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Abstract

Abstract. The combined effects of hygrothermal conditions and material characteristics on the buckling re-
sponse of laminated composite plates are numerically studied in this paper. As the physical mechanisms
determining the environmental and operational conditions are very complex, the temperature and moisture
variations throughout a structure can hardly be controlled in many cases of industrial interest. Also, inherent
material variability are present in the structure domain due to manufacturing processes, specially involving
composite materials. As a consequence, the characterization of the environmental and material influences as
random quantities is more appropriate. Motivated by situations found in aerospace structural engineering, this
paper aims to investigate the influence of space-dependent random hygrothermal conditions, geometry and
material properties on the critical buckling loads of composite laminate plates. The main contributions lie in
the consideration of simultaneous random quantities affecting the structural stability and combined influences
of the environmental effects both on the degradation of material properties and the occurrence of stresses
induced by hygrothermal changes. Under the hypotheses of the Classical Lamination Theory, a finite element
model is employed to perform buckling analysis considering hygrothermal and mechanical loadings, where
the degradation of material properties is predicted using a micromechanical approach. The space-dependent
fluctuations of temperature, fiber-direction angle, ply thickness, and fiber volume fraction are discretized as
stationary two-dimensional random fields by the Karhunen-Loéve expansion (KLE), considering non-Gaussian
marginal distribution functions, where the simulation are conducted using a methodology based on the lterative
Translation Approximation Method (ITAM). Monte Carlo Simulation, combined with the Latin Hypercube Sam-
pling, is used to generate sampling-based statistics for the critical buckling load considering different values
of standard deviations and correlation lengths associated to the random fields. From the simulation scenarios
analyzed, the necessity of accounting for random environmental and material uncertainties in the analysis and
design of reliable and robust composite structures is highlighted.

Keywords: uncertainty quantification, hygrothermal loads, buckling, non-Gaussian random field, microme-
chanical modeling, laminated composite plates.

1. INTRODUCTION

Although composite materials have increasingly been used in the aerospace industry due to their
superior properties, such as high strength-to-weight ratios, high impact and corrosion resistance,
and larger design space, some inconveniences regarding the exposition to changes in environmental
conditions arise. In particular, in aerospace applications, severe temperature and moisture variations
are common and, consequently, composite materials experience significant effects on their structural
responses [1]. In addition, as stated in [2], significant variability in material properties of composites
are often present, as composite laminates are manufactured by complex processes, which may in-
duce voids and variations in volume fractions of fibers and matrix, imperfections in bonding between
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components, damage and misalignment in fibers, residual stresses, non-uniform curing process,
among others. Those uncertainties increase the variability in the overall stiffness and strength of the
material.

The environmental conditions can degrade the composite material properties through physical mech-
anisms of heat conduction and moisture diffusion. According to [1], increase in temperature causes
softening of the polymer matrix, which can be aggravated when the glass transition region (transition
from glassy to rubbery behavior) is brought to lower temperatures as a result of moisture increase. In
addition, the temperature and/or moisture increase leads to expansion/swelling of the polymer matrix
and, as fibers are practically insensitive to hygrothermal changes, residual stresses develop, leading
to modifications of stress and strain distributions over the structure.

The degradation in lamina material properties at elevated temperature and moisture is analyzed in
[3] regarding the deflection, buckling and natural frequency of thick composite laminates. In [4], a
micromechanics model was used to predict the elastic and hygrothermal properties of the fiber rein-
forced composite material considered to be dependent on temperature and moisture concentration.
Considerable deterioration in the flexural response of the laminated composite plate was obtained.
The influence of temperature-dependent material properties was also investigated in [5], where the
thermomechanical buckling behavior of variable angle tow (VAT) laminates is analyzed.

The previously cited studies consider purely deterministic approaches in the analyses involving ma-
terial properties of composites and induced stresses under hygrothermal conditions, which, in many
cases of practical interest, may show to be inadequate. Within stochastic frameworks, hygrothermal
buckling loads of straight-fiber laminated plates subjected to uniform temperature/moisture changes
were analyzed in [6], considering random variations of lamina thickness and material properties. In
[7], the influence of uncertainties related to lamina properties, fiber orientations and thermal expan-
sion coefficients on the thermal buckling response of variable stiffness composite laminate is studied
for different boundary conditions and lamination sequences. Regarding the hygrothermal buckling
response of laminated composite plates, reference [8] considers random thermoelastic properties,
both independent and dependent of temperature.

