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Abstract

This paper presents the initial development of a three-dimensional ice accretion tool based on Foam-extend
5.0, a Computational Fluid Dynamics (CFD) suite. The final tool will include Foam-extend features, such as
the finite area water model, the immersed boundary, laminar-turbulent transition, solid wall conduction, and
turbulent rough convective heat transfer, along with some specifically designed extensions, solvers, and func-
tions to perform ice shape and protection simulations. The proposed tool is a unified CFD solution capable of
modeling the entire process in 3D. In this article, the authors introduce a new tool called iceAccretionFoam.
This tool represents the initial phase toward a final tool and it uses Foam-extend’s immersed boundary and
Eulerian droplet trajectories to simulate impingement and the growth of rime ice. The tool evaluates and ver-
ifies the accuracy of linear solvers for pressure, turbulence, and TVD schemes by employing the NACA0012
airfoil. It simulates rime icing conditions with accretion alone, without considering thermodynamics. The sim-
ulation considers parameters such as median volumetric diameter, liquid water content, airspeed, free-stream
temperature, three models of ice density, and different droplet distributions.
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1. Introduction
Regarding three-dimensional icing codes, NASA’s LEWICE3D [1] is a pioneering code dealing with
icing in 3D. This code uses the flow solution from external CFD and calculates the droplet trajec-
tories using the Lagrangian formulation. Although the flow solutions and impingement are three-
dimensional, the mathematical model for the water film adopts a two-dimensional approach, consid-
ering normal slices over a leading edge of the wing. Similarly to the water model, the thermodynamics
and growth of ice are also calculated within two-dimensional slices. This approach is called a quasi-
3D solution to the ice-accretion problem. Instead of following the shear lines, the code makes several
cuts to the wing in the normal direction to the leading edge. Depending on the degree of angle of
sweep, the shear lines form an accentuated curve after stagnation and depart significantly from the
normal direction cut made by LEWICE3D [1].
The FENSAP code [2], originally developed by the Habashi team at McGill University, uses a 3D
CFD flow solution and calculates droplet trajectories using a Eulerian formulation. In addition to the
impingement module, the FENSAP code also includes modules for heat transfer and ice growth.
These three droplet modules, along with the CFD flow equations, are interactively solved to calculate
the final shape of the ice.
Regarding acceptance by authorities, no 3D code is widely accepted, despite 2D codes being rec-
ognized and accepted for specific applications, mainly on wings. This weak acceptance is due to the
fact that the technology for 3D ice accretion has not yet been entirely developed. For example, no
code accurately reproduces the formation of the glaze ice lobster tail in the swept wings.
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2. Objective
The purpose of this document is to present the initial development of a novel three-dimensional (3D)
ice accretion simulation utilizing Foam-extend 5.0. Furthermore, the validation process encompasses
an assessment of classical rime ice in the NACA0012 airfoil profile, as established by Shin and Bond
[3], augmented by assessments using traditional airfoil data from NACA0012 for Cp [4] and numerical
results from NACA0012 LEWICE for β [5], in light of the lack of experimental data β relevant to this
particular airfoil configuration.

3. Ice Accretion Tool Description
The Foam-extend 5.0 numerical simulation library is a fork of the original foam code [6] developed by
Jasak and Weller at Imperial College in the 1990s [7, 8]. The authors of the present paper are de-
veloping a new tool named iceAccretionFoam, which includes the standard foam extension features,
such as the finite-area water model and the immersed boundary.
A single 3D CFD code is all that is needed for all calculations. This initial tool is only suitable for the
rime ice regime; however, the framework is designed to include all the components necessary for the
development of mixed and glaze ice. In this case, the task will involve integrating convective heat
transfer [9, 10] along with transition [11, 12], the solidification process, and the dynamics of water at
the interface by applying the finite area technique [13] adapting previous experience [14].

3.1 Solver Charactheristics
The iceAccretionFoam solver for rime icing accretion, as delineated in this manuscript, exhibits dis-
tinctive attributes.

