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Abstract

This research explores the application of neural networks to optimize reentry trajectories for deformable hyper-
sonic aircraft, leveraging the advantages of flexible skin technology. By employing a Class Shape Transforma-
tion (CST) method for morphing modeling and utilizing the Gauss Pseudospectral Method (GPM) for optimal
control problem solving, the paper presents a novel framework. The multilayer feedforward neural network is
trained to simulate complex control mappings, reducing online computational demands. The study’s simulation
experiments highlight the potential of flexible skin in specific mission scenarios and showcase the neural net-
work’s robustness in various flight conditions, offering a generalized solution for hypersonic morphing aircraft
trajectory optimization.

Keywords: Morphing Aircraft,Neural Networks,Reentry Trajectory Optimization,Flexible Skin Technology,Gauss
Pseudospectral Method

1. Introduction
Flexible skin is considered one of the future trends in the development of morphing aircraft[1][2]. Com-
pared to rigid deformation techniques with complex structures, high weight, and poor maneuverability[3],
deformable wings using flexible skin offer higher performance and a greater flight range[4]. However,
the current discussions on flexible skin deformation are primarily focused on wings, with limited explo-
ration of applying flexible skin to lifting bodies. Additionally, although numerical optimal control meth-
ods are the main approach for solving optimal control problems, and their stability and computational
speed are continuously improving, these methods often have large computational complexity[5]. Thus
traditional numerical optimization techniques are still too time-consuming for in online control, such
as reentry optimization for hypersonic aircraft under certain disturbances[6]. Meanwhile, the power-
ful nonlinear mapping capability of neural networks makes them suitable for approximating complex
computational models[7], naturally making them suitable for solving a series of nonlinear problems in
guidance and control design. By transferring the computational burden to the offline training process,
neural networks can reduce the online computational load and shorten the decision-making time for
online control.
The first part of this paper focuses on the modeling and traditional method solution for reentry tra-
jectory optimization of a deformable lifting body with flexible skin. Firstly, a parameterized equation
based on the Class Shape Transformation (CST) method [8],[9],[10]is used to describe the shape pa-
rameters of the deformable lifting body. The Width of fuselage, the shape functions of the upper and
lower surfaces, as well as the upper and lower cone angles, can be adjusted using corresponding pa-
rameters. The aerodynamic parameters under different shapes are obtained through computational
fluid dynamics (CFD) software and interpolated to obtain continuous numerical solutions. Secondly,
an optimization model[11] for reentry trajectory is established by extending various deformation vari-
ables as control variables. A series of optimal control problems are proposed based on this model
to obtain the flight envelope of the deformable lifting body. The control variables for these problems
are consistent and include the five deformation parameters mentioned above, as well as bank angle
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and attack angle. Subsequently, the Gauss Pseudo method (GPM)[12] is used to solve the relevant
optimal control problems in this paper, transforming them into nonlinear programming problems[13].
The optimization indicators for the optimal control problems include maximum lateral range, reach-
able coverage area, maximum terminal velocity, and minimum flight time, which are compared with
the optimization results of the lifting body in the non-deformed state.
The second part of this paper focuses on how to use a multilayer feedforward neural network to sim-
ulate the trajectory calculation model and generate control signals[14], reducing the computational
burden on onboard devices. Considering that in reality, local conditions or deformation deviations
often interfere with the actual flight trajectory, we design a set of scenarios to generate training and
testing samples. By introducing deviations to the conditional parameters of the optimal control prob-
lems and solving these problems using the GPM to generate numerical solutions for optimal trajecto-
ries, which serve as training and testing samples. Numerical simulation experiments are conducted
to demonstrate the efficiency and robustness of the proposed methods.

