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Abstract

Nowadays, numerical simulations remain time-consuming. Consequently, empirical correlations keep their
importance as a valuable tool for compressor design and for estimating flow parameters. This contribution
utilizes higher order neural networks to predict flow parameters for new family of airfoils, offering an alternative
to time-expensive simulations or inaccurate empirical correlations.
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1. Motivation

Axial compressor is a key component of every state of the art turboprop engine. It delivers com-
pressed air into the combustion chamber to maximize effectiveness of the fuel combustion, that en-
ables lower amount of the fuel necessary to the flight mission. Nowadays, as demand for advanced
technologies in aircraft industry is increasing, a need for profiles in the axial compressor that perform
better than classical profiles is also increasing.

Classical profiles as NACA 65-series and C.4 circular-arc are appropriate for low Mach numbers, cor-
responding to subsonic flows. Double-circular arc (DCA) and multi-circular arc (MCA) profiles exhibit
good performance when the flow is accelerated to high subsonic or even low supersonic velocities
[1]. Specifically designed for subsonic and transonic cascade applications, Controlled Diffusion (CD)
airfoils can offer superior performance compared to DCA or MCA profiles. The CD airfoils are con-
structed to shape the blade beyond the peak suction point of the surface velocity, minimizing loss for
the airfoil section [2]. The new family of airfoils introduced in [3]] is expected to outperform the classical
NACA 65-series, show comparable performance to CD airfoils, and offer a significantly wider range
of acceptable incidence angles before stalling occurs. The design of the camber line and thickness
distribution of the profile is based on the desired pressure distribution on the blade surface.

Despite computational fluid dynamics (CFD) being time-consuming, empirical correlations remain a
common tool for designing and predicting axial compressor cascade performance. Unfortunately,
there is insufficient experimental data for families of airfoils other than the classical profiles, leading
to a lack of correlations for these profiles. This contribution focuses on the modelling of correlations
for flow parameters estimation within compressor cascade and its ability to optimize geometry of the
axial compressor blades at the design operational point.

Present contribution deals with a novel approach for the investigation of flow field within axial com-
pressor, that is based on the solution of radial equilibrium equation and empirical correlations. A set
of very comprehensive and precise CFD simulations were performed in order to replace expensive
measurements. Proposed method, in context of practical applications, is also discussed and it turned
out as promising approach to further work.
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2. Objective statement

Initially, let’s introduce the geometric parameters within the compressor cascade. As depicted on the
left-hand side of Figure[T] the parameter ¢ corresponds to the blade chord, while parameters a and b
indicate the point where the maximum of the camber line is reached. Symbols y; and yx, represent
blade angles in relation to the chord line. Subscripts "1" and "2" are utilized to differentiate between
conditions at the blade’s inlet and discharge, respectively. The angle 6 is the sum of blade angles,
expressed as 6 = y; + 1.

In the context of the cascade (Figure [1]right), there exists a stagger or setting angle v, which repre-
sents the angle between the chord line and the axial direction, and blade angles «;, k», indicating the
angles between the camber line and the axial direction at the leading and trailing edges respectively.
The blade density is defined by the solidity o = ¢/s. The flow is characterized by velocities W;, W,, and
flow angles B;, B, with respect to the axial direction. Additionally, parameters such as the incidence
angle i, deviation angle 8, and angle of attack a are defined in

a=p~y, i=p—kx, o=PFh-kKk=xn+Y, K=Y—). (1)
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Figure 1 — Cascade nomenclature: profile parameters (left); cascade and flow parameters (right).

2.1 An approach by employing CFD

Computational fluid dynamics (CFD) has become a valuable method for flow analysis, design, and
optimization in recent years. Despite advancements in computational power, performing a series of
numerical simulations can still be quite demanding. To determine conditions at the design point, it is
essential to identify the correct value for the design incidence angle i*, as illustrated in Figure 2]

In Figure [2| (right), the procedure for finding a design point is outlined. The process involves conduct-
ing simulations with various boundary conditions and loss evaluations, aiming to identify the point with
the minimum pressure loss (PL), that is impractical due to the computational complexity mentioned
earlier.

