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Abstract

The dynamic stall problem has received much attention in the field of flight safety. However, highly
accurate dynamic stall prediction remains a challenge due to the complexity of the flow. To make full
use of the characteristics of different data sources to establish a reasonable dynamic stall
aerodynamic time-domain prediction model, an embedded integrated neural network architecture is
proposed, which can realize the fusion of typical multi-source data such as numerical simulation
results, physical models and wind tunnel test data. The model effectively reduces the sample
demand for unsteady wind tunnel test data in the dynamic stall problem, and significantly improves
the accuracy and generalization capability in the dynamic stall prediction of wing and wide-body
airliner standard models. For the large-scale nonlinear and unsteady dynamic stall aerodynamic
performance prediction problem, the data fusion method embedded in a physical model shows
stronger robustness and is more suitable for learning from small sample data than the traditional
black-box model.
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1. Introduction

For high-performance lifting body vehicles, dynamic stall can greatly limit the aerodynamic
performance boundary and lead to maneuver stability problems; for rotor blades of helicopter-type
vehicles, dynamic stall usually directly limits the maximum forward flight speed; and for wind
turbine/pressure engine blades/propellers, dynamic stall doubles the efficiency of the operating
conditions and affects the flight envelope. The in-depth analysis of subsonic dynamic stall
characteristics is of great significance in solving the aerodynamic problems such as high drag and
large low head moment caused by the dynamic stall of helicopter and wind turbine propellers, and it
is also of great importance in supporting the simulation of large headway angle flights, the study of
stall flutter of wings with large spreading ratios, as well as the aerodynamic design of bionic aircrafts.
Unsteady aerodynamic prediction is crucial for the safety, optimization and control design of modern
aircraft. Recently, the significant expansion of the angles of attack range in modern flight has led to
the need for more adequate modeling of unsteady aerodynamic characteristics. This is particularly
critical during aircraft takeoff and landing phases, where rapid increases in attack angles can lead the
aircraft into stall or post-stall conditions [1]. Therefore, in recent years, studies on the aerodynamic

characteristics of static and dynamic stalls are gaining importance.
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Although Computational Fluid Dynamics (CFD) is widely employed for solving unsteady flows, its
substantial computational cost limits broader applications in flight dynamics and control. For more
efficient acquisition of unsteady aerodynamics, the development of aerodynamic Reduced-Order
Models (ROMs), based on experimental data or CFD, has been rigorously explored [2].
Currently, unsteady aerodynamic ROMs can be categorized into two main types: system identification
and feature extraction. Dynamic linear models within these categories can accurately predict mildly
nonlinear responses, making them suitable for a diverse range of flight conditions. However, at high
angles of attack, unsteady aerodynamics exhibit strong nonlinear behavior due to intense flow
separation, viscous effects, and vortex shedding. In such scenarios, nonlinear ROMs emerge as
promising tools to model the complex dynamics of unsteady aerodynamics, particularly for dynamic
stall [3]. Here, (deep) neural networks have demonstrated significant potential in capturing and

representing these complex nonlinear dynamics.