1. A transient solution of the flow by using Reynolds Averaged Navier-Stokes incompressible
equations in a ∆t f low and growing ice in a larger ∆taccretion, simulating it as multi-step with Un-
steady Reynolds Averaged Navier-Stokes (URANS);

2. An immersed boundary method [15] that updates the frontier of the solid surface and defines
the mesh around the new surface created by the growth of the ice;

3. A capability to receive a user-defined droplet distribution [16, 17] with n bins based on the
median volumetric diameter (MVD) and fraction of the freestream liquid water content (FLWC);

4. An implementation of the Langmuir-D-type distribution [18] incorporating a 7-bin diameter and
freestream liquid water content (FLWC), contingent upon the provision of a median volumetric
diameter (MVD) by the user;

5. An Eulerian-dispersed phase model adapted from the extant driftEulerFoam solver. Each
droplet diameter is treated as a distinct phase, characterized by the volumetric water fraction,
α, and the phase velocity, Uphase.

3.2 Simplifying Assumptions
To ensure that the problem aligns with the rime ice shape simulation for the current analysis, the
following assumptions are made: a) All impinging water instantaneously solidifies upon contact; b) A
normal growth of ice rule is applied to all surfaces subjected to impingement; c) Thermal balance
and convective heat and mass transfer computations are not considered; d) Liquid water is assumed
not to exist on the surface of the airfoil; e) The airfoil surface is assumed to be adiabatic; f) Thermal
conduction within the airfoil surface is neglected; g) Phenomena such as splashing, re-impingement,
and other secondary effects associated with Super Large Droplets (SLD) are disregarded; h) The
droplet is modeled as a perfect sphere, and the drag correlation omits deformation effects; i) The
droplet weight is not considered. These assumptions will change according to the iceAccretionFoam
code evolution, for example, when simulating glaze ice shape, SLD or thermal ice protection system
in future versions.
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3.3 Numerical Mesh for Ice Growth
Numerical modeling in ice accretion simulations must account for substantial changes in the geometry
of the flow domain due to ice accretion on solid walls. To handle this, the Immersed Boundary Surface
Method [15] is applied, where the body-fitted fixed polyhedral background mesh is modified using
a deforming immersed triangular surface. The interaction between the immersed surface and the
background mesh is developed in the spirit of immersed boundary solvers.

4. Mathematical Models
4.1 Main Air Flow
The PIMPLE algorithm is used in computational fluid dynamics for transient simulations. It merges the
SIMPLE algorithm [19] with the PISO algorithm [20]. This method is designed for efficient solutions in
fluid flow problems, especially in cases with unsteady flows, large time steps, or significant coupling
between velocity and pressure. The equations for the primary airflow are provided in the following
[21].

∂U
∂ t

+∇ · (UU)−ν∇
2U =−∇p (1)

∇
2 p = ∇ ·H(U) where H(U) =−∇ · (UU) (2)

4.2 Dispersed Phase Flow
The iceAccretionFoam utilizes drift flux modeling to simulate separate phases as a single mixture
phase. The incompressible dispersed phase, represented by Uphase and α, is determined using the
driftFlux model. Each droplet diameter in the distribution is treated as an individual phase.∥∥∥U⃗rel

∥∥∥=
∥∥∥U⃗phase −U⃗

∥∥∥ (3)

Rerel = max( 2.4,
∥∥∥U⃗rel

∥∥∥ · d
νD

) (4)

Cd = max
[

0.5,
24

Rerel
(1+0.15 ·Re0.687

rel )

]
(5)

DragP f =
3
4
·Cd · ρC

ρD
·

∥∥∥U⃗rel

∥∥∥
d

(6)

The equation for Uphase, droplet phase velocity, is defined as follows:

∂ Ũphase

∂ t
+∇ · (φ⃗cont · Ũphase) =

g+DragP f (Ũrel)−
3
4

Cd ·
∥∥∥U⃗rel

∥∥∥ ·νt ·
∇α

d

(7)

Where φcont is the flux of the continuous phase or the main flow. The equation for α, volumetric
fraction, is listed below:

∂α

∂ t
+∇ · (φ̃phase ·α) = 0 (8)

Here φphase is the flux of the droplet phase or the flow of the dispersed phase.
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4.3 Ice Growth Modeling
From the equations 9 and 10, one can calculate the height of the ice, hice, on the surface subjected
to the impingement of water droplets based on the cumulative height parcel of each phase i:

hice,i = ∆taccretion ·αi ·Uphase,i ·
ρwater

ρice
(9)

hice =
n

∑
i=1

hice,i (10)