2. Aircraft Morphing Modeling and Aerodynamic Parameter Acquisition
2.1 Aircraft Generation Based on CST
In the field of aircraft morphing modeling, the Class Shape Transformation (CST) method is favored
for its parametric flexibility and efficiency. This study employs the CST method for parameterized
modeling of the aircraft to achieve precise control and design of the aircraft’s shape. By defining a set
of basis functions, the CST method can describe the complex geometric shapes of the lifting body,
including both the upper and lower surfaces. These basis functions are adjusted through control
parameters to accommodate various flight conditions and performance requirements. This section
will detail the process of CST parameterized modeling and its application in the design of aircraft
morphing.
The CST method starts by normalizing the curve and transforming the equation of the curve from the
physical coordinate system(x,y) to the parametric coordinate system(ψ,η). The normalized curve
equation consists of three parts: the class function C(ψ), the shape function S(ψ), and the thickness
function T (ψ), representing the collective properties, the precise shape, and the thickness variation
of the curve, respectively.
The class function C(ψ) is defined as:

C(ψ) = ψ
Nc1(1−ψ)Nc2 , (1)

where Nc1 and Nc2 are the exponents of the class function, defining the category of the geometric
shape.
The shape function S(ψ) is given by the Bernstein polynomial:

S(ψ) =
n

∑
i=0

AiKi
nψ

i(1−ψ)n−i, Ki
n =

n!
i!(n− i)!

(2)

where Ai and n is are the coefficients and the order of the polynomial, respectively.
The thickness function T (ψ) is defined as:

T (ψ) = ψt (3)

in which t is a fixed parameter.
Integrating the above functions, the CST curve equation can be expressed as:

η(ψ) = ψ
Nc1(1−ψ)Nc2 ·

n

∑
i=0

Ai
n!

i!(n− i)!
ψ

i(1−ψ)n−i +ψt (4)

The aircraft’s coordinate system is used as the baseline for parametric modeling, with the Ox axis
pointing towards the aircraft’s longitudinal axis, the Oz axis within the main symmetry plane of the
aircraft and coinciding with the width direction, and the Oy axis perpendicular to the aircraft’s main
symmetry plane. The length of the aircraft fuselage is denoted as L, with the x-coordinate ranging
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from [0,L]; the maximum width is W , with the y-coordinate ranging from [W/2,W/2]. The tail section
heights are designated as the lower surface Hl and the upper surface Hu, with the z-coordinate
ranging from [Hl,Hu] after simplification. For normalization, we apply the following transformations:

ψ == y/W +0.5 η = z/H (5)

In the research work of this article, to simplify the problem and focus on the main factors influencing it,
we choose to treat the shape function S(ψ) and the thickness function T (ψ). Specifically, we set the
coefficients n,t both to 0. This setting means that in this analysis, we are not considering the subtle
changes in the airframe curve shape and thickness , in order to more clearly explore the impact of
other parameters on the morphing modeling of the aircraft. Thus, the parametric equation for the
section curve is expressed as:

S(ψ) = 4Nci , i = u, l (6)

C(ψ) = ψ
Nci(1−ψ)Nci , i = u, l (7)

with subscripts u and l representing the upper and lower curves, Ncu,Ncl representing the exponents
of the class function, respectively.
Transforming the parametric coordinates back to physical coordinates, we obtain:

zu = Hu(y/W +0.5)Ncu(0.5− y/W )Ncu ·4NCu (8)

zl = Hl(y/W +0.5)Ncl (0.5− y/W )Ncl ·4NCl (9)

Hu = tanθu ·L (10)

Hl = tanθl ·L (11)

W =Wmax · (
x
L
)0.5 (12)

where θu,θl is the measure of the upper and lower cone angle.
With all other parameters held constant, the cross-sectional shape of the aircraft can be altered
by varying Wmax,θu,θl,Ncu,Ncl.These five parameters will also serve as the deformation quantities for
further analysis in the subsequent study.

1. Wmax represents the maximum width of the aircraft’s cross-section, which is a fundamental di-
mension affecting the overall shape and hydrodynamics.

2. θu, θl denote the upper and lower cone angles, respectively. These angles influence the cur-
vature and the aerodynamic characteristics of the upper and lower surfaces of the aircraft’s tail
section.

3. Ncu, Ncl are the bending parameters for the upper and lower surfaces. They determine the de-
gree of curvature or the ’bend’ of the surfaces, which can be optimized for various aerodynamic
effects.

By considering these parameters as variables, while treating the rest of the parameters as fixed, we
can isolate the impact of these deformation quantities on the aircraft’s performance. This approach
allows for a focused analysis and optimization of the morphing behavior of the aircraft.

