recent research approaches [10, 11, 12, 13] that focus on early integration at the conceptual stage
recognize the importance of leveraging Model-based Systems Engineering (MBSE) to support mod-
eling interdependencies between product and production systems in the interdisciplinary conceptual
stage. MBSE is an approach that uses formalized representations in the form of models to sup-
port activities related to the design, analysis, verification, and validation of systems throughout their
lifecycle. The modeling approaches deliver holistic ways for the analysis and representation of the
two domains. However, there is a specific lack of focus on the causal relationships between model
elements and how these can be used to specify and constrain the design space for products and
resources, as well as generate assembly processes. Moreover, many of the presented approaches
in the literature also limit themselves to manual exploration and implementation, hindering the au-
tomation of the co-development and optimization process.
This research presents an approach that aims to support cabin design and assembly co-development
and optimization at early conceptual stages. Through the definition of specific modeling elements in
the design and assembly architectures, both domain are semantically integrated. The suggested
approach defines an ontology that depicts the relationships between the two domains and supports
the semantic knowledge integration and reuse in a tool-agnostic way. The application case that is
shown in this work demonstrates how integrated knowledge can be converted into design spaces,
enabling automatic exploration of cabin product design and assembly.

2. Methodology for Co-Development and Optimization of Cabin Architectures
In this work, a methodology has been developed to capture and integrate abstract information about
cabin design and assembly into a common design space at an early development stage. Figure 1
illustrates the proposed methodology for the integration and optimization of abstract cabin design and
assembly architecture models. In conventional approaches, system design is started from require-
ment and proceeded by developers from different disciplines through decision making based on their
knowledge and expertise. Instead, the presented methodology integrates multidisciplinary abstract
models and transforms them into an optimization problem where architectures are generated, evalu-
ated and optimized automatically. Best architecture instances are fed back to respective disciplines
models, supporting a value driven development.
The methodology is based on three main components. The first component represents the model-
based architectures, where relevant artifacts for both cabin design and assembly systems are defined
and modeled. These represent relevant design space elements for the optimization problem. The
second component deals with the integration of information from these two domains into a single
knowledge graph. This involves creating a formal ontology description of the multidisciplinary con-
cepts, which is then used to map information from the architecture models. Finally, the third com-
ponent demonstrates how formal knowledge is converted into a Design Space Graph (DSG). This
graph can be leveraged for the evaluation and optimization of potential multidisciplinary architecture
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Figure 1 – Methodology for integration and optimization of abstract cabin design and assembly
architecture models

instances. Each of these components is described in the following sections.