In order to balance the contradiction between calculation efficiency and calculation accuracy,
unsteady aerodynamic models were proposed to improve the ability of the aerodynamic load
prediction methods in aeroelastic simulations [4]. Unsteady aerodynamic models are mainly divided
into two categories. One is a white box model (semi-empirical model) based on aerodynamic control
equations and experimental data, such as Onera [5] and Beddoes—Leishman [6], which are widely
used for dynamic stall problems. By combining a small amount of aerodynamic test data with classic
aerodynamic prediction experience, some low-precision dynamic stall prediction methods have been
developed. Due to their simplicity, these lower-precision models are often used in the initial design
stage of the industrial design field. Under the guidance of this research idea, many studies have been
carried out: The United Technologies Research Center (UTRC) [7] developed a time-domain unsteady
aerodynamic model based on a simple harmonic motion airfoil test, and introduced additional
parameters characterizing the unsteady change of the angle of attack in order to achieve preliminary
aerodynamic data prediction. Based on the MST theory proposed by De Laurier [8], Kim [9] developed
the MST method. Considering the dynamic stall problem of pitching and heaving motion at the same
time, it can predict the unsteady aerodynamic loads of a wing with a finite span. Suresh Babu [2]
proposed a reduced-order discrete vortex method. By reducing the number of discrete vortices and
merging vortex positions, the computational efficiency was greatly improved and the model accuracy
was retained. Rohit [10] predicted the dynamic stall aerodynamics of the OA209 wing with limited
wingspan by combining the DDES method and the unsteady RANS model and compared the effect
of the depth of stall on the aerodynamic boundary. With the development of data-driven models, the
research on another type of black box models based on experimental or numerical simulation data
have also developed rapidly: Zhang et al. [11] developed a Recursive Radial Basis Function (RRBF)
method. By introducing output feedback on the basis of standard RBF neural network to reflect
unsteady dynamic effects, a recursive neural network reduced-order model is obtained. Through this
model, the unsteady aerodynamic prediction ability is realized and used for aeroelastic analysis
problems. Kurtulus [12] used ANN to simulate the unsteady aerodynamic coefficients caused by the

airfoil sinking movement. Winter [13] uses fuzzy neural systems to predict unsteady aerodynamic
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loads and flutter boundaries. These black box models are based on a large amount of aerodynamic
data and can make up for the accuracy of empirical models. However, aerodynamic data for dynamic
stall problems is difficult to obtain. These data-driven models have not yet been used for dynamic stall
problems.

While previous works have produced successful practices in nonlinear aerodynamic system
identification, there are still some drawbacks that limited its application to experimental data. In
general, black box models of neural networks often require complex and a large amount of data, which
is difficult to obtain from experiments. In recent years, Multi-Fidelity (MF) models have been proposed
to reduce the amount of data required to get a reasonable model through using models with different
fidelity. Since high-fidelity models are accurate but expensive, while low-fidelity models are
inexpensive but less accurate, multi-fidelity methods combine these two types of models to achieve
accurate representation of high-fidelity results at a reasonable cost. These works motivate our

research on developing multi-fidelity unsteady aerodynamic models based on experimental data.

2. Constructing unsteady aerodynamic prediction networks with integrated learning

This part of the work proposes an integrated learning data fusion approach embedded in an unsteady
simulation model. The Data Fusion Neural Network (DFNN) framework is shown in Fig. 1. Using multi-
source differences, the mapping relationship between aerodynamic data is established to ensure that
the model inference process can simultaneously consider the mapping ability of multi-source data for
the output. The low fidelity models in this paper comprise two categories, those generated by

numerical methods approaches and those generated by classical dynamic derivative models.
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Fig. 1 Data Fusion Neural Network (DFNN) framework

2.1 Neural network models embedded in numerical simulation methods

The unsteady prediction method, commonly used in engineering, is selected for the low-precision
model to obtain the aerodynamic prediction of dynamic stall. A data fusion unsteady aerodynamic
model based on a small amount of test data is established by nesting the aerodynamic data outputs
and motion states of numerical simulation to achieve effective approximation of dynamic stall test data.

Since the proposed data fusion architecture is an embedded approach, the prediction data need to
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be involved in the whole computation for both training and prediction cases. The nested hierarchical
framework shows strong generalization capability under different equilibrium headway angles,
reduction frequencies and pitch amplitudes, and the convergence and accuracy of the model is
verified by modelling with different ratios of training data, which proves that the proposed data fusion
framework can effectively predict the dynamic stall loads with high accuracy in the time domain, and
the prediction accuracy is higher than that of the traditional model and the CFD method.