2.2 Aircraft Morphing Model
A morphing aircraft’s ability to transition between various values of deformation parameters is pivotal
for adapting to different flight conditions.To facilitate the description and analysis of these transitions
with an eye towards expandability, we normalize the maximum width Wmax, the upper cone angle θu,
and the upper surface bending parameter Ncu into the deformation variables ξ1,ξ2, and ξ3 , respec-
tively. The use of normalized variables to represent control quantities is a deliberate choice, allowing
for a generalization of our approach beyond the specific deformation quantities discussed. By em-
ploying this method, any arbitrary shape parameter can be adapted to the framework of this study,
without being limited to the three variables previously mentioned.
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The normalized deformation variables ξi(i = 1,)are introduced to represent the extent of deformation
in a dimensionless manner. This approach not only simplifies the modeling process and allows
for a more straightforward application of optimization techniques in the trajectory planning phase
but also obscures the specific meaning of the deformation quantities in expression and subsequent
calculations. This abstraction enables a broader application of our research methodology to various
morphing parameters, enhancing the versatility and adaptability of our trajectory planning framework.
For the sake of research convenience and to focus on the most significant effects, this paper models
only the extreme values within the deformation range for each variable. By considering only the
minimum and maximum values, we create a binary representation of the deformation state, which
results in 23 distinct combinations of deformation states.
We define the deformation variables such that ξi = 0(i = 1,2,3)corresponds to the minimum value of
the deformation parameter, representing the most conservative or baseline configuration of the air-
craft. Conversely, ξi = 1(i = 1,2,3)corresponds to the maximum value, indicating the most aggressive
deformation state that the aircraft can achieve within the design limits.
The choice of these specific deformation parameters and their normalization is motivated by the
desire to construct a trajectory planning problem that can be generalized to various mission profiles
and flight conditions. By examining the aircraft’s performance across this spectrum of deformation
states, we aim to identify optimal trajectories that maximize performance objectives such as range,
speed, or efficiency, subject to the constraints imposed by the aircraft’s dynamics and the mission
requirements.

2.3 Aerodynamic Model
This section outlines the process by which we obtain aerodynamic parameter calculations for various
angles of attack and Mach numbers following the morphing model establishment. Initially, we present
the fitting formulas for the lift coefficient CL and drag coefficient CD that are pivotal for characterizing
the aerodynamic forces acting on the aircraft at different configurations.
The fitting formulas for the aerodynamic coefficients are depicted in the provided figure, illustrating
the relationship between the coefficients and the attack angle α and Mach number Ma. The formulas
are as follows:

CL = P0 +P1α +P2α
2 +P3Ma+P4Ma2 +P5αMa (13)

CD = Q0 +Q1α +Q2α
2 +Q3Ma+Q4Ma2 +Q5αMa (14)

In these equations, P0 to P5 and Q0 to Q5 are the constant parameters of the lift and drag coefficient
expressions, respectively. The attack angle α and Mach number Ma are the primary variables that
influence the aerodynamic performance of the aircraft.
To accurately determine these constant parameters, we apply the least squares method to a care-
fully selected set of samples. These samples represent the extreme cases where the deformation
variables ξi are either at their minimum (0) or maximum (1) values, corresponding to the morphing
states with the least and most aggressive deformation, respectively.
For scenarios where the deformation variables take on intermediate values during actual simulations,
we utilize linear interpolation to estimate the corresponding aerodynamic coefficients. This method
ensures a smooth and accurate representation of the aerodynamics across the full spectrum of de-
formation states.
The inclusion of the fitting formulas and the corresponding figure provides a visual and mathematical
representation of the aerodynamic model, reinforcing the scientific basis of our approach and offering
a clear framework for the subsequent trajectory optimization and control algorithm development.

3. Reentry Trajectory Design Based on Neural Network
3.1 Optimal Control Problem
3.1.1 Reentry Dynamic
Considering the relatively short duration of the reentry flight of the aircraft, the influence of the Earth’s
rotation can be neglected. It is assumed that the Earth is a uniform sphere and the aircraft is a point
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mass in unpowered flight. Under the inertial launch coordinate system, the three-degree-of-freedom
motion equations of the aircraft can be represented as follows:

ṙ =V sinθ

λ̇ = V cosθ sinψ

r cosφ

φ̇ = V cosθ cosψ

r
V̇ =−D− sinθ

r2

θ̇ = 1
V

[
Lcosσ +

(
V 2 − 1

r

) cosθ

r

]
ψ̇ = 1

V

(
Lsinσ

cosθ
+ V 2

r cosθ sinψ tanφ

)
(15)

where r represents the dimensionless geocentric distance,γ and φ are the longitude and latitude of
the Earth, θ and φ are the flight path angle and the heading angle, V is the dimensionless velocity, ψ

is the inclination angle. L and D are the dimensionless representations of the lift and drag forces:{
D = ρ|v|2SCD

2

L = ρ|v|2SCL
2

(16)

where ρ is the atmospheric density, S is the reference area, CD and CL are the drag forces and lift
forces.