The deformed field, which represents the height of the ice (hice), is used to modify the computational
domain of the immersed boundary. A minimum threshold for boundary movement is established to
determine when the boundary should be updated. The height is used to move the boundary normally
to the surface at each point of the mesh.
The process of ice growth can be fully simulated in a transient manner, which means that ice accretion
occurs at each time step of the flow solution. Alternatively, to simulate the ice formation process,
the time interval for the flow solution (∆t f low) can be shorter than the time interval for ice accretion
(∆taccretion). Thus, the total time for accretion can be divided into nt = ttotal/∆taccretion steps, with a
flow solution of ∆t f low between each step. The user can arbitrarily choose the values of ∆t f low and
∆taccretion to maintain accuracy while simultaneously accelerating the solution. In this multistep solution
condition for ice growth, it is assumed that the collection efficiency remains relatively constant for the
defined time interval ∆taccretion.

4.4 Ice Density
This study investigated three ice density models: LEWICE [22]; Jones [23]; and Macklin [24]. The
density of ice is influenced by the quantity of air trapped during its formation and therefore depends
on factors such as the median volumetric diameter, liquid water content, size of the body, freestream
velocity, and recovery temperature of the surface. The density of ice is reduced by trapped air, as
seen in glaze ice, whereas the density of ice is increased by a more compact or rime-like formation.
For LEWICE [22]:

ρice = 1000 · exp
[
0.15 · (1+6043 ·S−2.65)

]
(11)

S =
MVD0.82 ·U0.59

∞ ·LWC0.21

d0.48
le · (−T 0.23

rec )
(12)

For Jones [23]:
ρice = 0.210 ·R0.53 R ≤ 10

ρice =
R

1.15 ·R+2.94
10 < R < 60

ρice = 0.84 R ≥ 60

 (13)

where R is the Macklin parameter −dle ×U∞/(2Trec), where dle is the diameter of the leading edge, U∞

is the freestream velocity, Trec is in Celsius, thus, a negative value and lower than zero.
For Macklin [24]:

ρice = 0.110 ·R0.76 R ≤ 17
ρice = 0.9 R > 17

}
(14)

The only local parameter considered is the recovery temperature Trec, which varies along the surface
and depends on the local Mach number (M) that depends on the local pressure values.
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Trec = T∞ ·
(

1+ r · γ −1
2

·M2
local

)
(15)

Mlocal =

√√√√ 2
γ −1

[(
Plocal

Ptotal,∞

)− γ−1
γ

−1

]
(16)

where r = Pr1/3 for turbulent flows and γ = 1.4 for air. If the solver had compressibility capability
and solved the energy equation, the simulation would yield the value of Trec due to the effects of
compression and kinetic heating caused by viscosity. In the current model, the flow equations are
assumed to be incompressible, and the energy equation is not solved, therefore, the Eq. (15) is
required. This is only an initial approach to allow for the calculation of the density of the ice.

5. Test Cases
5.1 Droplet Distributions
Three different distributions were used in this study: a) the distribution used by Papadakis [17] in
various studies carried out at NASA IRT, as shown in Table 1; b) the distribution utilized by Wright
[16] to validate the LEWICE 3.0 software, detailed in Table 2; and c) the theoretical distribution of
Langmuir-D, a widely cited distribution recognized by authorities [25, 18], as illustrated in Table 3.

Table 1 – Discrete Cumulative Distribution of Papadakis [17] with MVD = 20 µm

Cumulative % LWC % LWC D(l) / MVD D(I)

97.5 5 0.2770 5.540
90.0 10 0.4460 8.920
75.0 20 0.6817 13.634
50.0 30 1.0000 20.000
25.0 20 1.5865 31.730
10.0 10 2.2943 45.886
2.5 5 3.2542 65.084

Table 2 – Distribution of Wright [16] with MVD = 21 µm

%LWC D(I)

0.1390 8.6
0.0958 12.5
0.0997 15.5
0.1220 18.5
0.1208 21.5
0.1115 24.5
0.0917 27.5
0.0946 31.6
0.0899 48.2
0.0350 95.9

5.2 Pressure Coefficient Cp

The pressure coefficient is computed along the surface by:

Cp =
p− p∞

1
2 ρU2

∞

, (17)
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where p and p∞ represent the pressure values in the local and far fields, respectively. Furthermore,
ρ denotes the density and U∞ represents the velocity in the far field. The experimental data of Cp

were obtained from Emmons’ NACA investigation [4] carried out under conditions of incompressibility,
specifically at Mach zero and angle of attack (AOA) of 0◦. In addition, the XFoil solver [26] was used to
compare the results for an AOA of zero. Reynolds and Mach numbers were determined on the basis
of free-stream conditions, and the transition from laminar to turbulent flow took place immediately
after the stagnation point. This ensures that the results Cp are fully turbulent and account for the
viscosity.