—e— PL calculated using CFD
- = = Bounds estimated by CFD
T T

4 2 0 2 4 6 8
Incidence angle i [°]

Figure 2 — CFD post processing: flow field example (left); design point finding (right).
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2.2 Computational method

Computational method is based on Euler equations for axisymmetric flow. The calculation is per-
formed in meridional plane in curvilinear coordinate system {m,y}. Quasi-normals correspond to an
inlet cross-section and leading and trailing edges of blade rows as it is shown in Figure 3] Shapes of
the stream surfaces are determined during the calculation.

T

4 Quasi-normal

Stream surface e=p—A

/////////////// // Shroud
ZT_j A‘k N \_: _m

A N I I\ NN\ Blade row
()0:

Figure 3 — Curvilinear coordinate system.

v

2.2.1 Calculation on inlet cross-section

Based on prescribed boundary conditions for total pressure p; ;,, total temperature 7; ;, and mass flow
1y in, €Ntropy s;, and total enthalpy H, ;, are determined using p — T' diagrams. Meridional component
of the velocity is obtained by solving non-linear equation in order to reach desired mass flow as

Vs
M, = o 27rrp,~nCm7,~,, COS de, (2)

where density at the inlet p;, is determined using & — s diagram. Tangential component of the velocity
is equal to zero and the rest of quantities are determined using thermodynamic relations.

2.2.2 Calculation on the quasi-normal cross-sections without blades

In case of quasi-normal without blades, tangential component of the velocity is determined using
moment of momentum conservation. Furthermore, entropy s and total enthalpy H, remains constant
along the streamline. The rest of quantities are obtained through solution of radial equilibrium

an f3(y>

Ty:fl()’)Wm+f2(y)+W7ma (3)
where functions f{; » 3; are defined, according to [1], as
sing dW,,
fl(y) = —K;;COSE + WimW7
fZ(y) = 07 (4)
_JH ds Cy d(rCyp)
fy) = Dy *ijj oy
An approximation of the meridional gradient of C,, can be computed as
1 oW, N 5\ SIn@ 1 Jdo
W7m am (I_Mm)__(1+M<P) r _coss By ~ Kntane, )

where «,, = —d¢/dm is a streamline curvature, M,, = C,/a, My, = Cy/a are meridional and tangential
Mach numbers, respectively, and symbol a denotes speed of sound.
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2.2.3 Calculation on the quasi-normal cross-sections with blades

The calculation is performed in relative coordinate system in case of quasi-normal that corresponds
to blade cross-section. When stator blade row is computed, rotational speed @ = 0. Total rothalpy
I, is also conserved similarly as in the case without blades. Flow angles  can be determined using
empirical correlations and values from the previous iteration. Pressure loss is also obtained using
empirical correlation and then it is recalculated into entropy increasement As. The rest of quantities
are also obtained through solution of radial equilibrium equation (3) with f{; 5 3

- t /8 t / . aW
fi(y) = cos? B’ |~k cose — ariﬁ (r anﬁ)+51ns "

L dy W, dm
f>(y) = —2wcos B’sin ' cos A (6)
K4 ds
_ 20|94 Y0
70 =cop |51 -5

2.2.4 Streamline shape corrections

Shape of streamlines are corrected after the calculation on whole streamline sets is performed. New
streamline positions y are computed in order to preserve equality
y(ivj) . J —_

/0 2nrpCycosedy = mi"NiS 1 (7)
where NS refers to number of streamlines and j denoted individual streamline, i.e., j ={1,...,NS}.
When inlet boundary conditions are set, parameters at the inlet can be computed. Initial stream
surfaces are equally spaced. Flow field parameters at individual quasi-normals are calculated using
aforementioned procedure. After that, stream line positions are corrected if necessary. Then the
process is repeated until the flow field is converged as it can be seen on workflow in Figure [4]

Start ‘ End ’

No Yes

Compute flow
field parameters
at quasi-normals

Move positions of Converged
stream surfaces flow field?