3.1.2 Path Constraints
To ensure the safety of the aircraft during reentry, the following path constraints should be satisfied:

q = ρ |vrel|2 /2 ≤ qmax

Q̇ = kQ
√

ρ |vrel|3 ≤ Q̇max
ny = |Psinα +L|/mg0 ≤ nymax

(17)

where kQ is a coefficient to compute the heating rate and g0 is the gravitational acceleration at sea
level.

3.1.3 Scenario Formulation for Reentry Mission
In this study, to demonstrate the versatility and applicability of our approach to reentry trajectory
optimization, we have defined three distinct scenarios for the reentry mission of the aircraft. Each
scenario is tailored to address specific objectives that are critical for mission success.

1. Maximum Latitude at Target Speed and Altitude

The first scenario is designed to maximize the latitude reached when the aircraft achieves its
target speed and altitude . This is particularly important for missions that require precise landing
or impact points in high-latitude regions.With γ0 = 0 and φ0 = 0 ,the performance index is set to
maximize terminal latitude φt :

J = min [−φ (t f )] (18)

2. Accessible Area Coverage at Target Speed and Altitude

The second scenario focuses on maximizing the accessible area that the aircraft can cover
upon reaching its target speed and altitude. This is crucial for missions that prioritize area
reconnaissance or the ability to access a broad range of potential landing zones.

3. Maximum Speed at Target Altitude

The third scenario is concerned with achieving the maximum possible speed at the target alti-
tude. This is essential for missions that require rapid reentry to exploit short time windows or
for rapid deployment of payloads. The performance index is set to maximize terminal latitude t :

J = min [−V (t f )] (19)
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By constructing these three scenarios, the primary objective is to explore the performance differences
brought about by morphing capabilities from multiple perspectives. This approach allows us to delve
into the nuances of how morphing can enhance the reentry trajectory in various mission-critical as-
pects. Each scenario is meticulously designed to highlight the superior adaptability and performance
advantages that aircraft morphing offers, thereby demonstrating the significance of our research.
The scenarios serve as a comprehensive framework to evaluate the impact of morphing on the reen-
try mission’s success. By examining the outcomes across these diverse scenarios, we aim to show-
case the robustness and adaptability of the morphing technology. This not only underscores the
practical benefits of the aircraft’s morphing capabilities but also justifies the innovative approach we
have adopted in this study.

3.2 Overall Scheme Design
The design of our scheme is anchored in the integration of advanced computational methods and
artificial neural networks to facilitate real-time reentry trajectory optimization. The framework is struc-
tured into three main components: offline optimal trajectory generation, neural network training, and
online control application.
Initially, we employ the Gauss Pseudospectral Method (GPM) to generate a suite of optimal trajec-
tories under various conditions, considering perturbations in aerodynamic coefficients. These tra-
jectories, derived from solving the optimal control problem (OCP) using GPOPS2[15], serve as the
foundation for our training samples.
Subsequently, we harness the power of feedforward neural networks to approximate the complex
mapping from state variables to control actions. The architecture of our neural network is designed
with two hidden layers, utilizing the hyperbolic tangent function as the activation function, ensuring
robust performance and generalization capability.
Finally, the trained neural network is evaluated for its ability to replicate the control signals derived
from the optimal trajectories. While the current version of the network does not yet meet the precision
requirements for real-time online guidance, it demonstrates promising results as a substitute for the
control signal sequence solved by the GPM. The control effects produced by the neural network are
good, and it exhibits robustness against certain perturbations, indicating its potential as a guidance
tool for future aerospace missions

