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Abstract 

Determining transient deformation, considering the influence of fluid flow, is currently a very computationally 

demanding method. The paper discusses the study of numerical method for coupling between CFD and FEM 

in heat transfer for transient analysis of aero engines applications. 
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1. Introduction 

A key aspect of modern aircraft engine development involves effectively cooling highly heat-stressed 

engine parts. The longevity of these components, and consequently the entire engine, heavily relies 

on material temperatures. This necessitates accurately predicting material temperatures under 

specific operational conditions. Conjugated Heat Transfer (CHT), initially formulated by Perelman 

[1], delves into the interaction between solid components and fluids. Flow dynamics have a pivotal 

role in influencing material temperatures and thermal exchanges, leading to secondary flow within 

compressors' and turbines' concentric annular spaces. Optimizing the design requires considering 

transient processes, solid-fluid interactions, and the disparity in thermal behavior between the solid 

and the fluid. 

In analyzing temperature and stress distributions within compressor or turbine components 

over time, the Finite Element Method (FEM) is commonly used. Material thermal loads resulting from 

these analyses are often described by simplified boundary condition models derived from empirical 

correlations, such as the advective one-dimensional models introduced by Fiedler et al. [2]. Research 

by Heselhaus and Vogel [3] shows that using simulations considering three-dimensional effects in 

transient conjugate flow and heat transfer significantly enhances accuracy without relying on 

empirical correlations. Conversely, inadequate modeling of transient changes during flight can lead 

to critical clearances or thermal stresses, as highlighted by Sun et al. [4]. However, performing 

conjugate simulations for the entire mission while accounting for different time scales becomes 

prohibitively computationally intensive due to the vastly differing heat transfer rates between fluids 

and solids. 

To address computational complexity, Sun et al. [4] introduced weak coupling methods 

involving optimized programs independently simulating heat transfer in fluids and solids. This 

approach allows to use of a FEM code to compute the solid's thermal behavior while employing 

computational fluid dynamics (CFD) to model the adjacent flow. Achieving a physically accurate and 

stable solution in this coupled system requires information exchange between the FEM and CFD 

codes via a shared interface. Various strategies detailed in the literature exist for this purpose.  
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Errera and Duchaine [5] explored different coupling coefficients and continuity of exchange 

variables, based on the Dirichlet-Robin transfer procedure for stable and rapid convergence, 

contingent upon satisfying specific interface-based criteria. Gimenez et al. [6] proposed approaches 

for updating boundary conditions between coupling points, favoring the quasi-dynamic coupling 

method for solids' transient calculations and fluids' steady-state calculations due to its promising 

accuracy and efficiency. Furthermore, they suggested that a relaxation parameter near the heat 

transfer coefficient offers advantages. Verstraete and Scholl [7] highlighted the Biot number's critical 

role in the coupling scheme's stability for conjugate heat transfer problems. 

This paper focuses on a novel numerical method for coupling CFD and FEM in conjugated heat 

transfer, relevant for transient and steady-state analyses in aero engine and turbomachinery 

applications. The coupling involves utilizing a correlation function based on CFD data processed 

through an innovative artificial neural network approach. This correlation is applied at the boundary 

nodes of the FEM mesh to track the total deformation over time. The following Figure 1 shows the 

calculation scheme. 

 

 

 

 

Figure 1 – CFD to FEM coupling using correlation function. 

2. Objective Statement 

2.1 Geometry 

The scope assumed a single annular geometry, crucial in turbomachinery, specifically in compressor 

and turbine sections, as shown in Figure 2. This represents the flow path through the turbine engine. 

Specifically, the geometry is based on the turbine section of a turboprop engine.  
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The inner tube is a simplified wall of the gas flow path in the turbine section and outer tube 

represents the engine cowling. The annular space between these tubes is the free space in the 

engine. 

 

Figure 2 – Solved geometry scheme. 