Table 3 – Theoretical Langmuir-D Distribution [18] with MVD = 20 µm

%LWC (a/ao)2 D(I)

5 0.31 6.2
10 0.52 10.4
20 0.71 14.2
30 1.00 20.0
20 1.37 27.4
10 1.74 34.8
5 2.22 44.4

5.3 Collection Efficiency β

Due to the lack of experimental data on the airfoil collection efficiency of NACA0012, this study used
LEWICE-simulated results, as compiled by Al-Khalil (2001) [5]. The scenarios include a NACA0012
with a 0.9144 m chord, an AOA of 0◦, an incoming flow velocity U∞, of 100 mph, a liquid water content,
LWC, of 0.55 g/m3, and a median volumetric diameter, MVD, of 20 µm. The collection efficiencies, βi

and βtot , can be defined as follows:

βi =
αi ·U⃗phase,i · n⃗
α∞ · |U⃗phase,∞|

(18)

βtot =
n

∑
i=1

αi ·βi

α∞

(19)

α∞ =
n

∑
i=1

αi (20)

where i is the phase and n is the number of phases. The values of α∞ and each αi are defined in
Tables 1, 2 and 3. The βtot is determined by weighting the values of βi by αi, as shown in Eq. 20.

5.4 Rime Ice
Shin and Bond [3, 27] investigated cases of rime formation at a static temperature (T∞) of -15 ◦F, with
an MVD of 20 µm, LWC of 1.0 g/m3 and U∞ of 150 mph. They conducted their experiments using a
NACA0012 airfoil with a 0.53 m chord and measured the accretion shape at 360 s duration for this
specific case. The authors of this study adopted the test section at a pressure altitude of 2,000 feet.

6. Simulation Configuration
6.1 Linear Solver for Pressure
The Preconditioned Conjugate Gradient (PCG) method is frequently preferred for its efficiency in
solving symmetric positive definite matrices, making it suitable for aerodynamic simulations with ex-
tensive and sparse matrix systems [28]. However, in highly complex scenarios, its accuracy may be
slightly compromised. On the other hand, the Algebraic Multigrid (AMG) solver is acclaimed for its
robustness and scalability, making it highly suitable for addressing intricate aerodynamic challenges
with fluctuating coefficients. Provides an optimal balance between velocity and precision [29]. The

6
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Geometric Algebraic Multigrid (GAMG) solver combines the strengths of geometric and algebraic
methodologies, delivering elevated accuracy for expansive aerodynamic projects. However, it might
incur higher computational costs compared to PCG [30].
The consistent results from the GAMG, AMG and PCG solvers for Cp and impingement β over the
airfoil are likely due to the simplicity of the flow conditions, since there is no recirculation, complex
geometry, or separation bubbles. These solvers converge to the same solution because the problem
is straightforward and well-posed, ensuring that the underlying physics is accurately captured without
significant numerical challenges. However, this condition may change if the ice shape is large and
nonuniform, as in the case of glaze ice.

6.2 TVD Schemes
Management of discontinuities within the water concentration field, α, represents an important el-
ement in aerodynamic simulations, especially when employing TVD (Total Variation Diminishing)
schemes. The LUST (Limited Upwind Scheme for Transport) has been shown to be instrumental
in reducing numerical diffusion, a critical factor for the precise delineation of shadow zones and for
the prevention of synthetic concentration peaks at stagnation points. By blending first-order and
second-order schemes, LUST effectively balances accuracy and stability in aerodynamic simulations
[31]. The MUSCL (Monotonic Upstream-Centered Scheme for Conservation Laws) enhances the
Godunov scheme to achieve superior resolution of steep gradients, thereby preserving the integrity
of discontinuities in α while preventing the occurrence of false oscillations [32]. Performing well in
the management of flow discontinuities, the Van Leer scheme demonstrates particular proficiency
in regulating variations of the concentration field near stagnation points [33]. The MINMOD limiter
(Minimum Modulus) preserves monotonicity and effectively prevents the formation of nonphysical
concentration peaks in complex flow domains [34]. Furthermore, the Second-Order Upwind Scheme,
by assimilating downstream information, improves the accuracy in depicting α across discontinuities,
which proves advantageous for the prediction of concentration fields in aerodynamic flows [35].
The current simulation, which reveals shadow zones with zero water concentration followed by a peak
and subsequent decay to freestream values, demonstrates that the Second-Order Upwind scheme
has demonstrated accuracy and convergence stability. On the other hand, LUST is more accurate
for the peak of water impingement but less stable than the Second-Order Upwind scheme.

