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Abstract 

The dynamic stall problem has received much attention in the field of flight safety. However, highly 

accurate dynamic stall prediction remains a challenge due to the complexity of the flow. To make full 

use of the characteristics of different data sources to establish a reasonable dynamic stall 

aerodynamic time-domain prediction model, an embedded integrated neural network architecture is 

proposed, which can realize the fusion of typical multi-source data such as numerical simulation 

results, physical models and wind tunnel test data. The model effectively reduces the sample 

demand for unsteady wind tunnel test data in the dynamic stall problem, and significantly improves 

the accuracy and generalization capability in the dynamic stall prediction of wing and wide-body 

airliner standard models. For the large-scale nonlinear and unsteady dynamic stall aerodynamic 

performance prediction problem, the data fusion method embedded in a physical model shows 

stronger robustness and is more suitable for learning from small sample data than the traditional 

black-box model. 
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1. Introduction 

For high-performance lifting body vehicles, dynamic stall can greatly limit the aerodynamic 

performance boundary and lead to maneuver stability problems; for rotor blades of helicopter-type 

vehicles, dynamic stall usually directly limits the maximum forward flight speed; and for wind 

turbine/pressure engine blades/propellers, dynamic stall doubles the efficiency of the operating 

conditions and affects the flight envelope. The in-depth analysis of subsonic dynamic stall 

characteristics is of great significance in solving the aerodynamic problems such as high drag and 

large low head moment caused by the dynamic stall of helicopter and wind turbine propellers, and it 

is also of great importance in supporting the simulation of large headway angle flights, the study of 

stall flutter of wings with large spreading ratios, as well as the aerodynamic design of bionic aircrafts. 

Unsteady aerodynamic prediction is crucial for the safety, optimization and control design of modern 

aircraft. Recently, the significant expansion of the angles of attack range in modern flight has led to 

the need for more adequate modeling of unsteady aerodynamic characteristics. This is particularly 

critical during aircraft takeoff and landing phases, where rapid increases in attack angles can lead the 

aircraft into stall or post-stall conditions [1]. Therefore, in recent years, studies on the aerodynamic 

characteristics of static and dynamic stalls are gaining importance. 



DYNAMIC STALL PREDICTION THROUGH COMBINING PHYSICAL MODELS AND MACHINE LEARNING 

 

 

2  

Although Computational Fluid Dynamics (CFD) is widely employed for solving unsteady flows, its 

substantial computational cost limits broader applications in flight dynamics and control. For more 

efficient acquisition of unsteady aerodynamics, the development of aerodynamic Reduced-Order 

Models (ROMs), based on experimental data or CFD, has been rigorously explored [2].  

Currently, unsteady aerodynamic ROMs can be categorized into two main types: system identification 

and feature extraction. Dynamic linear models within these categories can accurately predict mildly 

nonlinear responses, making them suitable for a diverse range of flight conditions. However, at high 

angles of attack, unsteady aerodynamics exhibit strong nonlinear behavior due to intense flow 

separation, viscous effects, and vortex shedding. In such scenarios, nonlinear ROMs emerge as 

promising tools to model the complex dynamics of unsteady aerodynamics, particularly for dynamic 

stall [3]. Here, (deep) neural networks have demonstrated significant potential in capturing and 

representing these complex nonlinear dynamics. 

In order to balance the contradiction between calculation efficiency and calculation accuracy, 

unsteady aerodynamic models were proposed to improve the ability of the aerodynamic load 

prediction methods in aeroelastic simulations [4]. Unsteady aerodynamic models are mainly divided 

into two categories. One is a white box model (semi-empirical model) based on aerodynamic control 

equations and experimental data, such as Onera [5] and Beddoes–Leishman [6], which are widely 

used for dynamic stall problems. By combining a small amount of aerodynamic test data with classic 

aerodynamic prediction experience, some low-precision dynamic stall prediction methods have been 

developed. Due to their simplicity, these lower-precision models are often used in the initial design 

stage of the industrial design field. Under the guidance of this research idea, many studies have been 

carried out: The United Technologies Research Center (UTRC) [7] developed a time-domain unsteady 

aerodynamic model based on a simple harmonic motion airfoil test, and introduced additional 

parameters characterizing the unsteady change of the angle of attack in order to achieve preliminary 