For the stochastic characterization of uncertain variables, some quantities are more appropriately
modeled as space-distributed random uncertainties. The complexity involving physical mechanisms
of heat and moisture transfer makes the temperature and moisture variations at different points of a
structure hard to be predicted and controlled and, as a consequence, these environmental changes
can be more appropriately characterized as spatially varying random quantities. Analogously, the
variations in material characteristics of a composite laminate due to the manufacturing processes,
besides the intrinsically fluctuations in properties of its inner constituents, seem also to be more
adequately modeled as stochastic space-dependent.

The stochastic characterization of space-dependent quantities encompasses the concept of random
field, which, for convenient numerical manipulation, is dealt with by using discretization techniques,
such as the Karhunen-Loéve Expansion (KLE) [9]. The KLE was originally used for simulating Gaus-
sian stochastic processes and, for this reason, the vast majority of KLE applications are devoted to
the discretization of this category of random fields [10]. However, non-Gaussian random fields can
be found in many situations of practical interest, which requires especial techniques for the appli-
cation of KLE. Among many other investigations, in [11], non-stationary and strongly non-Gaussian
stochastic processes are simulated using an efficient methodology based on the lterative Translation
Approximation Method (ITAM) and the KLE, denoted by KL-ITAM, which is used in the present work.
Spatially varying variables discretized by KLE have been considered in some studies of composite
laminates. In [12], the effect of spatial randomness of micro- and macro-mechanical material proper-
ties is quantified to characterize the probabilistic descriptions of stochastic dynamics and stability of
composite laminates based on KLE. The lamina fiber volume, and consequently the material prop-
erties through the mixture rule, is represented by a two-dimensional random field discretized by KLE
in [13], where the polynomial chaos expansion (PCE) was used to predict aeroelastic responses.
Reference [14] also considered spatially varying fiber volume content, together with fiber misalign-
ment random fields, to be discretized by KLE to stochastically characterize the buckling response of
variable stiffness composites.
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Regarding the space-distributed stochastic characterization of environmental conditions, [15] ana-
lyzed the stochastic thermal buckling of composite plates using KLE to discretize the temperature
distribution, which also leads to spatially varying mechanical properties, as temperature-dependent
properties were considered.

In the context delineated above, the present paper proposes the stochastic evaluation of the buck-
ling response of laminated composite plates accounting for uncertainties affecting the hygrothermal
conditions and material characteristics. Fluctuations on temperature, fiber-direction angle, ply thick-
ness, and fiber volume fraction throughout a composite plate are discretizatized by KLE as stationary,
non-Gaussian, two-dimensional random fields. As a consequence, using the micromechanical ap-
proach, randomness in environmental-dependent material properties and in hygrothermally-induced
stresses are simultaneously included in the plate modeling under the hypotheses of the classical
lamination theory (CLT). Moisture content is also considered to vary spatially over the structure due
to fiber volume variations. Then, for different standard deviations and correlation lengths assigned
to the random fields, the uncertainty quantification of the critical buckling load is conducted through
stochastic numerical analyses performed by Monte Carlo Simulation (MCS) combined with the Latin
Hypercube Sampling (LHS).

2. FORMULATION
2.1 Random fields discretized by KLE

For a rectangular plate with dimensions a and & in directions x and y, respectively, as illustrated in
Figure [1] a continuous two-dimensional random field W({,n,©) can be described using a truncated
KLE in terms of the normalized coordinates { = 2x/a and n = 2y/b, as follows [9]:

W(n,0)=W(,n)+AW({,n,0)=W(,n) +Z\F§n )fa(E,1) (1)

where W({,n) is the mean field and &,(®) is a set of M zero-mean, unit-variance Gaussian uncorre-
lated random variables defined in an appropriate random space, in which ® denotes an appropriate
sample space. In addition, A4, and f,({,n) are solutions (eigenvalues and eigenfunctions, respec-
tively) of the following integral eigenvalue problem associated with an adopted covariance function

C(&1, &M, M)
/11/llC(Cl,Cz;nl,nz)fn(gz,nz)dézdnzzlnfn(gl,m), n=1,..M . 2)

Figure 1 — Rectangular laminated composite plate.