6.3 Turbulence Models
The k−ε realizable model provides improvements, especially in predicting the spread rate of jets and
flows that involve rotation and boundary layers under strong adverse pressure gradients, making it
more suitable for complex aerodynamic applications [36]. The k−ω SST model is highly respected
in aerodynamics, particularly for its ability to accurately capture the effects of the boundary layer due
to its formulation, which blends the behavior of k−ω in the region near the wall with k− ε in the far
field [37]. The Spalart-Almaras turbulence model [38] is a one-equation model specifically designed
for aerospace applications. It excels in wall-bounded flows and adverse pressure gradient scenarios.
Being a low Reynolds number model, it does not utilize wall functions, making it suitable for near-wall
turbulence.
In contrast, the k− ε model, known for its straightforwardness and efficiency, is typically effective for
fully turbulent flows but may lack precision in the near-wall region, making it less suitable for detailed
boundary layer predictions [39]. However, in this particular simulation, the k − ε model performs
adequately since it does not necessitate a boundary layer or near-wall viscous calculation, given that
it is a Eulerian impingement that can be executed with a non-viscous flow solution. As a result, all
turbulence models yield very similar outcomes in this scenario. Thus, the k− ε model was selected
for its simplicity and quicker computational time.
In the context of glaze ice accretion, convective heat transfer and skin friction are crucial. The accu-
racy of turbulence models in the near-wall region is critical as it directly impacts the formation of glaze
ice, which forms when supercooled water droplets freeze after impact in the runback water, heavily
influenced by heat transfer rates. However, rime ice accretion involves a dry growth of ice without
thermal balance, forming instantly as supercooled droplets impact the aircraft at colder temperatures.

7
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Thus, the precision of turbulence models in the near-wall region is not as critical for rime ice accretion
as it is for glaze ice accretion.

(a) Coarse Mesh. (b) Fine Mesh.

Figure 1 – Meshes used for β and Cp simulations

6.4 Numerical Meshes
The mesh used in this study is composed of O-Type, structured, and hexahedral elements, notably
excluding any prism layers. The coarse mesh consists of approximately 7,000 elements, with the
leading edge shown in Figure 1a, while the fine mesh comprises around 66,000 elements, as shown
in Figure 1b. The absence of prism layers is intentional, as simulation of impingement and rime ice
accretion does not necessitate a highly accurate viscous-flow solution for heat transfer or friction.
Consequently, a simplified flow solution, such as the potential flow or Euler equations, is sufficient
to resolve the flow characteristics without significant issues. However, the fine mesh is essential
for offering higher resolution to the ice-growth formation because the current authors are using an
immersed boundary method approach.

6.5 Boundary Conditions
Pressure p is the zero-gradient freestream type along all external boundaries, while velocity U is the
freestream type with a fixed value. The velocity Uphase at the boundaries is equal to U , and there is a
zero gradient for the incoming particles and a fixed zero value for the outgoing particles at the faces.
The setup of α is similar to Uphase for the surface and is given by LWC in the freestream by using the
relation:

α∞ =
LWC∞

ρwater
(21)

7. Numerical Results
The authors present three types of results: pressure coefficient, collection efficiency, and rime ice
shape. The accuracy of the predicted rime ice shape is strongly influenced by the efficiency of droplet
collection as well as the distribution of water concentration. Furthermore, the collection efficiency is
directly dependent on the pressure coefficient and the velocities normal to the airfoil surface. This
dependency is why this paper not only presents the rime ice shapes but also includes the results of
Cp and β as part of a validation process for the NACA0012 airfoil.