Compute param- Initialize
eters at the inlet stream surfaces

Figure 4 — Workflow of the procedure.

2.3 An approach by employing empirical correlations

In the past, the primary goal of the empirical modeling process was to forecast fluid turning and
total pressure loss for a cascade under relatively broad operating conditions, as reported in [1].
Empirical correlations were developed based on experimental data derived from two-dimensional
measurements conducted on classical profiles such as the NACA-65 series and C.4 profiles.

To emphasize level of non-linearity and complexity of the task, there are documented empirical cor-
relation for important flow parameters in the compressor cascade as the design incidence angle i*
and resulting pressure loss PL after the flow throughout the cascade.

2.3.1 Design angle of attack a* and incidence angle i*

The design angle of attack o*, or the design incidence angle i*, define a near-optimum or minimum-
loss inlet angle for the cascade. The selection of a* was based on achieving smooth blade surface
pressure distributions, particularly on the suction surface. Herrig has formulated the following empir-
ical model in [4]

a 025
of = (3.6Ksh1<,,i+o.35329 (;) ) 6°, e=0.65—0.0026, (8)
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where correction factor Ky, is assumed as constant for specific family of airfoils and parameter K; ;
can be correlated as a function of maximal blade thickness-to-chord ratio #,/c [1]

_(10®)" .- 03
Kii=(10")", =028/ (0.14 (1/e)*?). 9)

Design incidence angle i* correlation was developed by Lieblein in [5]
i = KKy (i) (10) +10. (10)

The first term on the right-hand side is the design incidence angle for a camber angle of zero. It is
computed from a correlation for NACA 65-series blades and corrected by K, and K; ;

¢ Blp 3 Bl =70 0-3
()10 = 5 agexp(—230) 10 P T ) P0G (1)
According to [6], the slope factor n can be expressed as
(ﬁl/go)(Hl.ZG)
=0.0256 - 0.06 - ————.
n=0.0250 —0.06 1550430 (12)

2.4 Design deviation angle 6*

There is also an empirical model for the design deviation angle 6* supplied by Lieblein [7] that corre-
sponds to operation at the design incidence angle i*. The model has similar form as design incidence
angle correlation discussed above

0" = KuK; 5(8))10) +m0. (13)

Coefficient K, is the same as for the design incidence angle model and parameter K, 5 is correlated
as

. p tp 2
Kis=625(2)+375(2) . (14)
Design zero-camber deviation angle (8;)(10) from Johnsen and Bullock [6] can be obtained as
B (1.6741.090)
(85)(10) =0.016B1 +(0.746"? 4+ 30) <9(1)> . (15)

Defining x = 0.01p;, the slope factor m for the NACA 65-series camberline is modelled as [1]

mi.0

b myo=0.17—0.0333x+0.333x%, b=0.9625—0.17x—0.85x°. (16)

m =
One can see that the issue is the same as in the case of previous incidence angle correlation, the
design deviation angle can be modelled as 6* = (0,6, B:).

2.4.1 Total pressure loss PL

Lieblein in [7] developed an empirical correlation for pressure loss PL as a function of the equivalent
diffusion factor D, [8], based on experimental cascade data for NACA 65-series and C.4 circular-arc
blades as

wcosfr (W 2 2 8
PL— hial :K[K 1(Dyg—1)240.4(Dpy— 1 ] 17
20 <W2) 1 |K2+3 ( q ) + ( q ) ( )
where K; =0.004, K> = 1 and
Winax \ W1 COSZB1 Wi
D,, = — =1(1.124+0.61 t — —. 1
q < W >W2 < + 5 (tanf tanﬁz)) W (18)

In presented paper pressure loss is modelled as PL = f(D,,). As it can be seen in equations above,
the dependency between monitored parameters (o*, i*, 6*, PL), cascade parameters and parameters
of the flow is strongly non-linear, that is a suitable task for ANN.
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2.5 An approach by employing artificial neural networks