2.1 Model-based Cabin Architectures
To enable an early abstract representation of a cabin’s design and assembly, this work proposes a
methodology that leverages Model-Based Systems Engineering (MBSE) to integrate the architec-
tures of both disciplines into a multidisciplinary design space. MBSE is the formalized application
of modeling to support system requirements, design, analysis, verification, and validation activities,
beginning in the conceptual design phase and continuing throughout development and later life cycle
phases [14]. The Systems Modeling Language (SysML) is widely adopted in the MBSE context and
provides notations, syntax, and semantics to support architectural modeling activities [15].
The literature provides extensive methodologies to leverage SysML for generic system development
[16, 17, 18, 19] as well as specifically for cabin architectures [20, 21, 22]. Many of these method-
ologies follow a top-down approach, starting from a black-box system analysis where stakeholder
needs are identified and the system context is analyzed. The analysis is conducted on different ab-
straction layers of the system—functional, logical, and physical—leading to architectural decisions at
each level. The resulting model artifacts represent a conceptual description that is then available and
reusable for further architecting and analysis activities.
The first methodological step is to define specific elements that extend the cabin design model in
terms of assembly factors. These elements provide the means to represent potential architectures,
identify architectural decisions, and define performance metrics for evaluating different architectures.
They are specified based on the interdependencies between design and assembly. Most of the
modeling artifacts are typically generated at a logical or physical abstraction layer, as outlined in the
referenced methodologies. They can be grouped into three categories: the cabin structure, the cabin
composing assemblies, and the components’ interfaces for assembly.
The generic definition of the modules assembled in the cabin can be represented in a block definition
diagram. With multiplicity specification, it is possible to define which modules are mandatory parts
of any cabin instance and which are optional. For instances that do not include these architectural
options, all related elements, such as interfaces, are automatically removed. The cabin decomposi-
tion is realized in terms of hierarchical subdivisions (e.g. modules, components, parts). Each cabin
element has a set of properties that distinguish different variant implementations. By redefining these
properties, specific variant values can be assigned to the properties.
From an assembly perspective, the way cabin elements are interconnected plays a major role. The
interconnection is typically depicted in an MBSE approach through the connected system parts via
proxy ports. The generic interconnection can still be used to instantiate different architectures by
selecting or deselecting the parts and ports. The approach extends the representation by defining
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an element Assembly Interface as a specialization of the SysML element Interface Block,
which is used to type the relevant ports for the assembly process. These interfaces define the problem
space, i.e., the requirements based on the two assembled elements and the flow between them. They
do not specify the joining technology to be used as a solution, as this is one of the intended results
of the ontology-based evaluation and optimization.
The Assembly Interfaces need to be linked to different types of requirements (functional, non-functional,
mechanical, electrical, integration, test) and are reusable at different interfaces in the architecture.
The mentioned requirements have also been specified with new stereotypes and all have the ele-
ment Interface Requirements as a generalization. Here, the requirement can be described
and related properties such as load or pressure are defined. The required values can be given in
concrete or abstract ranges, as exact values are not easy to determine at this development stage.
In the next step, relevant model artifacts from the assembly system architecture are defined for later
integration. Both "greenfield" and "brownfield" assembly planning scenarios are considered. Brown-
field refers to the reuse and reorganization of existing assets to meet new or adjusted production
requirements while considering their limitations. In contrast, greenfield production systems start from
scratch, allowing for the optimal design of assets according to current best practices [23].
In this work, the brownfield approach is initially adopted, considering that production systems are
often built upon previous ones for new aeronautics products. The capabilities provided by one or
multiple combined resources can be derived from the functional analysis of the available resources.
The skills of the resources, i.e., how the capabilities are implemented by different resources, are
derived from the logical or technical resource analysis.
The greenfield approach is applied to the assembly processes that require capabilities not provided
by existing resources. These capabilities can either be assigned to specific resources by extending
their functional behavior or by designing new resources with the required functionality.

2.2 Co-Development Knowledge Graph
To capture different domain concepts, ontologies have shown potential for semantic knowledge inte-
gration and reuse in a tool-agnostic way [24]. According to [25], an ontology defines "a vocabulary
of concepts and some specification of their meaning. This includes definitions and an indication of
how concepts are interrelated, which collectively impose a structure on the domain and constrain the
possible interpretations of concepts." The definition of the concepts, their attributes, and the relations
between them is realized in the so-called Terminology Box (TBox), while the definition of asserted
individuals and instances is part of the Assertion Box (ABox) [26, 24].
The Knowledge Graph (KG) consists of a TBox and ABox and can be used to retrieve (query) in-
formation that is either explicitly defined or implicitly inferred through reasoning [27]. KGs can be
serialized in the Web Ontology Language (OWL), a W3C standard that allows the specification of
formal semantics. OWL is based on the Resource Description Framework (RDF), which describes
information as RDF triples, where each triple is a subject–predicate–object statement (e.g., Cabin-
has Module-Galley), which can be queried using the SPARQL Protocol and RDF Query Language
(SPARQL) that uses the same notation [28].
To create a KG, data from engineering tools can be directly imported into the KG (a process known
as materialization), or KGs can access data from different engineering artifacts, a method called
ontology-based data access (OBDA) [27]. Additionally, OWL can represent description logic and
contains a sequence of axioms and facts that enable reasoning. OWL can also incorporate Semantic
Web Rule Language (SWRL) rules to provide a more complete ontology and enable rule-based
reasoning [29]. For example, a simple rule could assert that the combination of the hasParent and
hasBrother properties implies the hasUncle property.
Especially in the manufacturing field, significant progress has been made in consistently abstracting
domain information. Formalized guidelines and related ontologies are available and provide expert
knowledge representation that maps concepts related to products, processes, and resources [24, 30,
31, 32, 33, 34]. These ontologies are used and extended in this work to integrate the model artifacts
presented in section 2.1. The ontology is defined using OWL to semantically link the main artifacts
from the cabin design and assembly system models. Figure 2 shows a lightweight representation of
the TBox conceptualization as a UML class diagram.
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Figure 2 – TBox of cabin design and assembly ontology

The presented TBox can be subdivided into four interlinked domains. The cabin product domain
includes the model artifacts that emerge from the conceptual design analysis. These artifacts are
linked to the joining technology domain through the interface requirements for the existing cabin
products. In this domain, the joining technology elements are related to these requirements based on
satisfaction constraints. The JoiningTechnology concept can be defined as a technical solution
library with specifications of data properties related to the different requirement categories.
Both mentioned domains are linked to the assembly process domain, where processes are described
(as defined in the VDI 3682 guideline [24]) as a transformation of energy, information, and products.
As part of the joining technology specification, the required processes to implement it are also de-
fined, hence the semantic link in the ontology. Finally, the assembly resource domain integrates
knowledge emerging from the brownfield artifacts from the assembly model. The resource capa-
bilities are set, as described in [33], as semantically equivalent to the processes, which enables
the assembly process allocation. The skills and skill parameters allow differentiation between the
resources in terms of a common capability executed in different manners.