7.1 Pressure Coefficient - Cp

Figure 2 illustrates the negative pressure coefficient (−Cp) along the chord length of a NACA0012
airfoil at a zero-degree AOA. The results of the present study are compared with the Emmons ex-
perimental data [4] and the Xfoil [26] results, obtained through simulations under incompressible flow
conditions with M = 0.2 and Re = 4.6E6. The full turbulent simulation in Xfoil is ensured by fixing the
transition immediately after the stagnation point.
Despite the fact that XFoil uses a Kármán-Tsien [40] correction for Cp, the current authors employed
the Prandtl-Glauert [41] transformation in conjunction with the GAMG, AMG and PCG solvers as

8
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Figure 2 – Cp distributions at 0◦ AOA. AMG Solver. K − ε Turbulence Model.

delineated below. This would not affect the correction since the Mach number is outside the com-
pressible and far from the transonic regime.

C∗
p =Cp ·

1√
1−M2

∞

(22)

where M∞ is the Mach number in the freestream. This correction helps the computational results to
be close to Emmons’ experimental data [4], particularly evident in the low-pressure peak near the
leading edge, which is the region most important for ice formation.
Upon comparing the coarse mesh with the fine mesh, it becomes evident that the fine mesh exhibits
a closer adherence to experimental data compared to both XFoil and the coarse mesh. Furthermore,
the fine mesh yields a smoother solution, devoid of discontinuities, in contrast to the coarse mesh.
This difference will lead to different impingement results for coarse and fine meshes.

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
s/c

0.0

0.1

0.2

0.3

0.4

0.5
GAMG
AMG
PCG
Al-Khalil(2001)

(a) Linear Solvers. K − ε Turbulence Model.

0.100 0.075 0.050 0.025 0.000 0.025 0.050 0.075 0.100
s/c

0.0

0.1

0.2

0.3

0.4

0.5
SpalartAllmaras
realizableKE
kOmegaSST
kEpsilon
Al-Khalil(2001)

(b) Turbulence Models. AMG Solver.

Figure 3 – Langmuir-D [18] - Coarse Mesh.
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VANLEER
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Figure 4 – Langmuir-D [18]. AMG Solver. K − ε Turbulence Model - Coarse Mesh, TVD Numerical
Schemes

7.2 Collection Efficiency - β

The comparison of β values between the linear solvers and Al-Khalil’s experimental data is depicted
in Figure 3a within the streamwise airfoil region. Preceding the leading edge, the distributions align
well with the experimental data. The linear solvers results are very close to each other when you
compare the peak, area under the β curve, and average values.
By varying the turbulence models, the results of the numerical distribution of β are compared with Al-
Khalil’s experimental data in Figure 3b. The growth of the β values in all numerical solutions exhibits
a slight delay in comparison to the experimental results (−0.05 < S/C < −0.01) and a premature
decrease in the region between 0.02 < S/C < 0.05. In the peak region, see Figure 3b, the k− ε is the
model closest to the correct value.
In Figure 4, a comparison of β distributions involving TVD schemes is presented, including LUST,
MUSCL, VANLEER, MINMOD, and Second-Order Upwind. The distributions align well in the region
prior to the leading edge. As can be seen in Figure 5, the LUST result shows a close approximation to
the experimental result right at the tip of the leading edge, but exhibits lower values for the remaining
downstream regions. The Second-Order Upwind closely approximates the experimental data further
downstream from peak, but at the peak, it performs worse than LUST yet better than other mod-
els. In integral terms, Second-Order Upwind resulted in a close calculation relative to Al-Khalil’s β

simulations.
Figures 6 and 7 illustrate three simulated droplet distributions: the 20 µm MVD of Langmuir-D [18],
the 20 µm MVD of Papadakis [17], and the 21 µm MVD of Wright [16], for coarse and fine mesh,
respectively. It is apparent from both plots that the current model employing Langmuir-D in both
meshes exhibits a closer alignment with Al-Khalil’s LEWICE simulations [5] than the present model
utilizing other distributions. This observation suggests that Al-Khalil employed Langmuir-D as the
distribution for the simulations. Furthermore, it can be inferred that β calculated with Langmuir-D
may not accurately represent the actual NASA icing tunnel, since the experimental distributions of
Wright [16] and Papadakis [17] exhibit a larger deviation for β in the region just upstream of the
impingement limits compared to the Langmuir-D distribution. Visually, it can be concluded that the
simulation with fine mesh produced a β close to the Al-Khalil simulations for all distributions.
The authors also performed a simulation of β for two different meshes, coarse with 7,000 elements
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2UPWIND
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Figure 5 – Langmuir-D [18]. AMG Solver. K − ε Turbulence Model - Coarse Mesh, TVD LUST vs.
Second-Order Upwind
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Figure 6 – Langmuir-D [18]. AMG Solver. K − ε Turbulence Model. TVD Second-Order Upwind -
Coarse Mesh.