2.1.1 Non-Gaussian random fields using KL-ITAM

As the stochastic fields considered in the present work follow non-Gaussian distributions, the method-
ology KL-ITAM, based on the ITAM and KLE, is used in the simulations. The methodology aims at
identifying a Gaussian random field Ws(&,n,®) with its respective underlying Gaussian autocorre-
lation function (ACF) that, when mapped using translation process theory, matches the prescribed
non-Gaussian distribution and the target ACF [11].

The following steps summarize the method:
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Initialization of the underlying Gaussian ACF. As the Gaussian random field to be translated
has zero mean and unit variance, the following relation is used for its autocorrelation function,
R(&1,85m1,m), to initiate the iterative process:

RG(C1,&:imi,m2) = % C(C1,&5m,m2) (3)
N

where oy and C(&;,&; 11, m2) are the standard deviation and the covariance function associated
with the non-Gaussian random field, respectively.

Computation of the non-Gaussian ACF using the translation process. The normalized
Gaussian correlation function is computed:

. _ R6(81, &3, m2) 4
polSr, &t m2) VRG(&,Cinm) Re(&, &ima,ma) )

Then, the translation process is performed:

Ry (&1, &5m1,m2) :1 [ Fy H{@[w1], &, mi}Ey {@wal, G, m}o{wi,was p (1, Gai iy o) ydwidws,

(5)
where wi = Ws(&1,m1), w2 = Wo(&,m2), Ey '{-, &, ni} is the inverse marginal non-Gaussian cu-
mulative distribution function (CDF) at point ({;,n;), and & is the standard Gaussian CDF (i.e.,
zero mean and unit variance). The joint Gaussian probability density function is given as:

O{wi,w2:p6(C1, &M, m2) }

1 exp <_W%+W§—ZPG(Cl,Cz;m,nz)wle>
T ox V1=pc(&1,5:m1,m0)? 2(1—=p(&1,6:m1,1m2)?)
(6)

Check of convergence. The relative difference between the estimated and the target non-
Gaussian ACF can be obtained according to below:

, 2
Y.L NS IZ > l[ (l)(CnaCm;rlnanm)_RI{/(CmCmn?mnm)}

err(i) =100
p I N lZNd I[Rﬁ(gnvgm;nn’nm)]z

: (7)

where N, is the number of points in the discretized domain. Considering uy(&1,m1) and uy (&, m2)
as the means of the random field at ({;,n;) and (&, n2), respectively, the target non-Gaussian
ACF is determined as:

Ry (S, &m,m2) = uv(S,m) un(&om2) +C(&1, Sos i, ma) - (8)

The iterative process is stopped when the relative difference value is lower than a determined
tolerance or when it stabilizes. In case the convergence is achieved, the process jumps to step
5, otherwise the next step (4) is performed, followed by repetition of steps 2 and 3.

Update of the underlying Gaussian ACF. While convergence is not achieved at iteration i,
the following equation is used to update the underlying Gaussian ACF:

Rz@(él, $smi,m2)
R%)(Chéz;m,nz)

(L Gimim) = R (&, Gimauma) - 9)

The updated ACF needs to be positive semi-definite (PSD) to be admissible. The nearest PSD
ACF is then found to maintain such property. In this work, the nearcorr function available in
Matlab is used.
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5) Simulation of the random field using KLE. KLE is performed according described in Section
using the Gaussian ACF engendered by the iterative process to discretize a Gaussian ran-
dom field. The eigenproblem given by Eq. [2|is solved numerically using the Nystrém method,
described in details in [16].

The generated Gaussian random field is then mapped to the non-Gaussian one using the fol-
lowing equation:

WN(C?U) :FI\TI{(D[WG(gvn)Lgvn} : (10)

2.2 Micromechanical modeling of hygrothermal and material properties

In this work, temperature, fiber-direction angle, ply thickness, and fiber volume fraction are modeled
as non-Gaussian random fields discretized by KLE, being denoted by 7({,n,0), 6(£,n,0), 1({,n,0)
and V¢({,n,0), respectively. The stochastic elastic and hygrothermal properties of a single lamina,
taking into account the dependence of environmental conditions, are predicted using the microme-
chanical approach.