2.3 Design Space for Optimization Problem Solving
Applying multidisciplinary optimization enables the consideration of various architecture combinations
with different multidisciplinary parameters and allows for selective evaluation, thus saving time and
computational resources. Especially in early development stages, where the variety of concepts is
very large, this supports value-driven decision-making that is not tied to one specific domain or solely
based on expert knowledge. In this context, the Design Space Graph (DSG) can be used to formulate
the optimization problem in terms of variables, objectives, and constraints, which can be utilized by
optimization algorithms to explore the design space [35, 36].
A DSG is a directed graph that combines architecture elements (e.g., functions and components) with
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decision models, enabling the automatic generation of architecture candidates. The DSG consists of
two domains: a selection domain with generic nodes, derivation edges, incompatibility edges, and
selection choices for selecting the elements included in an architecture instance; and a connection
domain with connector nodes, connection edges, and connection choices for modeling connection
tasks. Moreover, it is possible to define generic design variables, e.g., to model parameter selection.
These are defined using design variable nodes for continuous and discrete design variables.
The design problem definition also requires the definition of performance metrics using metric nodes.
These represent the output of the evaluation function and are used as objectives or constraints in the
optimization problem. Therefore, the evaluation function must be defined to return the performance
for a given DSG instance in terms of the defined output metrics. The optimizer runs the evaluation on
the design space iteratively to find the optimum.
In this work, a graph translator has been developed to access formalized knowledge in the KG and
utilize semantic information to formulate the optimization problem using the DSG. The translator
includes an API containing SPARQL queries that return asserted information for different types of
elements or relationships. The information is processed, and a DSG is automatically built using the
DSG Core API [37].
First, the translator begins by creating the selection choices. It queries specific object properties (e.g.,
isComposedOf, joinedBy) in the KG and processes their constraints and multiplicity to create
selection nodes and the corresponding selection possibilities as further nodes. The translator then
queries the data properties in the graph to create metrics in the DSG for the created nodes. In the
next step, specific rules defined with SWRL are utilized to create links between different nodes. The
translator uses reasoning results and creates connection nodes between the corresponding nodes.
Furthermore, other logical constraints such as disjunctiveness are used to reduce the number of
possible architectures by creating incompatibility edges in the DSG. These edges assert that if either
of the two nodes is confirmed, the other node and its derived nodes are not. Post-processing activities
are then required to set initial nodes that are relevant to generate valid architectures and also to define
which metrics are to be used as objectives.
After a DSG is defined, the optimization problem as shown in Figure 3 can be run. The DSG is
encoded into design variables that are accessed by the optimization algorithm every iteration.

Figure 3 – Optimization workflow using DSG (modified from [37])

A selection of a corresponding algorithm can be made based of the nature of the DSG and the
intended results. The optimization algorithm suggests a design vector, that is decoded as a DSG
instance. The latter is evaluated according to the problem-specific evaluation function. It generates
metrics values that are interpreted as objectives and constraints. These are communicated back to
the algorithm for next iterations until optimal solutions are found.
The optimization problem is run by coupling to SBArchOpt, which an open-source library for running
architecture optimization problem [38]. The python library ADSG Core provides a problem definition
in the API of SBArchOpt, so that all algorithms defined in SBArchOpt can be used.
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3. Application Case: Co-Development and Optimization of Decoupled Cabin Architec-
ture

In this section, a use case from the cabin context serves as a proof-of-concept to demonstrate the
applicability of the methodology shown in section 2.. This use case involves decoupling the cabin
from the airframe, an approach that is gaining importance in aircraft manufacturing research. The
benefits of decoupling include simplified installation processes, reduced reconfiguration costs, and
shorter lead times. One technical solution is the Crown-Module (CM), a frame structure that decou-
ples the ceiling and hat-rack areas, where electrical components, air conditioning, oxygen supply, and
other mechanical systems are located. Although integrating a CM offers many benefits, it can also
introduce design and assembly challenges. Therefore, it is crucial to conduct co-development and
multidisciplinary optimization of both coupled and decoupled architecture instances at an abstract
level. This approach helps understand the overall impact of this technical solution before proceeding
with detailed geometrical and industrial design. In the following sections, the developed methodol-
ogy is applied to these architectures, demonstrating how the application and integration of MBSE,
ontologies, and design spaces can support early synergy assessment.