The information processing within neural unit consists of two separated mathematical operations
(Gupta, 2013). The first of them is a so-called synaptic operation s which receives inputs and com-
bines them with neural weights that represent some kind of memory. Somatic operation can be
responsible for introducing non-linearities as thresholding, non-linear activation, aggregation, etc.
This information continues as a nerve impulse into the next layer of neural units is it is shown in
Figure 5] (right). Neural output of the individual unit y'is a scalar as it is indicated in Figure 5] (left) and
expressed by

y=0(s). (19)
N-th order synaptic operation of the neural unit can be written as [9, [10]
§ = woxo + Zw,x, + Z Zwux,xj +ot Z Z Wisiy...inXiy Xiy - - - Xi, s (20)
i=1j=i ii=1  in=iy-i

where xo = 1 stands for threshold and » denotes the length of input feature vector.

1st layer 2nd layer

Neural unit

Inputs

Inputs Synapse  Threshold
(1] (w1 ] [ 1 i
: : \ Soma, - \
: : yER .
o o] o el :
: : / x; : —

T | W, |

Tn /
4{ Learning algorithm [«—— T

Figure 5 — Neural network: single neural unit (left); shallow neural network (right).

Since desired outputs are known, machine learning is called as supervised learning which is the task
of learning a function that maps input to an output. Weight of similarity between neural outputs and
true outputs is represented with a cost function ¢

e=Y-Y. (21)

As we can see, the error is strongly dependent on the neural memories represented by the vector of

weights W. Thus, processing of the information should be done in a way which leads to the neural unit

being learned. For this purpose, gradient descent batch Levenberg-Marquardt algorithm for weights
updating [10] is employed in this work

W=W+AW, (22)

— ::::1::_1::_>
AWT:>—<JTJ—%HI> JTe. (23)

Coefficient u is learning rate, 7 is n,, x n,, identity matrix, n,, number of weights and J represents
n X n,, Jacobian matrix.
Usually, training data set is divided into three subsets. The first, training set which serves for learning
and weights updating. The second is validating set. After each epoch of learning algorithm, error
estimation is performed on this subset in order to avoid neural unit overfitting. Training continues until
validating error is increasing. Third part is called testing set which measures error after learning is
terminated. Testing error after training part was measured as mean squared error (MSE)

MSE = - ¥ (3~ 1) (24)

i=1
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2.6 A workflow of the flow field parameters prediction

The procedure begins with calculating o* because only two parameters are needed as inputs, allow-
ing for an estimation based solely on the geometrical parameters of the cascade, i.e., c and 6. Next,
an estimation of the flow angle 8, can be made as described in equations (1), and the angles i* and
6* can be computed using trained neural networks. Since the flow angles ; and B, are calculated,
the only unknown parameter remaining is the velocity at the cascade outlet, W,. The ratio W, /W, can
be determined using the following relation [11]

Wi cos(B1) = Wacos(Ba). (25)

At this point, all parameters necessary to calculate the equivalent diffusion ratio D.,, as described
by equation (18), are known. The final correlation for the design total pressure loss PL can then be
applied, as indicated in the prediction workflow shown in Figure [6]

Input parameters
g, 67 Y, K1, K2, Wl — f(O',@,ﬂl)
p1 = k1 + 1"
a* = f(0,0) Wo /Wy =
) D., ~ Eq.(12
B1 =+ a* cos(B1)/ cos(B2) 4 a2
0 = f(0-797ﬁ1> l
Bo = ko + 6 PL = f(Deq) =
f(0-7617627W17W2)

Figure 6 — Workflow for flow parameters prediction.