In accordance with the fact that polymeric matrices are predominantly affected by changes in hy-
grothermal conditions, the following empirical matrix mechanical and hygrothermal property retention
ratios, respectively, duly adapted to consider random space-dependent temperature field 7({,n,0),
are used to estimate degradation of the material properties [17, [18]:

£_ TgW_T(C7n7®) 02 _ 1
Po - |: Tgo*To ; Fh(Cana(a) - Fm(Can,G) ;

where P refers to the matrix strength or stiffness after hygrothermal degradation and P, is the refer-
ence matrix strength or stiffness before degradation. In addition, considering all temperatures in °F,
T, denotes the test temperature at which F, is measured, and T, and T,,, are, respectively, the glass
transition temperatures for reference dry and wet conditions, corresponding to property P.

The relation between T, and the absorbed moisture can be experimentally obtained and, according
to [18], the following empirical relation is suggested:

Tew($,1,0) = (0.005M2 —0.10M, + 1.0) Ty, , (12)

where M, denotes the weight percent of moisture in the matrix.

Based on [1], the stochastic tensile moduli along and perpendicular to the fiber direction, shear mod-
ulus, longitudinal and transverse coefficients of thermal and hygroscopic expansion for an individual
lamina, neglecting the presence of voids, can be written, respectively, as follows:

El(CvTTv@):Eflvf(C7n7®)+Fm(C7nv®)Eme) (13)

Vi(€,n,0)
E»(¢,n,© O)E, Q) , 14
2(6:m,8) = Fn(,m, ! \/? VanG))( W)] (4)

Vy(£,1,0)
Gia(¢,n,0 )G Vi(£,n,© (15
R e e e T |

Efafo(C7na®) +Fm(§ana®)Eth(C’ ,@)(Xme

o(6:m8)= E/Vi(C.1.0) + Fn(C.1,0)EnVy ! (16)
_ EfoVf<C7n7®) +Fm<C7n7®>Eth(C7n7®)Bme

Bi6.m,0) = EfVi(E.1.0) + En(C.1,0)EnVi ! (17)

(£,17,0) = (1 V) (£, 1,0) Vi + (1 + V) Vi(E,1,0) — cvia | (18)

ﬁZ(Cv”:G)) = (1 + vm)Fh(C7n7®)ﬂme + (1 +Vf)ﬂfvf(C>n7®) _BIVIZ ) (19)

where the subscripts f and m refer to fiber and matrix, respectively, and subscripts 1 and 2 denote
the quantities along the longitudinal and transverse directions of the fibers, respectively.

5
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The sum of volume fractions of fiber and matrix (V,,,) equals 1 and the Poisson’s ratio v, is considered
not to be hygrothermally degraded.

Also, as a consequence of space-dependent fiber volume, the moisture content in the composite
material is considered to be stochastically space-distributed. Although moisture absorption varies
with time when the material is exposed to ambient conditions, one assumes the condition of fully
saturated equilibrium with the maximum absorbed moisture. Based on [19] and using the rule of
mixture, the stochastic moisture content in the composite (M,) can be estimated as follows:

o Vum
MC(C,TI7®) _Mr <Vum+Vf(C,n>®)Pf> 7 (20)

where p; and p,, are the fiber and matrix density, respectively.

2.3 Stochastic structural model

Under the stochastic fields described in previous sections and based on the assumptions of the
classical lamination theory (CLT), the constitutive stress—strain relations for the k-th lamina of a rect-
angular composite laminate can be written as [20]:

0:(¢,1,0) i
Gk(gvn7®): Gy(c’na®) :Qk(C7nv®) [80+Zk(Canv®)K_£H(C>n>®)] ) (21)
Txy(Cvnv(a) k

where 0,({,n,0) is the stochastic transformed stiffness matrix and z(£,n,0) is the distance from
lamina’s neutral surface in the thickness direction, which is stochastic as all ply thicknesses are ran-
dom. In addition, the vectors of mid-plane strains, curvatures and hygrothermal strains are denoted
by €%, x, and €”({,n,®), respectively.