3.3 Neural Network Structure
The neural network employed in this study is a multilayer feedforward architecture, designed to cap-
ture the nonlinear dynamics of the aircraft’s reentry trajectory optimization. As depicted in , the
network consists of an input layer, one or more hidden layers, and an output layer, each playing a
pivotal role in the learning process.
The nonlinear mapping capability of the network is derived from the composite mapping of simple
nonlinear processing units, represented by individual neuron models[16]. Each neuron in the network
possesses a threshold and is connected to a set of input neurons through a connection weight matrix
w. The activation function, crucial for introducing nonlinearity into the network, is the hyperbolic
tangent function, defined as

tanh(x) =
ex − e−x

ex + e−x (20)

6
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Figure 1 – Three-layer neural network structure

let x ∈ Rd and y ∈ Rl represent the input and output vectors, respectively. The output of the h-th
neuron in the hidden layer is denoted as bh. The connection weight from the i-th neuron in the input
layer to the h neuron in the hidden layer and the connection weight from the h-th neuron in the hidden
layer to the j-th neuron in the output layer are represented by vih and wh j respectively.The input of the
h-th neuron and j-th neuron are formulated as follows:

αh = f

(
d

∑
i=1

vihxi

)
, β j =

(
q

∑
h=1

wh jbh

)
(21)

For a given training sample (xk,yk), the network’s output is represented by ŷk =
(
ŷk

1, ŷ
k
2, . . . , ŷ

k
l

)
, where

each component is computed using the activation function:

ŷk
j = f (β j −θ j) ( j = 1,2, · · · , l) (22)

where θ j is the threshold of the j-th neuron.
The mean square error for this training sample is expressed as:

Ek =
1
2

l

∑
j=1

(
ŷk

j − yk
j

)2
(23)

The primary requirement of the neural network is to have a strong fitting capability for the training
samples. Consequently, the training objective is to minimize the mean square error between the
network’s predictions and the actual outputs, necessitating the adjustment of all neurons’ weight ma-
trices and thresholds. For instance, in the network depicted in 1, there are (d + l +1)q× lparameters
to be trained, including d ×q weights from the input to the hidden layer, q× l weights from the hidden
to the output layer, q thresholds for the hidden layer neurons, and l thresholds for the output layer
neurons.
The Error Back Propagation (BP) algorithm is the mainstream method for training multilayer feedfor-
ward neural networks. Assuming the training set contains m samples, the BP algorithm optimizes the
neural network’s parameters by minimizing the accumulated error over the training set

E =
1
m

m

∑
k=1

Ek (24)
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The configuration of the neural network for generating control quantities includes six nodes in the
input layer, corresponding to the six state variables of the dynamics model. The network comprises
two hidden layers with 30 and 15 neurons, respectively, using the hyperbolic tangent function as the
activation function. The output layer consists of five nodes, corresponding to the attack angle, the
bank angle, and three morphing parameters.

3.4 Training and Testing Sample Generation
In our neural network experiments, we have chosen the first scenario designed above to demonstrate
the capabilities of our approach. This scenario, which aims to maximize the latitude at the target
speed and altitude, provides a comprehensive testbed for evaluating the performance of our neural
network under controlled conditions. By focusing on this specific scenario, we can meticulously
analyze the network’s predictive accuracy and its ability to generate optimal control actions in real-
time.
To simulate the dynamic variations in aerodynamic coefficients during flight, we introduce a simplified
disturbance model. Assuming uniform atmospheric environmental disturbances, we perturb the lift
coefficient CL and drag coefficient CD according to a Gaussian distribution N

(
0,σ2

)
, with a 99.5

confidence interval reflecting realistic deviations

C′
L =CL · (1+ p) (25)

C′
D =CD · (1+q) (26)

where p is the deviation coefficient of disturbance to CL, and q is the deviation coefficient of distur-
bance to CD,
Leveraging this model, we generate a comprehensive set of 500 perturbation scenarios. For each
scenario, we calculate the corresponding optimal control strategies and state trajectories using GPM,
capturing a diverse range of flight conditions. These calculated trajectories form our dataset for
training and validating the neural network.
Within the selected scenario, the duration of the flight mission is set between 2000 to 2600 seconds.
We have established a sampling interval of 10 seconds to collect pairs of control quantities throughout
the entire flight, from initiation to completion. These pairs serve as the inputs and labels for the
subsequent training of the neural network.
In this context, 300 sets of perturbation samples are designated for the training dataset, ensuring
a diverse and comprehensive range of flight conditions. An additional 200 perturbation samples,
coupled with a set of non-perturbed samples, constitute the testing dataset. This partitioning allows
for a robust evaluation of the neural network’s performance under both typical and atypical flight
scenarios.
By following this methodology, we ensure that our neural network is well-equipped to handle the
complexities of real-world reentry trajectories, providing a reliable and efficient solution for online
trajectory optimization.