3. Results

In order to obtain training data set for neural network and replace experimental measurement, various
numerical simulations with different geometrical setups and inlet boundary conditions were performed
as, e.g., in [12,[13[14]. Design incidence angle was found through number of simulations as the flow
angle with minimum pressure loss as described in [1].
Results of the literature correlations approximation by neural networks, learned on results of CFD
simulations as reference data, are presented in the first part of this section, namely design total
pressure loss PL, design incidence angle i* and design deviation angle §*.
Second part of the presented results are applications to different abilities of the approximation to
speed up flow field investigation. First of them is the prediction of the design incidence angle i* to
find the optimal angle as the input for detailed numerical study of the concrete axial compressor
profile, that was excluded from the training data set. The second application is a comparison of the
CFD simulation of the whole axial compressor stage against introduced methodology using radial
equilibrium with correlations from the literature and approximated correlations using neural networks.
Presented results are overall performance parameters and distributions at the rotor outlet - total
relative pressure and total pressure loss coefficient Y defined as
/
y—1-"2 (26)
D1

)

Designed neural network is consisted of two neurons in the first layer and single neuron in the output
layer as it can be seen in the Figure 5| (right). Synaptic operation of all neurons was assumed as
quadratic polynomial in the designed ANN. As the activation function o (e) linear was used in the first
layer and in the output layer, respectively.

The data set was divided into three parts - 80% of samples belong to training subset and the rest was
equally distributed to validating and testing subsets. Learning rate was set to u = 0.4 with no decay
that allows faster convergence of the neural network learning.

7
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3.1 Approximation of the literature correlations: design total pressure loss PL, design inci-

dence angle i* and design deviation angle 6*
In case of design total pressure loss PL, twenty epochs was enough for neural network to learn with
testing error 0.0163 as it is shown in Figure [7] (left). Figure[7] (right), shows a comparison of function

learned by ANN and Lieblein’s correlation against whole data set obtained using CFD.

Learmng testmg error: 0. 016342 after 20 Epochs
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Figure 7 — Progress of the learning (left); ANN results compared to Lieblein’s correlation (right).

Correlation for the design incidence angle i* and design deviation angle 6* was modelled using the
same neural network architecture as for the previous correlation. Prediction of these flow angles
using trained neural network and correlations from literature against true targets obtained using CFD
can be seen in Figure [8]

Design incidence angle 1* [°]
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(o} : e Targets
8r o o Neural Outputs| |
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Figure 8 — Predicted flow parameters comparison: design incidence angle i* (left); design deviation
angle 6* (right).
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Table[{]lists deviations measured using MSE defined in equation (24). Results obtained by Lieblein’s
correlation and by ANN approach are related to data obtained by CFD. As it can be seen, an approx-
imation by ANN is more than three times more accurate than Lieblein’s correlation model. In case of
flow angles, it can be seen, that the original correlation from literature lack the ability to predict the de-
sign flow angles correctly. Comparison with the literature correlations in terms of MSE are also listed
in Table [1] It can be seen, that the approach using neural networks is 17 times and more than 250
times more precise in the case of design incidence angle and design deviation angle, respectively.

Table 1 — Results: MSE comparison for the design total pressure loss PL, the design incidence angle
i* and design deviation angle 6* related to CFD results.

Correlation Literature ANN Literature/ANN

MSE: PL 0.356 0.109 3.244
MSE: i 3.967 0.233 17.026
MSE: 6* 4.640 0.018 257.778

3.2 Optimal incidence angle prediction for airfoil excluded from training data set

As the first outcome of present contribution is a prediction of design incidence angle i*, that is a
thumbling stone, when time consuming 3D CFD simulations have to be performed, because of afore-
mentioned complexity of optimal incidence angle finding and total pressure loss evaluation.

There is a test of neural network predictions performed on the cascade geometry which was not
included in the training data set, specifically the cascade with solidity o = 1.25, blade angle between
the camberline and the axial direction at the leading edge x; = 40° and 6 = 30°.

The comparison of the design incidence angle estimation and the total pressure loss in the following
Figure[9 Angles i., i; denote positive and negative stall incidence angles which bound the range of
acceptable incidence angles until total pressure loss increases twice [7, [15].