The stochastic matrix Q,(¢,n,0) of the k-th lamina reads:

EI(CJL@) V12E2(4777~®) 0
1—VviaVy 1-viovy
0u(§:n,0) =75 (§,n,0) | 12lnd)  EH(Eno) o |LT¢ne, (22
0 0 G12(Cana®)
where
cos*6(¢,1,0) sin’0(£,1,0) 2sin6(£,n,0)cos6(E,1,0)
TG(C7717®): Sinze(C7nv®) COSZO(C7TI7®) —2sin9(§,n,®)cos6(§,n,®) .
—sinf(£,n,0)cos6(,n,0) sin6(,n,0)cosO(L,n,0) COSZG(C,T],@)—sin20(C,n,®)

Considering T, and M, as the temperature and moisture content related to measured properties P,,
respectively, u, v, and w as the displacements along the direction x, y, and z, respectively, and v,
and y, as the rotations of cross sections about the y-axis and x-axis, respectively, the strain vectors
expressed in Eq. [21] are defined as follows:
il
v J

gl d/oc 0 0] (u Ky /o 0
=celb=|0 9/ O vy, k=LK p=| 0 9/9,
v /0, 3/d, 0] w Key /9, 9/,

23
al(Canv(a)[T(C?n’@)_To]+ﬁ1(Cvn7®)[MC(C7n7®)_M0] ( )
8H(C7na®):TS(C7nv®) a2(€a”a®)[T(€vn7®)_T;)]+ﬁ2(§7n>®)[MC(§7nv®)_M0] )
alZ(CvTL@) [T(Canve))_To] +ﬁ12(§»777®) [MC(CvTL@) _Mo]

where
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cos>0(¢,n,0) sin6(¢,n,0) —sin@(¢,n,0®)cos0(£,1n,0)

T:(£,n,0) = sin®0(¢,7n,0) cos?0(¢,n,0) +sin6(£,n,0)cosH(E,n,0)
2Sin9(C7na®>COSO(C>n>®) —ZSine(C7n7®)0059(Cana®) COSZG(CJ]»@) _Sin29(C7nv®)

The resultant forces (N,,N,,Ny,) and moments (M,,M,,M,,) in a laminate plate of N laminas are then
given as:

N:(C,1,0) [ | 1( & N (E.n,0)
Ny(&,n,0) A(¢.n.©) | B(¢n.0) & Ny(€,m,0)
Ny(§,m,0) | o Ni(E,n,0)
————— e e L I (nagy Y (R SO -
Mx(Cvna®) | K M)ICLI(C7TI>®)
My(c7n’®) B(Cﬁn’@)) ’ D(Cﬂl,@) K,V Mf(Cﬂl?@)
Mxy(CvnvG)) L | U Ky ) Mg(CaW@;

where A({,n,0), B({,n,0), and D({,n,0) are the stochastic extensional, bending-extensional cou-
pling, and bending stiffness matrices, respectively, written as:

2

%({.n.0) )
(A(£,n,0),B(£,1n,0),D(¢,n,0)) Z, 0(£,1,9) | (m@)(l,z,z )dz . (25)

The hygrothermal forces, denoted by N*, N, and Ng, and hygrothermal moments, represented by
MY, M, and MI, which are shown in Eq. , are expressed as:

N)ICLI(C7TI7®) Mf(gana(a) N %(¢,n,0)
NA(En.0) b A MI(En.0) 1| =Y OuEm @) (En.0) [ T (1adz (26)
NA(¢n.0)) (Mg ne))) i #-1(6m.®)

Based on the formulation summarized above, the stochastic equilibrium equations are obtained by
finite element discretization, which leads to the following stochastic eigenvalue problem to be solved
for linear buckling analysis:

[K(®) —NY K —Kn(®)]d =0, (27)

where d is the vector of nodal displacements and rotations, N¥ is the eigenvalue representing the
buckling loads, and the structural, geometric, and hygrothermal stiffness matrices are denoted as K,
K¢, and Ky, respectively. The derivation of such matrices is omitted here for the sake of concision.
The finite element (FE) model is built using the commercial software MSC NASTRAN to solve the lin-
ear buckling problem and predict the buckling loads (Solution 105). CQUADS8 quadrilateral elements
with eight nodes are used. Further details can be found in [21].

It is worth mentioning that a special procedure has been used to assign the values of the stochastic,
space-dependent properties to each element of the mesh, according to the respective random fields.