3.1 Model-based Architectures of Cabin and Assembly System
The modeling activities begin by defining the structure of the cabin, including both coupled and de-
coupled variants. The block definition diagram in Figure 4a illustrates this structure. By specifying
multiplicity, it is possible to assert that every cabin instance is composed of modules placed in the
ceiling area, and that some cabin instances include a CM. Using the generalization relationship, dif-
ferent variants of the Overhead Storage Compartments (OHSC) and ceiling panels can be defined.
These variants have different design properties in terms of geometry, mass, and cost, which are used
during the evaluation for the overall assessment.

(a) Configurable cabin structure (b) Cabin’s internal interfaces

Figure 4 – MBSE architecture for cabin decoupling

Furthermore, the internal structure, including the interfaces between the cabin modules, is depicted
using an internal block diagram as shown in Figure 4b. Three different types of interfaces have been
defined using Interface Blocks: interfaces between cabin modules and the frame, between cabin
modules and the CM, and between the frame and the CM. This classification is due to the common
requirements for these interface types. The proxy ports of the parts are typed by these Interface
Blocks using the corresponding multiplicity, which is used to generate interfaces for both decoupled
and coupled instances.
To model the link between the assembly interfaces and their corresponding requirements, a stereo-
type Require has been defined. Additionally, new requirement stereotypes have been introduce
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for different types of requirements. Figure 5a shows the matching results between the assembly
interfaces and requirements. These are defined as abstract requirements regarding the mechanical
load to be carried, the required space for integration and installation, the expected functionality of the
interface technology, as well as safety-related requirements. Moreover, a library of joint technologies
has been defined and linked to the specified requirements using the SysML relationship Satisfy.
Figure 5b shows the results of this matching. Both of these relationships are used when integrating
model information into the KG according to the ontology depicted in Figure 2.

(a) Interface requirement matrix (b) Satisfaction matrix for joining technologies

Figure 5 – Interface matching according to ontology

The second step in the modeling process pertains to the assembly system. As mentioned in section
2.1, a brownfield approach is adopted by modeling available resources. In this use case, resources at
the laboratory of the Institute of System Architectures in Aeronautics (DLR-SL) have been considered.
Using the semantic definition, properties regarding their capabilities and skills have been defined
through the instantiation of the resources block definition. Figure 6 shows the resulting instance
for the assembly system. The system is composed of a worker, tooling, as well as two automated
resources: a static robot and a mobile robot. The corresponding capabilities (see purple blocks in
Figure 6) are shown, and the related skills with respective parameters (see red circles in Figure 6) for
each resource and capability are specified. The instance specification values are used for integration
into the KG.
Since processes and their allocation to the resources are one of the results of the intended opti-
mization, they are integrated at a later development stage, and the results are shown in section 4.
.
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Figure 6 – Instance specification of the assembly system with available resources

3.2 Integration of Cabin Design and Assembly Knowledge in KG
The information captured in the SysML Models for design and assembly are integrated into the KG
by parsing the models using the XML Metadata Interchange (XMI), which is an interchange format
for SysML metadata [39]. The stereotypes are used to map specific model elements to the TBox-
concepts and collect corresponding information. The latter are then used to create the ABox with all
individuals and relationships. To results are visualized using the open-source ontology editor Protégé
and are shown in Figure 7.
The KG illustrates the two cabin variants and their composing modules. The modules are linked
to their possible interfaces, which require specific interfacing requirements as defined in Figure 5a.
The joining technologies are also linked to these requirements based on the satisfaction constraints
defined in Figure 5b. Each of these joining technologies implies the necessary assembly processes,
which are aligned with the capabilities of available resources.
Furthermore, two rules defined in SWRL are added to the TBox semantics and are used for the
assertion of individuals in the ABox. The SWRL notation are defined as follows:

RL1: requires(?int,?req)∧satisfies(?tech,?req)→ isAllowedBy(?int,?tech) (1)
RL2: hasCapability(?res,?cap)∧ isEquivalentTo(?cap,?proc)→ isProvidedBy(?proc,?res) (2)
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Figure 7 – Resulting ABox for linked data from SysML models of cabin design and assembly