4. Experimental Results and Analysis
4.1 Modeling of the Morphing Aircraft
4.1.1 geometric modeling
This section presents the results of the geometric modeling based on the equations 8-12 outlined in
Section 2.1. The effects of the parameters Wmax, θu, and θl ,on the aircraft’s shape are quite intuitive
and, due to space considerations, are not illustrated with diagrams in this section.
The influence of the parameter Ncu and Ncl on the aircraft’s tail section is demonstrated in the following
figure 2, which provides a schematic illustration of the tail section.
Simultaneously, using the cross-sectional shape displayed above and by applying the parameters θu

and θl , the aircraft’s fuselage configuration is generated along the main symmetry axis of the aircraft.
The resulting conceptual diagram of the aircraft’s fuselage is presented in the figure 3.

8
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(a) Variation of Tail Section Curves With different Ncu (b) Variation of Tail Section Curves With different Ncl

Figure 2 – Influence of Class Function Parameters on Tail Section Curves

Figure 3 – Conceptual Model of the Lifting Body

9
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4.1.2 Aerodynamic Coefficients Comparison Under Different Deformations
The actual modeling was accomplished utilizing the OpenVSP platform, where the WingGeom mod-
ule was employed to sequentially import airfoil profiles from AF_Format files of OpenVSP . This
process allowed for precise geometric definition and setup of the aircraft model.

(a) Geometric OpenVSP Model (b) OpenVSP Model Rendered with Custom Shaders

Figure 4 – OpenVSP Model Visualization

For the aerodynamic parameter estimation at Mach numbers ranging from 5 to 15, we utilized the
PiFlow as Computational Fluid Dynamics software.
Building upon the aerodynamic data obtained from PiFlow simulations, the least squares fitting
method was applied to derive the lift and drag coefficients. The fitting process is depicted in the
figure 5.

(a) CL Coefficient (b) CD Coefficient

Figure 5 – Aerodynamic Coefficient Surface Derived from Least Squares Estimation

The impact of deformation quantitiesξ1,ξ2 and ξ3 on the lift-to-drag ratio is illustrated in the figure 6.
With ξ2 and ξ3 held constant, the figure demonstrates a "closed region" where the lift-to-drag ratio is
favored when ξ1 = 0 over when ξ1 = 1. This indicates that there exists a specific range of values for ξ1
that yields a higher aerodynamic efficiency compared to the extreme value of the parameter. Similar
observations can be made for the other two deformation quantities, although for the sake of brevity,
these are not elaborated upon here.

10
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(a) ξ2 = 0,ξ3 = 0 (b) ξ2 = 0,ξ3 = 1

(c) ξ2 = 1,ξ3 = 0 (d) ξ2 = 1,ξ3 = 1

Figure 6 – Comparison of Lift-to-Drag Ratio Surfaces as Deformation Quantity ξ1(Ncu) Changes
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Table 1 – Average errors of control-network fitting isolated samples(absolute value)

Category Training samples Testing samples All samples
Average error 1.0745% 1.081% 1.0751%

4.2 Optimal Trajectory Solutions
This section presents the optimal trajectory solutions for the reentry mission, leveraging the GPOPS2
software to demonstrate the performance enhancement achievable through the morphing approach
introduced in this paper. In Section 3.1.3, "Scenario Formulation for Reentry Mission," three distinct
scenarios were formulated to showcase the benefits of the morphing technique for aircraft reentry
trajectories.
For the fixed-geometry aircraft, the deformation variables ξ1,ξ2, and ξ3 ,are all set to zero, repre-
senting a conventional non-morphing configuration. The following figures 7 illustrate a comparative
performance analysis between the Morphing Vehicle and the Fixed Vehicle across the three scenar-
ios.

(a) Flight Trajectory (b) Velocity Variation Over Time

Figure 7 – Maximum Cross-Range Scenario Comparison

The results are compelling: the Morphing Vehicle exhibits an approximate 28% enhancement in
maximum cross-range, a 34% increase in the area of the accessible zone, and a 25% improvement
in maximum terminal velocity compared to the Fixed Vehicle. These improvements underscore the
significant advantages offered by the morphing capabilities of the aircraft, highlighting the potential
for optimized mission outcomes.