3. NUMERICAL APPLICATIONS

3.1 Model description

For the numerical applications that follow, a square unidirectional composite laminate plate of sides
285mm, simply supported along all its edges, has been adopted. The laminate consists of 30 lam-
inae, each of which exhibiting thickness, fiber volume fraction, and fiber-direction angle described
as independent non-Gaussian two-dimensional random fields discretized by KLE, as per Eq.
with mean values of 7 =0.20mm, V; =60%, and 6 according the lamination sequence [45/-45/90/45/-
45/0/45/90/0/-45/45/0/-45/90/0]s.

The fiber and matrix properties used in the analyses are given in Table [{] together with deterministic
values of elastic and hygrothermal properties of each constituent, where such values are considered
to be measured at 7, =75°F and M, =0%, the initial environmental condition.

7
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Also assumed to be described by KLE, according Eq. [T] the random temperature distribution over the
plate is considered as a non-Gaussian two-dimensional random field with mean value of T =120°F.
Such temperature random field is assumed to not vary in the out-of-plane plate. Regarding the
moisture content, which is a random field due to the spatially varying fiber volume, as per Eq.
the weight percent of moisture in the epoxy matrix under fully saturated equilibrium is assumed as
M, =6.3% [19].

Table 1 — Elastic and hygrothermal properties of fiber and matrix [1].

Material E, (GPa) E,(GPa) Gi»(GPa) v  «a(10°%°F) B T, (°F)

Fiber (AS) 214 14 14 0.2 -0.55 0 -
Matrix (HM*) 5.2 5.2 193  0.35 40 0.33 420

" HM refers to high modulus typical epoxy matrix resin.

Figure[2)depicts the FE mesh, boundary conditions and in-plane loads. A deterministic buckling anal-
ysis is then carried out with all random fields taking their mean values as a constant value throughout
the plate, with no fluctuations, which in the case of the present study, is obtained by setting all random
variables of Eq. [{} in each random field, as zero. The deterministic critical buckling load obtained
with Solution 105 of MSC Nastran is N¥ =27.83N/mm.

’777777777777‘ ¢
< 4 <
> 4 <«
s -
N

> < N
> 4 €
> 4
> <
: 4 <€
AAAAAAAAAAAA4 :

Figure 2 — Finite element model of the composite laminated plate.

3.2 Uncertainty Propagation
Uncertainty propagation is conducted aiming at characterizing the stochastic buckling response of
the composite laminate plate considered herein, as described in section[3.]i, under the random fields
of temperature, fiber-direction angle, ply thickness, and fiber volume fraction.
The non-Gaussian probabilistic distributions assumed for each random field is presented in Table [2]
along with the standard deviations adopted. Three different values of coefficient of variation (CV),
which is the ratio of the standard deviation to the mean of the random field, are analyzed: 0.01, 0.03,
and 0.05. In the case of the spatially varying fiber angle, as the degree of accuracy of manual or
automated lamination processes determines such manufacturing uncertainties, independently of the
angle value, it was found reasonable to consider the same standard deviation value, in each analysis,
simultaneously to all fiber angle random fields, as per Table [2]
Regarding the covariance function assigned to the random fields, the following exponential one is
adopted:

C(§1, &M, m) = oy e 18-l im=mel/ly (28)

where I, and I, are the correlation lengths (CLs) in the ¢ and n directions, respectively. In this work,
the same value of CL is assigned simultaneously in ¢ and n directions (i.e, [y = Iy).

8
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Table 2 — Probabilistic distributions, mean values and standard deviations assumed for all random
fields in the stochastic analysis.

Random Field Distribution '(\:';E)“” Standard Deviation (oy)
CV=0.01 CV=0.03 CV=0.05
Temperature (°F) Log-Normal 120 1.2 3.6 6.0
Ply thickness (mm)** Log-Normal 0.2 0.002 0.006 0.010
Fiber Volume fraction*™  Log-Normal 0.6 0.006 0.018 0.030
Fiber angle (°)** Uniform i 0.58 (-1,+1)* 1.73 (-3,+43)* 2.89 (-5,+5)*

“In parentheses, the bounds of uniform distribution.

" For each lamina, totaling 30 random fields.

™ The mean value of each fiber-direction angle random field is according the lamina angle in the
lamination sequence.