The purpose of data fusion (as shown in Fig.2) is to use the numerical solution results of low-precision
models to achieve accurate mapping of aerodynamic data in the experimental state, to make up for
the problem of low confidence in the data caused by model errors or numerical errors in the numerical
method itself. At this point, the numerical simulation method as an embedded model needs to
participate in the mapping process. Therefore, for each step of the modelling, the time lag effect of
the unsteady motion of the airfoil and the corresponding unsteady effect of the aerodynamic output

needs to be considered at the same time.
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Fig. 2 Layered architecture for integrated neural networks
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2.2 Neural network models embedded in physical models
The dynamic derivative model based on physical assumptions provides an efficient means of
aerodynamic prediction, but the prediction accuracy of the model needs to be further improved. To
this end, an integrated neural network architecture embedded in the dynamic derivative model is
proposed to reduce the discrepancy between the low fidelity model and the high precision wind tunnel
test data. Therefore, the main research focus of dynamic stall lies in accurate and robust aerodynamic
reduced-order modeling under limited data. This motivates the current study to obtain multi-fidelity
model that balances the overall accuracy and the modeling requirement of data. With this model, the
efficiency in generating the training data can be further improved, since a smaller number of
experimental data is required to reach a high level of accuracy. To this end, we propose a multi-fidelity
neural network through combining fuzzy neural network with physical models to improve the
generalization capabilities of dynamic stall modeling. The neural network architecture embedded in

the physical model is shown in Fig. 3.
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Fig. 3 The neural network architecture embedded in the physical model

3. Multi-source aerodynamic data

3.1 NACAO0012 airfoll

To validate the proposed data fusion method, the dynamic stall wind tunnel test [14] data of the
NACAO0012 airfoil was selected as the research target. The wind tunnel test was done by NASA with
a Reynolds number of 2.5 x 10° and Mach number of 0.09. The headway history of dynamic stall is
shown in Equation (1). The definition of the deceleration frequency is shown in Equation (2). Where k

is the reduction frequency, c is the airfoil chord length, and U.. is the incoming velocity. To show the
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difference of unsteady motion at different frequencies and amplitudes in the experimental data, the
angle of approach history at the same time interval is used here to show that. A comparison of the

unsteady cases with the calculated results is shown in Fig. 4 and Fig. 5.
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Fig. 4 Comparison of pitching motions of unsteady cases
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Fig. 5 Comparison between numerical calculation results and wind tunnel tests
When the airfoil is in motion, the motion of the dynamic stall-separated vortices leads to additional
aerodynamic loads compared to the aerodynamic forces of the constant solution. It can be noticed
from Fig. 6 that the vortex shedding and motion lead to strong nonlinearities in the flow field. It can be
seen from the figure that during the flow separation process (shown in Fig. 6), the shedding of vortices
is largely synchronized with the onset of stall. However, it is often difficult to distinguish the parts of
the dynamic stall process that correspond to the attached and separated flows, which explains the
difficulty in predicting the dynamic stall aerodynamics.

For the URANS method, it is difficult to accurately predict the location of the airfoil separation point so
as to distinguish between the attachment and separation flow stages during pitching motion. Therefore,
it is difficult to accurately match the CFD simulation results with the experimental results. Physical
knowledge is integrated into the data fusion model to improve the ability to distinguish separation flow

and attachment flow during dynamic stall by building an embedded integrated neural network.