4.3 Neural Network Training and Robustness Testing
In accordance with the procedures outlined in Section 3.4, a dataset comprising 500 trajectory sam-
ples has been generated, as depicted in Figure 10. These samples serve as the foundation for
training our control network, which is designed to approximate the control signals required for optimal
trajectory tracking.
Table 1 presents the average fitting error of the control-network for the samples, providing an initial
assessment of the network’s performance in replicating the control signals derived from the optimal
trajectories. To validate the effectiveness of the control signals produced by the control network,
we initiate the integration from the initial state of Scenario One using the optimal trajectory’s state
variables under nominal conditions as the network input. The integration is performed using the
fourth-order Runge-Kutta method (RK4) with a step size of 1 second, and the resulting flight trajectory
is illustrated in Figure 11.
It is observed that due to the sensitivity of the attack angle during long-distance hypersonic flight, the
integrated trajectory exhibits oscillatory deviations from the optimal trajectory, resembling a wave-like
fluctuation. Nonetheless, the terminal state of this integrated trajectory deviates minimally from the
nominal trajectory, thereby demonstrating the efficacy of the control signals generated by the network.

12
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(a) Flight Trajectory of Morphing Vehicle (b) Flight Trajectory of Fixed Vehicle

(c) Accessible Area

Figure 8 – Accessible Area Comparison

(a) Flight Trajectory (b) Velocity Variation Over Time

Figure 9 – Max Terminal Velocity Performance Comparison

13
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(a) Trajectory Samples (b) Attack angle Samples

(c) Bank Angle Samples (d) Deformation ξ1 Samples

(e) Deformation ξ2 Samples (f) Deformation ξ3 Samples

Figure 10 – Training and Testing Samples Generation Results
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(a) Integration Trajectory (b) Attack angle (deg)

(c) Bank Angle (deg) (d) Deformation ξ1

(e) Deformation ξ2 (f) Deformation ξ3

Figure 11 – Control network RK4-Integrated Flight Trajectory from Nominal Initial State
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Figure 12 – Terminal heights under 201 sets of test samples

Figure 13 – Terminal Velocity under 201 sets of test samples

Furthermore, to supplement our validation, all samples in the test set have undergone the aforemen-
tioned integration process. The terminal altitude of each sample’s integrated trajectory is presented
in Figure 12, and the terminal velocity is shown in Figure 13. The small margin of error across all test
samples underscores the robustness of the network’s fitting, indicating its reliable performance even
when subjected to a variety of flight conditions.

5. Conclusion
This paper presents a comprehensive study on the reentry trajectory design for deformable hyper-
sonic vehicles, showcasing the integration of advanced computational methods and neural networks.
Our primary contributions are twofold:
Firstly, we extend the application of flexible skin technology beyond wings to the entire lifting body,
providing a detailed analysis of the wing-body integration under various deformation modes. Through
simulation experiments, we demonstrate the distinct advantages of lifting bodies with flexible skin
deformation in specific mission scenarios, highlighting the potential for enhanced performance and
adaptability in flight.
Secondly, we propose a customized approach for training neural networks to simulate control signals
under multiple deformation parameters. The offline training and online application of these networks
offer a novel solution to the computational challenges associated with real-time trajectory optimiza-
tion. Our results indicate that the neural network can effectively approximate the complex mappings
required for optimal control, exhibiting robustness against perturbations and laying the groundwork
for future aerospace applications.
The innovative trajectory planning framework presented in this study not only underscores the prac-
tical benefits of morphing aircraft technology but also paves the way for further research and de-
velopment in the field of aerospace engineering. By examining the aircraft’s performance across
a spectrum of deformation states, we have identified optimal trajectories that maximize key perfor-
mance objectives such as range, speed, and efficiency, subject to mission-specific constraints.
In conclusion, our work justifies the adoption of an integrated approach that combines the flexibility
of morphing design with the precision of neural network-based control. This research serves as a
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testament to the potential of such an approach in advancing the capabilities of hypersonic vehicles
and their mission planning.