aerodynamic data prediction. Based on the MST theory proposed by De Laurier [8], Kim [9] developed 

the MST method. Considering the dynamic stall problem of pitching and heaving motion at the same 

time, it can predict the unsteady aerodynamic loads of a wing with a finite span. Suresh Babu [2] 

proposed a reduced-order discrete vortex method. By reducing the number of discrete vortices and 

merging vortex positions, the computational efficiency was greatly improved and the model accuracy 

was retained. Rohit [10] predicted the dynamic stall aerodynamics of the OA209 wing with limited 

wingspan by combining the DDES method and the unsteady RANS model and compared the effect 

of the depth of stall on the aerodynamic boundary. With the development of data-driven models, the 

research on another type of black box models based on experimental or numerical simulation data 

have also developed rapidly: Zhang et al. [11] developed a Recursive Radial Basis Function (RRBF) 

method. By introducing output feedback on the basis of standard RBF neural network to reflect 

unsteady dynamic effects, a recursive neural network reduced-order model is obtained. Through this 

model, the unsteady aerodynamic prediction ability is realized and used for aeroelastic analysis 

problems. Kurtulus [12] used ANN to simulate the unsteady aerodynamic coefficients caused by the 

airfoil sinking movement. Winter [13] uses fuzzy neural systems to predict unsteady aerodynamic 



DYNAMIC STALL PREDICTION THROUGH COMBINING PHYSICAL MODELS AND MACHINE LEARNING 

 

 

3  

loads and flutter boundaries. These black box models are based on a large amount of aerodynamic 

data and can make up for the accuracy of empirical models. However, aerodynamic data for dynamic 

stall problems is difficult to obtain. These data-driven models have not yet been used for dynamic stall 

problems. 

While previous works have produced successful practices in nonlinear aerodynamic system 

identification, there are still some drawbacks that limited its application to experimental data. In 

general, black box models of neural networks often require complex and a large amount of data, which 

is difficult to obtain from experiments. In recent years, Multi-Fidelity (MF) models have been proposed 

to reduce the amount of data required to get a reasonable model through using models with different 

fidelity. Since high-fidelity models are accurate but expensive, while low-fidelity models are 

inexpensive but less accurate, multi-fidelity methods combine these two types of models to achieve 

accurate representation of high-fidelity results at a reasonable cost. These works motivate our 

research on developing multi-fidelity unsteady aerodynamic models based on experimental data. 

2. Constructing unsteady aerodynamic prediction networks with integrated learning 

This part of the work proposes an integrated learning data fusion approach embedded in an unsteady 

simulation model. The Data Fusion Neural Network (DFNN) framework is shown in Fig. 1. Using multi-

source differences, the mapping relationship between aerodynamic data is established to ensure that 

the model inference process can simultaneously consider the mapping ability of multi-source data for 

the output. The low fidelity models in this paper comprise two categories, those generated by 

numerical methods approaches and those generated by classical dynamic derivative models. 

 

Fig. 1 Data Fusion Neural Network (DFNN) framework 

2.1 Neural network models embedded in numerical simulation methods 

The unsteady prediction method, commonly used in engineering, is selected for the low-precision 

model to obtain the aerodynamic prediction of dynamic stall. A data fusion unsteady aerodynamic 

model based on a small amount of test data is established by nesting the aerodynamic data outputs 

and motion states of numerical simulation to achieve effective approximation of dynamic stall test data. 

Since the proposed data fusion architecture is an embedded approach, the prediction data need to 
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be involved in the whole computation for both training and prediction cases. The nested hierarchical 

framework shows strong generalization capability under different equilibrium headway angles, 

reduction frequencies and pitch amplitudes, and the convergence and accuracy of the model is 

verified by modelling with different ratios of training data, which proves that the proposed data fusion 

framework can effectively predict the dynamic stall loads with high accuracy in the time domain, and 

the prediction accuracy is higher than that of the traditional model and the CFD method. 

The purpose of data fusion (as shown in Fig.2) is to use the numerical solution results of low-precision 

models to achieve accurate mapping of aerodynamic data in the experimental state, to make up for 

the problem of low confidence in the data caused by model errors or numerical errors in the numerical 

method itself. At this point, the numerical simulation method as an embedded model needs to 

participate in the mapping process. Therefore, for each step of the modelling, the time lag effect of 

the unsteady motion of the airfoil and the corresponding unsteady effect of the aerodynamic output 

needs to be considered at the same time. 