DYNAMIC STALL PREDICTION THROUGH COMBINING PHYSICAL MODELS AND MACHINE LEARNING

L

LY

| 3333322333358~

@,.F
-0.5

= . . i -1 - 1 -
i 0 x 1 2 -1 0 x 1 2

Fig. 6 Dynamic stall flow field simulation results of NACA0012 airfoil

3.2 NASA Common research model
To study the dynamic stall characteristics of transport aircraft at large angles of approach, the National
Aeronautics and Space Administration (NASA) has selected the Common Research Model (CRM), a
standard layout model of a typical twin-engine, long-range, twin-aisle, wide-body commercial transport
aircraft, to be the subject of the study. The CRM is a standard layout model published by NASA for a
typical twin-engine, long-range, two-aisle, wide-body commercial transport aircraft. The three-
dimensional digital model and data of the aircraft are publicly available for international research and
collaboration. The CRM model is publicly available and can be accessed at the following links:
https://commonresearchmodel.larc.nasa.gov/.
The NASA Common Research Model (CRM) is a typical modern airliner with an advanced
supercritical wing and wide-body fuselage. The design cruise Mach number of the CRM is 0.85, and
the corresponding design lift coefficient is C.=0.5. A dynamic stall aerodynamic wind tunnel test was
carried out using a scaled-down model with a scale of 2.45%. The main scaling parameters of the
wind tunnel test model are shown in Table 1.
The wind tunnel tests were conducted in the FL-14 low-speed wind tunnel of the China Aerodynamic
Research and Development Centre (shown in Figure 7). Wind tunnel test section for the diameter of
3.2m circular cross-section, turbulence is lower than 0.168%, the wind tunnel of the downstream static
pressure gradient of about 0.0025m. ®3.2m wind tunnel (FL-14) is an open, closed mouth dual-use
test section of the reflux type low-speed wind tunnel, built in 1992 and put into use, equipped with a
tensioned wire support system, movable floor test device, It is equipped with a tension wire support
system, a movable floor test device, a multi-degree-of-freedom dynamic test system, etc., and is
7
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mainly used for special tests of aerospace vehicles.

Table 1 Main parameters of wind tunnel test scaling model

Main parameters Value
Wingspan (b/m) 1.44
Wing reference area (S/m?) 0.2304
Average aerodynamic chord length of the wing (¢/m) 0.1717
Moment reference Centre (1) 0.25¢
Weights (kg) 8.64

The incoming wind speed V; in the wind tunnel test state is 30m/s. Firstly, the static aerodynamic
characteristics of CRM at high angles of attack were studied. The angle of attack varies from -10 to
50 degrees. The experimental results of lift coefficient and moment coefficient are shown in Fig. 7.

Next, high angle of attack pitch oscillation tests were conducted on the same testing equipment. At
different angles of attack, the amplitude of pitch motion is 10, 15, and 20 degrees, and the frequency
range is between 0.25Hz and 1.25Hz. The angle of attack history under forced motion of the model is
expressed as equation (3). It is the equilibrium angle of attack, where An represents the amplitude of

pitch motion and f here represents the oscillation frequency of harmonic motion.

a(t)=oa,tA, sin(2rx ft) (3)
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Fig. 7 Wind tunnel test results of CRM longitudinal aerodynamic characteristics
Unsteady aerodynamics exhibit complex nonlinear characteristics at different frequencies. As the
pitch motion frequency increases, the aerodynamic unsteady effects become more significant, leading
to an increase in the hysteresis loop area. This poses difficulties for aerodynamic modeling, especially
with the nonlinearity of the pitch torque coefficient being significantly higher than the lift coefficient.
Therefore, it is necessary to propose a data fusion model that considers both unsteady and nonlinear
aerodynamic characteristics.

As the pitch motion frequency increases, the aerodynamic forces of CRM aircraft exhibit strong

nonlinear and unsteady characteristics, which must be considered in high angle of attack extreme
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flight states. Especially after the pitch motion frequency exceeds 1Hz, there is a significant difference
between the unsteady aerodynamic torque and the aerodynamic torque at low frequencies. It is
particularly important to effectively predict the changes in the unsteady aerodynamic characteristics

of CRM for flight safety assessment.
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Fig. 8 CRM Unsteady Aerodynamic Wind Tunnel Test Results

4. Neural network prediction results
To compare the differences between typical black box models, typical data fusion correction models,

and the proposed embedded integrated learning data fusion model, two neural network models
under input conditions without data fusion integration architecture were selected for comparison in

high reduction frequency extrapolation prediction cases, as shown in Fig. 9.
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Fig. 9 Comparison between DFNN model and traditional model

DFNN represents the prediction results using an embedded data fusion architecture. It can be seen
that due to the small sample size of training data, directly establishing models based on angle of
attack or numerical simulation aerodynamics as inputs cannot have accurate global modeling ability
for experimental data, and the overall prediction results have a large error. This is because in small
samples, the complex parameters involved in dynamic stall problems are difficult to directly
characterize through black box models or traditional modified models. These two traditional models
can only achieve prediction and generalization within a limited interval, lacking the high-precision
representation ability of dynamic stall globally. The embedded data fusion architecture has high
prediction accuracy throughout the entire dynamic stall range, and the capture of stall points is also
9
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more accurate. The overall aerodynamic output results are consistent with the experimental results.
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Fig. 11 Test case B: ¢,=11°, ¢, =6°, k=0.24