T ;
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1 1
1 1
1 - - — Bounds estimated by CFD 1
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™ ! ! or ! 2PL,.;
N 35F o PL,;, by literature . = - min
N 1 v PL,,, by opt. literature I
== 3 1 T 1 —
— ! ! 1
S 25 1 1 —
7l 1 1
8™ LL ! | g
3 [ 1 A I
I 15+ = ! | B
: - 1 R} 1
q tT S ! * ! ¥ ! n
o8 1+ & 1,7 | | = [ .
i S oy ] Z s
o5k 12 PR B! ! iz ' -
0 = & \O 1 | Ou < ! |O !
0 2 4 6 8 10 12

Incidence angle i [°]

Figure 9 — Results: comparison of incidence angles obtained by literature correlations and ANN.

As it is shown in Figure [9] the design incidence angle predicted by literature correlations is absolutely
beyond acceptable incidence angles range. Total pressure loss is also very undershot in case of
literature correlation. It seems that design incidence angle should be i* = 0.5°. Furthermore, when
constants Ky, K;; in empirical correlations are optimized it resulted into i* = 1°, but it results into
unsteady simulations in fact and time necessary for the whole process of the compressor design and
optimization can be rapidly extended.
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3.3 Flow field investigation using radial equilibrium

Further study shows flow field investigation within axial compressor stage containing single rotor
and one stator blade row. An illustration of the computational domain is visualized in Figure [10]
Mixing plane concept is assumed on the interface between rotating and static parts. Single flow
regime was selected for the investigation and following boundary conditions at the inlet was chosen:
RPM = 17500, i = 274kg-s™', p;in = 7.5MPa and 7; ;, = 333.15K.

300406 detd 5e+6 betb Te+6 8o+6 9e+6 1.06+07

Figure 10 — 3D CFD: Visualization of the computational domain.

In Figure [T1] there is a comparison between relative total pressure (and its mean values marked with
dashed line), which relates static pressure together with fluid density and relative velocity, obtained
through aforementioned approaches. Secondly, there is a comparison of the total pressure loss
coefficient distribution Y defined by equation (26). It can be seen, that the difference in the approach
using neural networks is lower than in case of classical approach using empirical correlations.
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Figure 11 — Comparison of predicted flow field parameters at the rotor outlet: relative total pressure
(left); total pressure loss coefficient (right).
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In case of CFD results, there is plotted an average of the pressure loss coefficient. It can be seen
that pressure drop is captured more precisely using introduced method, that results info different
predictions in performance parameters.

Overall pressure ratio PR and efficiency n can be computed based on the total pressure and total
temperature at the inlet and at the outlet. Performance parameters are listed in following Table [2| At
the first sight, there is not significant difference in pressure ratio PR. On the other hand, when the
approach using radial equilibrium equation with empirical correlations from the literature is employed,
the prediction is with four percent absolute error in overall efficiency, unlike introduced method using
correlations approximated by neural networks, where error decrease to 0.5%.

Table 2 — Results: Performance parameters comparison.

Approach CFD Literature ANN
PR 1.248 1.257 1.221

n 94.9% 91.0% 95.4%

The second and main outcome of present study is, that there can exist an option of surrogate model
based on the classical inaccurate empirical correlations can overshot or undershot performance pa-
rameters and then possibly optimal geometry can be evaluated as unsuitable.

4. Conclusion & Further work

A machine learning approach in task of fluid mechanics was presented. As the training data set was
obtained using comprehensive set of numerical CFD simulations. It turned out, that this approach
appears to be a powerful tool for this tasks. Since the neural network is learned, it can perform well in
various engineering problems as, e.g., optimal incidence angle determination or flow field parameters
prediction within axial compressor.

The main advantage of proposed approach is its fast evaluation of flow field parameters in comparison
with precise CFD study. In context of time-expensive CFD simulations it seems that proposed method
is a very promising tool in further research and potential method of the axial compressor optimization.
Further work should aim to improve the quality of reached results. Since the neural network is
learned, it should be able to predict optimal geometrical setup of the compressor cascade for desired
design conditions as e.g. inlet velocity or desired deviation angle. Furthermore, optimization process
is much more faster because the need for the CFD study can be omitted for early stages of the axial
compressor cascade design.
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