and fine with 66,000 elements. And also two other droplet size distributions: Wright [16] and Pa-
padakis [17], both based in the Icing Research Tunnel of the Glenn Research Center. Figure 8
shows that the fine mesh has an improved result to replicate the numerical results of Al-Khalil [5]
compared to the coarse mesh near the peak and downstream regions. This mesh certainly provides
better results with respect to ice accretion and growth, as mentioned before. Nevertheless, the Al-
Khalil LEWICE results [5] may not reflect more accurately the actual conditions, as the ice formations
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Figure 7 – Langmuir-D [18]. AMG Solver. K − ε Turbulence Model. TVD Second-Order Upwind -
Fine Mesh
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Figure 8 – Langmuir-D [18]. AMG Solver. K − ε Turbulence Model. TVD Second-Order Upwind -
Coarse and Fine Meshes Comparison

predicted by the present model exhibit a closer alignment with the experimental data compared to
the LEWICE simulation by Shin and Bond [36]. At stagnation, the reduced values in β do not indicate
a diminished ice accretion or a significant deviation in the ice shape at stagnation. Since there is no
experimental data available for β in NACA0012 airfoil, it is hard to state that the current model has
larger deviations at stagnation. It can also be inferred that the integral under the β curve, represent-
ing the quantity of impinged water, likely provides an accurate depiction of the actual scenario, as the
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ice shape size predicted by the present model closely align with experimental observations.

7.3 Rime Ice Shapes
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(a) Distribution of Papadakis [17]
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Figure 9 – AMG Solver. K − ε Turbulence Model. LEWICE ice density model [22]. TVD
Second-Order Upwind - Coarse Mesh

After testing Cp and β for several numerical schemes, the rime ice growth simulations used the AMG
linear solver for pressure, a k−ε turbulence model and the Second-Order Upwind TVD scheme. The
LUST scheme was also tested to compare the results with the Second-Order Upwind. The duration of
the transient flow solution, Unsteady Reynolds Averaged Navier-Stokes (URANS), was set at 1 s, with
ice growth occurring over 30 seconds in increments of 12 steps, totaling 360 s of ice accumulation.
It is important to note that, despite using the same airfoil, NACA0012, within a subsonic regime of
a free-stream Mach number below 0.3, impingement calculations were performed at a zero angle
of attack with a chord of 0.9144 m, while the prediction of rime ice accretion was performed at an
angle of 4◦ with a chord of 0.53 m. Furthermore, it should be noted that the parameter β varies with
ice accretion at intervals of 30 seconds following an initial 1-second flow solution, in contrast to the
impingement calculations, which use a constant β calculated at 2-second flow solution period.
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Figure 10 – Distribution of Wright [16]. AMG Solver. K − ε Turbulence Model. LEWICE ice density
model [22] and TVD Second-Order Upwind - Coarse Mesh
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Figure 11 – Distribution of Wright [16]. AMG Solver. K − ε Turbulence Model. LEWICE ice density
model [22] and TVD Second-Order Upwind - Fine Mesh

0.30 0.28 0.26 0.24 0.22 0.20 0.18 0.16
x

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

y

NACA0012
Time=0 s
Time=120 s
Time=240 s
Time=360 s
NACA0012Shin
Measured Shin
Lewice Shin

(a) Jones ice density [23]
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(b) Macklin ice density [24]

Figure 12 – Distribution of Wright [16]. AMG Solver. K − ε Turbulence Model. TVD Second-Order
Upwind - Coarse Mesh