Fig. 10 and Fig. 11 show the comparison of data fusion prediction aerodynamic coefficients with
experimental aerodynamic data. During the pitch-up and pitch-up phase of the pitching motion, when
the angle of attack is low, the CFD simulation results are better compared with the test because the
airfoil separation is small. With the occurrence of dynamic stall effect, the CFD data starts to
completely deviate from the test data. At this time, due to the black box mapping effect of the data
fusion framework, the deficiency of the numerical simulation results is made up, so that the predicted
aerodynamic force can accurately capture the dynamic stall characteristics. In the airfoil down-
shooting phase, due to many separations and vortex movements, the CFD method has completely
deviated from the test results. At this stage, the aerodynamic numerical error is the largest, and the
aerodynamic change trend is not consistent with the test data. At this time, the data fusion prediction
results corrected by numerical simulation results also show some accuracy fluctuations, but they are
generally in good agreement with the test results, which has improved the confidence of the data.
The nested layered data fusion framework effectively captures the aerodynamics of the experimental
data under dynamic stalls, and uses a small amount of high-precision data under the premise of not
increasing the calculation cost, and obtains aerodynamic dynamic stalls with a certain generalization

ability. Forecasting model.
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In the following work, we will investigate the pitch motion of NASA-CRM at different angles of attack

and frequencies to evaluate the robustness and accuracy of the proposed integrated neural network

modeling method embedded in physical models. Therefore, the validation process for the model is

organized as follows: Firstly, the lift and torque coefficients in the amplitude and frequency parameter

spaces are used to model and verify the accuracy and generalization ability of the model. Next, in

order to analyze the improvement of model convergence and robustness, ablation experiments were

conducted on the model. This is to compare the situation without using data fusion models to

demonstrate the value of embedded physical modeling in integrated neural network modeling. Finally,

modeling the complex three-dimensional parameter space of pitch motion verified the strong

engineering application ability of the model.
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Fig. 12 Sampling parameters for the training and test cases of harmonic pitching
motions of the CRM.
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Fig. 13 Prediction of lift and moment coefficients based on the proposed model.

11



DYNAMIC STALL PREDICTION THROUGH COMBINING PHYSICAL MODELS AND MACHINE LEARNING
The constructed model is trained based on the wind tunnel test results of pitching motions of the
CRM. The parameter range and sampled states are shown in Fig. 3. These experimental data are
used to verify the prediction accuracy of the unsteady model in a wide range of oscillation amplitude,
frequencies and mean angles of attacks. From the preliminary test, the proposed model shows
improved accuracy in a large angles of attack and frequency range. This can be clearly observed in
Fig.4, where lift and moment coefficients are well predicted by the proposed multifidelity model. The
results indicate that the method has good generalization capability for the parameters of interest. At
the same time, the comparison with the prediction results only from high-fidelity data shows that the
proposed method can effectively reduce the amount of data required for model of training and

improve the modeling robustness to different types of motions.

5. Conclusion

The comprehensive performance of the model indicates that the idea of embedding physical models
has a significant improvement in modeling ability under small sample data. This framework effectively
improves the generalization ability and robustness of high angle of attack aerodynamic modeling,
providing a new approach for the design and efficiency improvement of unsteady wind tunnel
experiments. When the accuracy of traditional reduced order models or numerical simulation models
cannot meet the experimental requirements, combining physical modeling with this framework will
be a feasible method to improve the extrapolation ability of existing physical models. Especially in
complex flow environments, the predictive ability of the model is expected, and the integrated neural
network framework embedded in physical models is an effective integration of physical information
from empirical models. It has enormous potential in complex dynamic modeling where the

mechanism is still unclear.
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