3. Complexity of the CFD Model 

The initial conditions setup for the Computational Fluid Dynamics analysis are derived from the 

thermodynamic cycle specific to an aircraft engine operating in CRUISE flight mode, extensively 

discussed by Pařez et al. [8]. The temperature distribution across the outer tube is computed through 

CFD. This steady distribution of temperatures isn't uniform due to ongoing natural convection 

resulting from the steady, homogeneous heating of the inner tube, corresponding to the flow of hot 

gases through the turbine. Given that the outer tube emulates the gas turbine scenario, this 

temperature profile has a key role in determining the placement of electronic components or overall 

engine deformation, which can be calculated using the Finite Element Method. 

The second transition case is similar to the first steady case, with the difference being the 

assumption of engine transient mode. This occurs when changing from one mode to another mode 

or after engine shutdown. If the engine is turned off, transient temperature distribution occurs based 

on the initial steady condition where the temperature field distribution is steady on the inner and outer 

tube. Thus, a non-stationary temperature field distribution from the first case is sought depending on 

the engine cooling parameters.  

In the case of the transient calculation, the temperature field distribution over time was calculated 

after one second for several different settings from Table 1. The whole calculation was performed in 

Ansys Fluent. The meshing was performed in the BlockMesh program OpenFOAM package. The 

mesh itself is shown in Figure 3, where the refinement along the walls is shown. The URANS 

simulation setup includes a two-equation Generalised k-ω (GEKO) turbulence model [9].  

 

Figure 3 – Geometry mesh. 



TRANSIENT DEFORMATION PREDICTION WITH COUPLED CFD-FEM 

4 

 

 

Heat radiation to the surfaces was considered as gray and diffuse surfaces. The heat exchange 

between these surfaces depends on factors such as their dimensions, separation distance, and 

orientation. Moreover, we consider processes like absorption, emission, and scattering of radiation. 

In this context, we implement the discrete ordinates (DO) radiation model [10]. 

The Boussinesq approximation with density effect on the temperature scale has been assumed 

for the reference pressure. 

Table 1 – Input parameters for analysis. 

Parameters Unit Variable 

𝐷2 [𝑚𝑚] (297) 

𝐷1/𝐷2 [1] {0.5, 0.6, 0.7, 0.8, 0.9} 

𝑇𝐷1 [°𝐶] {500, 600, 700} 

𝑡2 [𝑚𝑚] {1, 2, 3} 

𝜑 [°] {0, … , 360} 

 

The Figure 4 below show the temperature and velocity distribution in a simple annular for the 

case 𝐷1/𝐷2 = 0.5, 𝑡2 = 1 [mm], 𝑇𝐷1 = 700 [°C]. 

Figure 4 – Temperature and velocity field distribution for time = 0 [min]. 

4. Neural Network Approach 

Mathematically, information processing within a neuron consists of two separate mathematical 

operations [11]. The first, the synaptic operation, includes the synapse weights, which represent the 

storage of knowledge, and thus memory of prior knowledge. The second is the somatic operation, 

which provides various mathematical operations such as thresholding, nonlinear activation, etc. The 

neural unit output 𝑦̃ is then scalar and is expressed by the following Equation 1. 

𝑦̃ = 𝜎(𝑠). (1) 

Assuming an N-th order neural unit, then the product of the synaptic operation can be written as 

Equation 2.  

𝑠 = 𝑤0𝑥0 + ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ ∑ ∑ 𝑤𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ ⋯ 

∑ … ∑ 𝑤𝑖1𝑖2…𝑖𝑛
𝑥𝑖1
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… 𝑥𝑖𝑛

𝑛
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,

𝑛
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 (2) 

where 𝑥0 = 1 represents the threshold value and 𝑛 represents the length of the input feature vector. 
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Since the desired outputs are predetermined, the process of machine learning is termed as 

supervised learning. This involves learning a function that connects input to output using a cost 

function 𝑒. The output of a neuron is strongly dependent on the neuron's memories represented by a 

vector of weights 𝑊⃗⃗⃗⃗. Thus, in order for a neural unit to learn, information processing must be 

appropriately structured. The batch Levenberg-Marquardt algorithm is used to update the weights 

[11].   