 

(a) Upper neural network architecture 

 

(b) Lower neural network architecture 

Fig. 2 Layered architecture for integrated neural networks 
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2.2 Neural network models embedded in physical models 

The dynamic derivative model based on physical assumptions provides an efficient means of 

aerodynamic prediction, but the prediction accuracy of the model needs to be further improved. To 

this end, an integrated neural network architecture embedded in the dynamic derivative model is 

proposed to reduce the discrepancy between the low fidelity model and the high precision wind tunnel 

test data. Therefore, the main research focus of dynamic stall lies in accurate and robust aerodynamic 

reduced-order modeling under limited data. This motivates the current study to obtain multi-fidelity 

model that balances the overall accuracy and the modeling requirement of data. With this model, the 

efficiency in generating the training data can be further improved, since a smaller number of 

experimental data is required to reach a high level of accuracy. To this end, we propose a multi-fidelity 

neural network through combining fuzzy neural network with physical models to improve the 

generalization capabilities of dynamic stall modeling. The neural network architecture embedded in 

the physical model is shown in Fig. 3. 

 

Fig. 3 The neural network architecture embedded in the physical model 

3. Multi-source aerodynamic data 

3.1 NACA0012 airfoil 

To validate the proposed data fusion method, the dynamic stall wind tunnel test [14] data of the 

NACA0012 airfoil was selected as the research target. The wind tunnel test was done by NASA with 

a Reynolds number of 2.5 × 106 and Mach number of 0.09. The headway history of dynamic stall is 

shown in Equation (1). The definition of the deceleration frequency is shown in Equation (2). Where k 

is the reduction frequency, c is the airfoil chord length, and U∞ is the incoming velocity. To show the 
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difference of unsteady motion at different frequencies and amplitudes in the experimental data, the 

angle of approach history at the same time interval is used here to show that. A comparison of the 

unsteady cases with the calculated results is shown in Fig. 4 and Fig. 5. 

0( ) + sin( )mt A t  =  (1) 

/ 2k c U =   (2) 

 

Fig. 4 Comparison of pitching motions of unsteady cases 

 

Fig. 5 Comparison between numerical calculation results and wind tunnel tests 

When the airfoil is in motion, the motion of the dynamic stall-separated vortices leads to additional 

aerodynamic loads compared to the aerodynamic forces of the constant solution. It can be noticed 

from Fig. 6 that the vortex shedding and motion lead to strong nonlinearities in the flow field. It can be 

seen from the figure that during the flow separation process (shown in Fig. 6), the shedding of vortices 

is largely synchronized with the onset of stall. However, it is often difficult to distinguish the parts of 

the dynamic stall process that correspond to the attached and separated flows, which explains the 

difficulty in predicting the dynamic stall aerodynamics. 

For the URANS method, it is difficult to accurately predict the location of the airfoil separation point so 

as to distinguish between the attachment and separation flow stages during pitching motion. Therefore, 

it is difficult to accurately match the CFD simulation results with the experimental results. Physical 

knowledge is integrated into the data fusion model to improve the ability to distinguish separation flow 

and attachment flow during dynamic stall by building an embedded integrated neural network. 
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Fig. 6 Dynamic stall flow field simulation results of NACA0012 airfoil 

3.2 NASA Common research model 

To study the dynamic stall characteristics of transport aircraft at large angles of approach, the National 

Aeronautics and Space Administration (NASA) has selected the Common Research Model (CRM), a 

standard layout model of a typical twin-engine, long-range, twin-aisle, wide-body commercial transport 

aircraft, to be the subject of the study. The CRM is a standard layout model published by NASA for a 

typical twin-engine, long-range, two-aisle, wide-body commercial transport aircraft. The three-

dimensional digital model and data of the aircraft are publicly available for international research and 

collaboration. The CRM model is publicly available and can be accessed at the following links: 

https://commonresearchmodel.larc.nasa.gov/. 