Two values of CL are considered in the uncertainty propagation: 0.10 and 1.0. Due to the influence
of the value of CL in the discretization of the random field by KLE, an appropriate choice of the
number of terms kept in the truncated series expansion is required. The eigenvalues from Eq. 2| are
sorted in decreasing order and, based on [22], the number of retained eigensolutions is determined
by comparing the sum of the neglected eigenvalues with the sum of retained ones, where the first
should be sufficiently small compared to the second; a ratio of 5% is chosen. As a result, for CLs of
0.10 and 1.0, 334 and 61 random variables (&,) are used for random field discretization, respectively.
Sampling-based statistics of the critical buckling load are obtained from MCS method combined with
the LHS. For each combination of values of CV and CL, 5,000 sample sets of random variables were
generated, where, with a total of 91 random fields (as per Table[2), each set is constituted by 30,394
and 5,551 random variables for CLs of 0.10 and 1.0, respectively.

In Figure 3] the spatial distributions of each random field with different CLs are illustrated considering
a fixed CV of 0.03, for exemplification, and choosing randomly one sample set and a lamina for which
the random field is associated. All portrayed random fields present high spatial frequency of variation
when the smaller correlation length is employed, whereas a smoother variation is exhibited when the
CL is increased.

In each stochastic analysis of determined combination of CV and CL values, for each sample set
generated, a FEM is built and analyzed in the Solution 105 of MSC Nastran to compute the critical
buckling load from Eq[27] Histograms of the resulting buckling load samples are plotted on Figure [4]
where the characteristics of the probability distributions, namely mean (ug), standard deviation (op),
coefficient of variation (CV3), skewness (Skn) and kurtosis (Kts), are also depicted. One should note
that negative buckling loads, indicated in red on the histogram in Figure |4| (f), denote samples where
only the higrothermal load with no axial load leads the plate to buckling.

It can be noticed from Figure |4 that larger dispersion of buckling loads is observed when standard
deviation of the random fields increases, as expected. Also, when the correlation length is increased,
higher CV values of responses are observed, which can be explained by a magnification of variations
in scenarios of low frequency deviations, where any fluctuations extend over a larger area of the
structure.

A linear relationship is also verified in Figure |4/ between CV values adopted for random fields and
those obtained for buckling responses, while a nonlinear relationship is observed between CL and
the coefficient of variation of the critical buckling load. Furthermore, the skewness and kurtosis
obtained indicate that response distributions exhibit approximate symmetry (skewness values near
zero) and have longer and thicker tails compared to normal distribution (kurtosis values greater than
3.0).
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Figure 3 — Samples of random fields: ply thickness (a,b), fiber-direction angle (c,d), fiber volume
fraction (e,f), and temperature (g,h) distributions on laminate plate for CLs of 0.10 and 1.00.
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Figure 4 — Results of critical buckling load statistics regarding each stochastic analysis: a) CV=0.01,
CL=0.10; b) CV=0.03, CL=0.10; c) CV=0.05, CL=0.10; d) CV=0.01, CL=1.00; e) CV=0.03, CL=1.00;
f) CV=0.05, CL=1.00.

4. Conclusions

The stochastic evaluation of buckling response of a laminated composite plate under temperature,
fiber-direction angle, ply thickness, and fiber volume fraction random fields was numerically assessed
in this work. The discretization of random fields was performed using the Karhunen-Loéve Expansion
with the methodology KL-ITAM to deal with non-Gaussian distributions. Based on the assumptions of
the Classical Lamination Theory, uncertainties in environmental-dependent material properties and
in hygrothermally-induced stresses are predicted with the use of micromechanical approach. Added
to geometry variabilities, such uncertainties are simultaneously included in a finite element model.
Considering different values of standard deviation and correlation length associated to the random
fields, uncertainty propagation has been performed using Monte Carlo Simulation combined with
Latin Hypercube Sampling. The stochastic critical buckling load demonstrated increasing variation
as the standard deviation of the random fields is increased and/or the correlation length assigned to
the random fields presents higher value.

Based on the ensemble of results, in a probabilistic framework, this work presented a methodology
to incorporate non-Gaussian hygrothermal, geometric and material properties uncertainties in the
buckling analysis of composite laminates. Significant dispersion in buckling response enables to
justify the importance of incorporating such uncertainties in the analysis and design of aerospace
composite structures.
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