𝑊⃗⃗⃗⃗ = 𝑊⃗⃗⃗⃗ + ∆𝑊⃗⃗⃗⃗, (3) 

where 

∆𝑊⃗⃗⃗⃗𝑇 = − (𝐽𝑇𝐽 +
1

𝜇
𝐼)

−1

 𝐽𝑇 𝑒. (4) 

 

The coefficient 𝜇 is the learning rate, 𝐼 is the 𝑛𝑤 × 𝑛𝑤  identity matrix, 𝑛𝑤 the number of weights  

and 𝐽 represents an 𝑛 × 𝑛𝑤 Jacobian matrix. 

The correlation function is then obtained using an extensive set of CFD simulations shown for 

initial steady temperature distribution on Figure 5 and different operational conditions and geometrical 

setups shown on Figure 6.  

A machine learning approach is applied to the CFD results and the only correlation function is 

obtained for a range of input variable parameters. A simplified notation of the correlation function is 

given below in Equation 5.  

𝑇𝐷2 = 𝑓(𝑇𝐷1, 𝑡2, 𝐷1/𝐷2, 𝐷1). (5) 

 

To simplify the task, some assumptions have been made. First, the temperature is assumed to 

be symmetric along the vertical axis, and therefore the data with the corresponding angular coordinate 

are averaged. And secondly, due to the small temperature differences at the inner and outer edges 

of the outer tube and due to the error band resulting from the CFD discretization, it is assumed that 

the effect of the inner tube thickness can be neglected, so that the temperatures at these edges are 

also averaged.  

The portion of the training data set that represents a single batch of 𝐷1/𝐷2 ratios  

and 𝑇𝐷1 boundary conditions prescribed on perturbations of the inner tube with a constant 𝑡2 value is 

shown on Figure 6. Each data cluster represents one CFD simulation. As can be seen, the behavior 

is nonlinear, making it a suitable task for neural network learning. 

 

Figure 5 – Temperature distribution over the 
edges.  

 

Figure 6 – Comparison of ANN and CFD 
data. 
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5. Boundary Conditions for FEM Solver 

FEM software is commonly used to determine the strain and stress response to mechanical and 

thermal loads. The commonly used approach is to determine the temperature field distribution at the 

edge nodes of the geometry based on CFD flow calculations. Based on these initial conditions, 

material characterization and boundary conditions, the temperature field distribution is determined by 

the FEM calculation and finally the stress and deformation of the geometry is determined. 

However, the CFD calculation is time consuming and in the case of non-stationary calculation 

there is a computational problem. Thus, it is desired to determine a nonstationary correlation function 

that can prescribe the temperature distribution for the edge nodes shown on the simple rotor geometry 

in Figure 7 and Figure 8. The geometry is discretized into a nodes mesh Figure 7, which is then built 

into an elements mesh as shown in Figure 8.

 

Figure 7 – Nodes mesh of simple geometry. 

 

Figure 8 – Elements mesh of simple 
geometry. 

The calculation is performed using the standard FEM calculation, which has been presented, 

for example, by Pařez and Kovář [12]. A computational tool was developed and based on the Matlab 

scripts, where the boundary condition prescription was written for the boundary nodes from Figure 7. 

These nodes have a prescribed boundary condition from Equation 5 to find the temperature as the 

parameters change over time and to find the temperatures for different changing geometry conditions.  

The following Figure 9 shows the determined temperature field distribution based on the 

boundary temperatures. After the calculating of the temperature field, the deformation is calculated 

and shown by the strain vectors in Figure 9. 

 

Figure 9 – Deformation for steady state mode - Cruise. 
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6. Improvement by Thermal Conductor 

The calculation shows the effect of heat conduction in the tube, which leads to the idea of a thermal 

conductor. The following section studies the effect of increasing heat conduction by using thermal 

conductors. For simplicity, a bimetallic model was chosen in which the last layers of elements on the 

outer surface were prescribed a different material, namely copper C1020. The idea is that a coating 

would be applied to the surface of the geometry for better heat conduction. 