The NASA Common Research Model (CRM) is a typical modern airliner with an advanced 

supercritical wing and wide-body fuselage. The design cruise Mach number of the CRM is 0.85, and 

the corresponding design lift coefficient is CL=0.5. A dynamic stall aerodynamic wind tunnel test was 

carried out using a scaled-down model with a scale of 2.45%. The main scaling parameters of the 

wind tunnel test model are shown in Table 1. 

The wind tunnel tests were conducted in the FL-14 low-speed wind tunnel of the China Aerodynamic 

Research and Development Centre (shown in Figure 7). Wind tunnel test section for the diameter of 

3.2m circular cross-section, turbulence is lower than 0.168%, the wind tunnel of the downstream static 

pressure gradient of about 0.0025m-1. Ф3.2m wind tunnel (FL-14) is an open, closed mouth dual-use 

test section of the reflux type low-speed wind tunnel, built in 1992 and put into use, equipped with a 

tensioned wire support system, movable floor test device, It is equipped with a tension wire support 

system, a movable floor test device, a multi-degree-of-freedom dynamic test system, etc., and is 

https://commonresearchmodel.larc.nasa.gov/
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mainly used for special tests of aerospace vehicles. 

Table 1 Main parameters of wind tunnel test scaling model 

Main parameters Value 

Wingspan（b/m） 1.44 

Wing reference area（S/m2） 0.2304 

Average aerodynamic chord length of the wing（c/m） 0.1717 

Moment reference Centre（1） 0.25c 

Weights（kg） 8.64 

The incoming wind speed V0 in the wind tunnel test state is 30m/s. Firstly, the static aerodynamic 

characteristics of CRM at high angles of attack were studied. The angle of attack varies from -10 to 

50 degrees. The experimental results of lift coefficient and moment coefficient are shown in Fig. 7. 

Next, high angle of attack pitch oscillation tests were conducted on the same testing equipment. At 

different angles of attack, the amplitude of pitch motion is 10, 15, and 20 degrees, and the frequency 

range is between 0.25Hz and 1.25Hz. The angle of attack history under forced motion of the model is 

expressed as equation (3). It is the equilibrium angle of attack, where Am represents the amplitude of 

pitch motion and f here represents the oscillation frequency of harmonic motion. 

0( ) + sin(2 )mt A ft  =  (3) 

 

Fig. 7 Wind tunnel test results of CRM longitudinal aerodynamic characteristics 

Unsteady aerodynamics exhibit complex nonlinear characteristics at different frequencies. As the 

pitch motion frequency increases, the aerodynamic unsteady effects become more significant, leading 

to an increase in the hysteresis loop area. This poses difficulties for aerodynamic modeling, especially 

with the nonlinearity of the pitch torque coefficient being significantly higher than the lift coefficient. 

Therefore, it is necessary to propose a data fusion model that considers both unsteady and nonlinear 

aerodynamic characteristics. 

As the pitch motion frequency increases, the aerodynamic forces of CRM aircraft exhibit strong 

nonlinear and unsteady characteristics, which must be considered in high angle of attack extreme 
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flight states. Especially after the pitch motion frequency exceeds 1Hz, there is a significant difference 

between the unsteady aerodynamic torque and the aerodynamic torque at low frequencies. It is 

particularly important to effectively predict the changes in the unsteady aerodynamic characteristics 

of CRM for flight safety assessment. 

 

Fig. 8 CRM Unsteady Aerodynamic Wind Tunnel Test Results  

4. Neural network prediction results  

To compare the differences between typical black box models, typical data fusion correction models, 

and the proposed embedded integrated learning data fusion model, two neural network models 

under input conditions without data fusion integration architecture were selected for comparison in 

high reduction frequency extrapolation prediction cases, as shown in Fig. 9. 

 
Fig. 9 Comparison between DFNN model and traditional model 

DFNN represents the prediction results using an embedded data fusion architecture. It can be seen 

that due to the small sample size of training data, directly establishing models based on angle of 

attack or numerical simulation aerodynamics as inputs cannot have accurate global modeling ability 

for experimental data, and the overall prediction results have a large error. This is because in small 

samples, the complex parameters involved in dynamic stall problems are difficult to directly 

characterize through black box models or traditional modified models. These two traditional models 

can only achieve prediction and generalization within a limited interval, lacking the high-precision 

representation ability of dynamic stall globally. The embedded data fusion architecture has high 

prediction accuracy throughout the entire dynamic stall range, and the capture of stall points is also 
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more accurate. The overall aerodynamic output results are consistent with the experimental results. 