Three different droplet distribution models were employed: a) theoretical Langmuir-D [18], b) exper-
imental Wright [16], and c) experimental Papadakis [17]. Furthermore, the authors contrasted the
ice-shaped resemblance of coarse mesh with those of fine mesh. Lastly, the study highlighted the
variations of the TVD Second-Order ice density and TVD LUST, as well as different correlations of
the ice density with respect to ice growth and shape.
Using Papadakis’ icing tunnel distribution (Figure 9a) with LEWICE ice density, it is possible to see
that the overall results tend to match Shin’s base case [27, 3]. At the end of the numerical simulation
(time = 360 s), it becomes apparent that the numerical results slightly overestimate the shape of the
ice, as observed in experiments.
The application of the LEWICE density model along with the Langmuir-D distribution did not suc-
cessfully replicate the accurate ice shape shown in Figure 10. However, these results were close to
the results of the Shin and Bond simulation with LEWICE [27, 3], demonstrating that LEWICE was
executed using the Langmuir-D distribution.
Figures 10 and 11 illustrate the shapes of the rime ice computed using the Wright distribution [16],
the LEWICE ice density model [22], and the TVD Second-Order Upwind.
In addition, Figure 10 shows the results obtained with a coarse mesh consisting of 7,000 elements,
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Figure 13 – Distribution of Wright [16]. AMG Solver. K − ε Turbulence Model. LEWICE ice density
model [22] - Fine and Coarse Meshes, TVD Second-Order Upwind
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Figure 14 – Distribution of Wright [16]. AMG Solver. K − ε Turbulence Model. LEWICE ice density
model[22] - Fine and Coarse Meshes, TVD LUST

while Figure 11 shows the results obtained with a fine mesh containing 66,000 elements.
According to the results obtained using the Wright distribution in Figure 11 with LEWICE ice density, it
should be noted that this model exhibited a closer approximation to the ice shape between all tested,
making this configuration more suitable for the simulations of the ice shape. However, it also suggests
a discrepancy in the lower section, a feature shared by other models. This may point to the presence
of a mixed-ice-type scenario, as the current code exclusively computes rime-ice formations. However,
the results of the LEWICE code of Shin and Bond [27, 3] show better agreement with the experimental
data, particularly in the lower section, than the current model. This is due to the consideration of a
wet growth process or mixed ice accretion in LEWICE.
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For the results obtained using the Jones density model, there is a greater deviation than the LEWICE
model as presented in Figure 12a. However, it is important to note that, in general, the Jones density
model exhibited better accuracy than the Macklin ice density model with the same Wright distribution.
Furthermore, the results obtained using the Macklin density model in Figure 12b proved to be the
least favorable density model among the three models considered.
The influence of the two TVD schemes is shown in Figures 13 and 14. It is apparent that the TVD
Second-Order Upwind scheme is slightly better than the LUST scheme on a fine mesh. While the
LUST scheme aligns more closely with experimental data than Second-Order Upwind on a coarse
mesh, it encounters convergence problems on a fine mesh.

8. Conclusions
This paper has introduced the initial development phase of a 3D ice accretion tool, built on foam-
extend 5.0. This initial tool is designed to simulate the growth of the rime ice, incorporating features
such as a transient flow solution, immersed boundary, Eulerian-dispersed phase modeling, and user-
defined droplet distributions.
The authors validated the results of Cp by comparing them with the findings of Emmons [4], assessed
β against the research of Al-Khalil et al. [5] numerical simulation with LEWICE, and examined the
shape of the rime ice according to a case study by Shin and Bond [3, 27]. The analysis indicated a
strong agreement between the simulated results and the experimental data.
The simulation of the present iceAccretionCode for rime ice produced results very close to the ex-
perimental data when considering a fine mesh, with 66,000 elements, the Wright [16] distribution,
the AMG solver, the k− ε turbulence model and the LEWICE ice density model [22]. The same con-
figuration produced satisfactory deviations for Cp and β compared to the experimental data and the
LEWICE simulations, respectively.
The discrepancies observed in the results for TVD numerical schemes are more pronounced than
those arising from variations in the turbulence models and linear solvers for the β simulations. Given
that only TVDs significantly impact β and the shape of the rime ice is directly influenced by it, the
investigation is confined to the variations in the shape of the ice attributable to different TVDs. This
observed invariance with respect to linear solvers and turbulence models may not hold when simu-
lating glaze ice and more complex geometries.
It is essential to acknowledge that the accurate simulation of ice shape is contingent upon the judi-
cious selection of the TVD scheme, a topic frequently overlooked or inadequately addressed in CFD
Eulerian simulations. This difference is greater with higher angles of attack than with lower angles
due to the increase of the shadow zone formed.
This paper marks the first step towards developing a robust and comprehensive tool for 3D ice ac-
cretion simulation, with the ultimate goal of providing an accurate and accepted solution for aviation
authorities.
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