The material characteristics are shown in the following Table 2. 

Table 2 – Used materials. 

Material Young modulus Poisson number 
Thermal 

expansion Alpha 
Conductivity 

[−] [𝑃𝑎] [−] [𝐾−1] [𝑊 ∗ 𝑚−1 ∗ 𝐾−1] 

𝑆𝑡𝑒𝑒𝑙 2.1𝑒11 0.3 24.1𝑒 − 6 33 

𝐶𝑜𝑝𝑝𝑒𝑟 1.20𝑒11 0.33 17.7𝑒 − 6 391 

 

From the deformation characteristics of two identical cases, the corresponding steady state 

calculation at 500 sec time with similarly defined boundary conditions are shown in Figures 10 and 

Figures 11. The temperature field distribution is improved due to the use of a temperature conductor 

on the surface. This also improves the deformation causing thermal bow. 

This leads to the idea of improving and influencing the temperature field by means of 

temperature conductors implemented in the material and thus reducing the influence of natural 

convection in the case of transients and in the case of cooling of turbomachinery. 

The deformations are shown in three directions Ux, Uy, Uz along the length of the annular tube 

Z. The Hub indicates the tube support and the Tip shows the deformation on the surface. There is a 

noticeable increase in deformation with increasing length, which is expected when the pipe is tightly 

supported. 

 

Figure 10 – Deformation for steady state 
mode with steel. 

 

Figure 11 – Deformation for steady state 
mode with thermal conductor. 

7. Results and Discussion 

The nonstationary temperature-dependent deformation is shown in the following Figure 12 to  

Figure 15, which show represent the individual deformation and temperature time histories. On a 

simple annular tube, the temperature difference between the top and bottom of the tube is up to 30 

degrees Celsius which, together with the tube support, causes uneven deformation between the top 

and bottom. The time histories of the deformation are then plotted in Figure 16 and Figure 17. 
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Figure 12 – Deformation initial 0 min. 

 

 

Figure 14 – Deformation after 16 min. 

 

 

Figure 13 – Deformation after 8 min. 

 

 

Figure 15 – Deformation after 25 min. 

 

Figure 16 – Total deformation in time 
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Figure 17 – Total deformation in time 

8. Conclusion 

This methodology allowed rapid estimation of temperature and strain distributions without the 

need for time-consuming CFD simulations. This significantly speeds up the design and development 

process, a critical factor in finite element transient analysis, where deformation is determined at each 

time step with time-dependent parameter variations. The objective was to determine a limited set of 

the most influential parameters affecting the temperature distribution of the outer tube. The values 

of the dependent parameters are given in Table 1.  

The influential angular position parameter φ is assumed to be uniformly distributed around the 

pipe wall. The chosen parameters are only a simplification for the presented model. The number of 

inputs can be considered arbitrary with respect to the complexity of the computational model. 

Based on the variation of these inputs, a CFD analysis of URANS is automatically computed as 

a starting point for machine learning.  

The presented solution allows a new possible use of a machine learning procedure to determine 

a correlation function for strain prediction. From several computed CFD analyses, machine learning 

and mathematical dependencies can then be used to describe the behavior for any input in the 

computational range. By exploiting the prescription of the correlation function at the boundary points 

of the FEM network, a boundary condition for the finite element method calculation is given. At each 

time step, it is then possible to subtract the specified temperature and thus the time-varying strain. 

This is very advantageous as it simplify the calculation in order to reduce the time consumption.  

The results have significant implications for the aerospace industry, particularly in optimizing the 

cooling of engine components. This methodology can enhance the design and manufacturing 

processes for turbines and compressors, leading to more efficient and reliable engines. The findings 

can be applied in practice for maintenance and condition monitoring of aircraft engines, potentially 

leading to more predictive maintenance strategies and improved engine performance. There is also 

potential for commercializing the methodology and integrating it into existing engine design software 

tools. 
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