 
Fig. 10 Test case D： 0 =15°, m =10°, k=0.15 

 
Fig. 11 Test case B： 0 =11°, m =6°, k=0.24 

Fig. 10 and Fig. 11 show the comparison of data fusion prediction aerodynamic coefficients with 

experimental aerodynamic data. During the pitch-up and pitch-up phase of the pitching motion, when 

the angle of attack is low, the CFD simulation results are better compared with the test because the 

airfoil separation is small. With the occurrence of dynamic stall effect, the CFD data starts to 

completely deviate from the test data. At this time, due to the black box mapping effect of the data 

fusion framework, the deficiency of the numerical simulation results is made up, so that the predicted 

aerodynamic force can accurately capture the dynamic stall characteristics. In the airfoil down-

shooting phase, due to many separations and vortex movements, the CFD method has completely 

deviated from the test results. At this stage, the aerodynamic numerical error is the largest, and the 

aerodynamic change trend is not consistent with the test data. At this time, the data fusion prediction 

results corrected by numerical simulation results also show some accuracy fluctuations, but they are 

generally in good agreement with the test results, which has improved the confidence of the data. 

The nested layered data fusion framework effectively captures the aerodynamics of the experimental 

data under dynamic stalls, and uses a small amount of high-precision data under the premise of not 

increasing the calculation cost, and obtains aerodynamic dynamic stalls with a certain generalization 

ability. Forecasting model. 
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In the following work, we will investigate the pitch motion of NASA-CRM at different angles of attack 

and frequencies to evaluate the robustness and accuracy of the proposed integrated neural network 

modeling method embedded in physical models. Therefore, the validation process for the model is 

organized as follows: Firstly, the lift and torque coefficients in the amplitude and frequency parameter 

spaces are used to model and verify the accuracy and generalization ability of the model. Next, in 

order to analyze the improvement of model convergence and robustness, ablation experiments were 

conducted on the model. This is to compare the situation without using data fusion models to 

demonstrate the value of embedded physical modeling in integrated neural network modeling. Finally, 

modeling the complex three-dimensional parameter space of pitch motion verified the strong 

engineering application ability of the model. 

 

Fig. 12 Sampling parameters for the training and test cases of harmonic pitching 

motions of the CRM. 

 

(a) A = 15o, f = 1.00Hz, lift (b) A = 20o, f = 0.50Hz, lift 

 

(b) A = 15o, f = 1.00Hz, moment (d) A = 20o, f = 0.50Hz, moment 

Fig. 13 Prediction of lift and moment coefficients based on the proposed model. 
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The constructed model is trained based on the wind tunnel test results of pitching motions of the 

CRM. The parameter range and sampled states are shown in Fig. 3. These experimental data are 

used to verify the prediction accuracy of the unsteady model in a wide range of oscillation amplitude, 

frequencies and mean angles of attacks. From the preliminary test, the proposed model shows 

improved accuracy in a large angles of attack and frequency range. This can be clearly observed in 

Fig.4, where lift and moment coefficients are well predicted by the proposed multifidelity model. The 

results indicate that the method has good generalization capability for the parameters of interest. At 

the same time, the comparison with the prediction results only from high-fidelity data shows that the 

proposed method can effectively reduce the amount of data required for model of training and 

improve the modeling robustness to different types of motions. 

5. Conclusion 

The comprehensive performance of the model indicates that the idea of embedding physical models 

has a significant improvement in modeling ability under small sample data. This framework effectively 

improves the generalization ability and robustness of high angle of attack aerodynamic modeling, 

providing a new approach for the design and efficiency improvement of unsteady wind tunnel 

experiments. When the accuracy of traditional reduced order models or numerical simulation models 

cannot meet the experimental requirements, combining physical modeling with this framework will 

be a feasible method to improve the extrapolation ability of existing physical models. Especially in 

complex flow environments, the predictive ability of the model is expected, and the integrated neural 

network framework embedded in physical models is an effective integration of physical information 

from empirical models. It has enormous potential in complex dynamic modeling where the 

mechanism is still unclear. 
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