The first rule sets the compliance of a module interface with a joining technology, if the latter satisfies
all requirements needed for a specific interface. The second rule asserts that a process can be
provided by a resource, if the latter has the required capability associated to this process. These
rules are used by the inference engine and generate additional relationships, that are used by the
DSG translater to build the design space.
Moreover, the translator also utilitized SPARQL queries to parse information from the ABox. These
are defined as follows:

Q1:
PREFIX co:
<http://www.dlr.org/onto/cabin#>
SELECT ?cabin ?Module ?Interface
WHERE {
?cabin a co:Cabin.
?cabin co:isComposedOf ?Module.
?Module co:hasInterface ?Interface
}

Q2:
PREFIX co:
<http://www.dlr.org/onto/cabin#>
SELECT ?Joint ?Process
WHERE {
?Joint a co:JoiningTechnology.
?Joint co:isjoinedBy ?Process.
}

The URI-link defined for the prefix "co" is pointing at TBox concepts and relationship in the developed
cabin ontology. The first query is used by the translator to get all composing modules for each cabin
architecture, and their corresponding interfaces. The requested information is retrieved using the
"SELECT" query form, which return variables bound in a query pattern match. The second query
retrieves processes that are needed for the assembly using specific joining technologies.

3.3 Evaluation and Optimization of Cabin Architecture
To analyze the architecture’s impact on cabin design and assembly, two optimization objectives have
been defined for each domain. The design is evaluated based on total product mass and costs, while
the assembly is evaluated based on time and energy consumption. An evaluation function for each
of these metrics is defined. The evaluation function retrieves information regarding assembly pro-
cesses, masses, and costs from an evaluation database. This database contains assumption-based
information about each module type in combination with available joining technologies. The evalu-
ation function uses this data to calculate the number of joining elements and assembly processes
required for an architecture instance. It computes the mass and costs of a design by summing the
masses and costs of the modules and joining elements. Similarly, it computes the assembly time and
energy consumption by summing the individual data for all processes required for a specific archi-
tecture instance. In this work, no process sequencing is implemented in the evaluation. Therefore,
the computed assembly time does not consider possible overlapping of parallel processes or the
temporal availability of resources during process execution.
The optimization is subsequently run using the Non-dominated Sorted Genetic Algorithm II (NSGA-
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II), a sorting-based multi-objective evolutionary algorithm [40]. This algorithm is well-suited for large
design spaces with an exhaustive list of candidate solutions. It calculates the Pareto front, corre-
sponding to a set of optimal, nondominated solutions. The algorithm maintains a set of individuals,
collectively referred to as a population. Each individual represents a solution. During evolution, the
population is updated in each generation, and new individuals are created. The evolutionary process
ends when the population approaches the Pareto front.

4. Results and Discussion of Architecture Design Space and Optimization
In this section, main results for the architecture design space and optimization for the cabin decou-
pling application case are presented. By running the translator, the DSG selection and connection
nodes, connection and derivation edges as well as metrics are provided. Additional post-processing
activities are implemented to select initial and metric nodes. Figure 8 shows the results of the design
space and the graph elements parsed using the queries Q1 and Q2 are highlighted.

Figure 8 – Resulting DSG for coupled and decoupled cabin architectures

The selection of decoupled or coupled cabin architecture determines whether the CM is included
or not. The OHSC and ceiling panels include different variants and are specified with the design
variable nodes. As defined in the SysML model, each cabin module can have a direct interface to
the airframe or be assembled via the CM. The interfaces are specified as selection choices and are
only available for the corresponding architecture through the incompatibility edges (see red lines).
The interface nodes are connected to the joining technology nodes using inferred information in the
ABox by applying rule RL1. The connection edges, shown by dashed black arrows, display the con-
nection constraints regarding the allowed number of incoming and outgoing connections. Moreover,
the assembly processes required for each technology are associated with plausible resources using
selection choices. These are defined based on the logic in rule RL2.
The optimization is subsequently run for the DSG. Parameter regarding the size of the design space
and the optimization computation time are shown in Table 1.

Table 1 – Properties of design space optimization

Valid design space Number of objectives Population size Number of generations Computation time for problem optimization (sec)
3,440,640 2 for each problem definition 100 10 41.85

In this work, two optimization cases are shown where two objectives are selected. The first case opti-
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mizes the cabin’s products mass an the assembly time, and the second case optimizes the cabin
products costs and the energy consumption during assembly. The results of the multi-objective
pareto-optimization are shown in Figure 9.