6. Contact Author Email Address
luozf@mail.sysu.edu.cn

7. Copyright Statement
The authors confirm that they, and/or their company or organization, hold copyright on all of the original material
included in this paper. The authors also confirm that they have obtained permission, from the copyright holder
of any third party material included in this paper, to publish it as part of their paper. The authors confirm that
they give permission, or have obtained permission from the copyright holder of this paper, for the publication
and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings.

References

[1] James J Joo, Gregory W Reich, and James T Westfall. Flexible skin development for morphing aircraft ap-
plications via topology optimization. Journal of Intelligent Material Systems and Structures, 20(16):1969–
1985, 2009.

[2] Sara La, W Yeol Joe, Muhammad Akbar, and Bashir Alsaidi. Surveys on skin design for morphing wing
aircraft: Status and challenges. In 2018 AIAA aerospace sciences meeting, page 0315, 2018.

[3] Bin Zhang, Zhiwei Feng, Boting Xu, and Tao Yang. Free form deformation method applied to modeling
and design of hypersonic glide vehicles. IEEE Access, 7:61400–61413, 2019.

[4] Lili Wang, Joshua A Jackman, Ee-Lin Tan, Jae Hyeon Park, Michael G Potroz, Ee Taek Hwang, and
Nam-Joon Cho. High-performance, flexible electronic skin sensor incorporating natural microcapsule
actuators. Nano Energy, 36:38–45, 2017.

[5] Dario Izzo and Manuel López-Ibáñez. Optimization challenges at the european space agency. In Pro-
ceedings of the Companion Conference on Genetic and Evolutionary Computation, pages 1399–1415,
2023.

[6] Jiang Zhao and Rui Zhou. Reentry trajectory optimization for hypersonic vehicle satisfying complex
constraints. Chinese Journal of Aeronautics, 26(6):1544–1553, 2013.

[7] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria Dada, Nachaat AbdE-
latif Mohamed, and Humaira Arshad. State-of-the-art in artificial neural network applications: A survey.
Heliyon, 4(11), 2018.

[8] Brenda Kulfan and John Bussoletti. " fundamental" parameteric geometry representations for aircraft
component shapes. In 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, page
6948, 2006.

[9] Brenda M Kulfan. Universal parametric geometry representation method. Journal of aircraft, 45(1):142–
158, 2008.

[10] Brenda M Kulfan. Recent extensions and applications of the ‘cst’universal parametric geometry repre-
sentation method. The Aeronautical Journal, 114(1153):157–176, 2010.

[11] Zuojun Shen and Ping Lu. Onboard generation of three-dimensional constrained entry trajectories. Jour-
nal of Guidance, control, and Dynamics, 26(1):111–121, 2003.

[12] David Benson. A Gauss pseudospectral transcription for optimal control. PhD thesis, Massachusetts
Institute of Technology, 2005.

[13] John T Betts. Practical methods for optimal control and estimation using nonlinear programming. SIAM,
2010.

[14] Xin Wang, Pei Dai, Xiaoming Cheng, Yunzhao Liu, Jiashan Cui, Lihua Zhang, and Dongzhu Feng. An
online generation method of ascent trajectory based on feedforward neural networks. Aerospace Science
and Technology, 128:107739, 2022.

[15] Michael A. Patterson and Anil V. Rao. Gpops-ii: A matlab software for solving multiple-phase optimal
control problems using hp-adaptive gaussian quadrature collocation methods and sparse nonlinear pro-
gramming. ACM Trans. Math. Softw., 41(1), oct 2014.

[16] Ethem Alpaydin. Machine learning. MIT press, 2021.

17


	Introduction
	 Aircraft Morphing Modeling and Aerodynamic Parameter Acquisition 
	 Aircraft Generation Based on CST 
	 Aircraft Morphing Model 
	 Aerodynamic Model 

	Reentry Trajectory Design Based on Neural Network 
	Optimal Control Problem
	Reentry Dynamic
	Path Constraints
	Scenario Formulation for Reentry Mission

	Overall Scheme Design
	Neural Network Structure
	Training and Testing Sample Generation

	 Experimental Results and Analysis
	Modeling of the Morphing Aircraft
	geometric modeling
	 Aerodynamic Coefficients Comparison Under Different Deformations

	Optimal Trajectory Solutions
	Neural Network Training and Robustness Testing

	Conclusion
	Contact Author Email Address
	Copyright Statement