(a) Pareto chart for mass and assembly time
optimization

(b) Pareto chart for costs and energy consumption
optimization

Figure 9 – Multi-objective optimization results for cabin design and assembly using NSGA-II
algorithm

In the Pareto charts, population individuals are represented as black dots, and optimal Pareto front
individuals are represented by blue squares. Each of these individuals represents a cabin architecture
instance. In both cases, no Pareto optimal result is available, but the best architectures are selected
according to architectural preferences and highlighted with red circles in Figures 9a and 9b. In the
first case, the selected optimal architecture has an assembly time of 61.8 minutes and a product
mass of 77.82 kg, and is shown in Figure 10. In the second case, the selected optimal architecture
has an energy consumption of 118 Wh and product costs of 5362C, and is shown in Figure 11.

Figure 10 – Cabin architecture instance with best mass and assembly time results

Figure 11 – Cabin architecture instance with best costs and energy consumption results

Both instances involve a decoupled architecture without a CM. The additional mass, costs, assembly
time, and energy consumption of this module are not mitigated by lighter and reduced joining tech-
nologies. Consequently, only bolts with nuts, rivets, and clamps are available for directly assembling
the modules to the frame. In the optimal instance of the first case, clamps are used for the assembly
of the ceiling panel and OHSC, while rivets are used for the air-duct assembly. The additional process
required for bolts with nuts adds more time, which is why this joining technology wasn’t chosen. Fur-
thermore, mostly automated resources are assigned to these processes due to their faster execution
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for these specific types. In the optimal instance selected for the second case, rivets are used for all
modules. Apart from their favorable costs, the required processes can be managed by workers and
corresponding tools with very low energy consumption.
The methodology presented in this work leverages and combines various technologies. MBSE en-
ables the depiction of design artifacts and domains independently in two abstract models. Semantic
web technologies such as RDF, OWL, and SPARQL are used for building and processing the ontol-
ogy and knowledge graph. These serve as the integration core, where interactions and dependencies
among different domains are represented. Thus, domain experts can develop their domain-specific
MBSE models, and ontology experts can integrate their results into the common KG. Finally, de-
sign space exploration and optimization technologies, such as DSG and optimization tools, utilize
the integrated knowledge to find optimal solutions and enable multidisciplinary trade-off analyses.
A translator between the knowledge graph and DSG links the KG with optimization activities and
facilitates the assessment different cabin architecture instances.
The application case demonstrates how multidisciplinary cabin architectures can be assessed in
early development stages. A broad design space incorporating numerous architectural choices can
be evaluated efficiently, facilitating architecture optimization and data-driven trade-offs. However, the
evaluation data used in this study are based on assumptions and should be validated through high-
fidelity simulations or hardware execution. Additionally, aspects that are not adequately captured
in the ontology definition or the evaluation, such as very abstract requirements descriptions or the
omission of process sequencing, can lead to unrealistic assessments.

5. Conclusion and Outlook
To tackle challenges related to aircraft cabin customization and manufacturability, evaluating diverse
multidisciplinary architectures early in the design process is crucial. This evaluation should encom-
pass the overall impact of cabins on design and assembly. This work introduces an ontology-based
approach for co-development and optimization in the aircraft domain. Leveraging Model-Based Sys-
tems Engineering (MBSE), descriptive abstract models depicting design and assembly artifacts are
independently developed. These models are integrated into a unified Knowledge Graph (KG) that
defines a cross-domain ontology, facilitating the assertion of individuals through inferred knowledge.
The cabin application case presented demonstrates how the KG can be practically translated into
design spaces and utilized for multidisciplinary optimization. Deriving design space from seman-
tic knowledge representation ensures consistency, reusability, and scalability for detailed analyses.
Thus, the application case validates the feasibility of optimizing large cabin design and assembly
spaces at an abstract development stage.
However, the evaluation data in this work are based on assumptions, posing limitations on the plausi-
bility of assessment results. Future research should focus on developing detailed models of products,
joining technologies, and assembly resources to generate more realistic data. These models could
stem from detailed simulations or real hardware, accounting for uncertainties typical of early devel-
opment stages. Therefore, extending the ontology representation to encompass complex concepts
and relationships that align with detailed simulation and hardware models is essential.
Finally, future work will explore quantitative comparisons between experimental results and those
generated by abstract assessments to assess the reliability of the co-development approach.
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