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Abstract

A systematic method of constructing low-thrust, low-energy transfers from a near-Earth asteroid to low-Earth
orbit with a required inclination is presented, providing an alternative for asteroid sample return scenarios.
The rough opportunities of the asteroid departure and the Earth capture are estimated by using the Lambert
algorithm, i.e., two-body transfers from the asteroid to the L1 or L2 Lagrangian points of the Sun-Earth sys-
tem. Ballistic capture orbits are generated by manipulating the stable and unstable sets when attractions of
the Sun, the Earth, and the Moon are considered. These solutions that can be connected to the asteroid
with low-thrust transfers are selected as candidates of the aero-ballistic capture, which utilizes both multi-body
dynamics and aerodynamics. An initial perigee maneuver is performed to reduce the post-capture apogee
distance and thereafter, a series of apogee trim maneuvers are introduced to maintain the maximum dynamic
pressure of each atmospheric passage. Two inclination managing strategies, namely, active control and pas-
sive control, respectively, are used. The former uses chemical impulses to correct the inclination discrepancy,
and the latter gradually changes it by yawed solar panels. Analytical prediction of the semi-major axis and incli-
nation with respect to the Earth is derived. An time-optimal yawing angle is formulated for the passive control
mode. Numerical simulations for the transfer from the asteroid 1991 VG to the International Space Station are
implemented.
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1. Introduction
Near-Earth asteroids (NEAs) are asteroids that will closely approach the Earth or cross the Earth’s
orbit. These objects are of particular interest due to: 1) they may deposit the pristine materials since
the early days of our solar system and may be responsible for the origin of life on the Earth; 2) they
bear careful monitoring due to their risks of impact with the Earth, e.g., the 99942 Apophis; 3) they
contain a variety of valuable materials and substances for industrial and commercial use [1, 2, 3].
Hundreds and thousands of NEAs have been discovered and many more are being anticipated by
continuous observations.
Sampling return from the NEAs will give us an in-depth understanding of their structures and com-
positions [4, 5]. Several asteroid sample return plans have been actualized or proposed recently,
as JAXA’s Hayabusa 1 and 2 kawaguchi2006, tsuda2013, NASA’s OSIRIS-REx [6], and ESA’s
MarcoPolo-R [7]. These missions will also provide detailed information of NEAs for NASA’s As-
teroid Redirect Mission (ARM), which plans to identify, capture, and redirect an entire NEA to the
Earth-Moon system for scientific investigation and evaluation [8]. In order to enumerate potentially
accessible NEAs, scientists have characterized those suitable for future space missions and estab-
lished a list of “NHATS”.1 Among them, a catalogue of easily retrievable asteroids is provided by using
patched conic approximations and low-energy transfers [9, 10, 11, 12, 13, 14].

1NHATS: Near-Earth Object Human Space Flight Accessible Targets Study, see http://neo.jpl.nasa.gov/
nhats/ [retrieved 12 January 2015].

http://neo.jpl.nasa.gov/nhats/
http://neo.jpl.nasa.gov/nhats/
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Without sacrificing the generality, take the successful asteroid sample return mission Hayabusa 1
as an example. The spacecraft was equipped with xenon ion engines and bi-propellant thrusters,
whereas the ion engines were used in the cruising phase due to its high specific impulse and the bi-
propellant thrusters are prepared for orbital maneuvers (e.g., trajectory correction maneuvers). The
re-entry capsule was separated from the main probe three hours before re-entering the Earth’s atmo-
sphere. A heavy thermal protection system was designed to protect the capsule from experienced
peak deceleration and heating rates [15]. Instead of directly returning to the ground, an alternative
option is to inject the spacecraft into low-Earth orbit (LEO) and then to rendezvous with, for instance,
the International Space Station (ISS) or to release the re-entry capsule into the Earth’s atmosphere
with a comparatively lower velocity [8].
Ballistic capture, also known as gravitational capture, can provide a lower re-entry velocity by judi-
cious use of the multi-body dynamics in comparison with that of a classical Hohmann transfer under
identical conditions [16, 17, 18, 19, 20, 21]. However, ballistic capture transfer requires longer flight
time and its post-capture leg is chaotic and weakly stable, which requires further decelerations to
stabilize it [22]. Aerobraking has been proved as an effective strategy to brake the spacecraft when
concerning a planet covered with usable atmosphere, although a braking maneuver is, in general,
performed to insert the spacecraft into an elliptic-type orbit before aerobraking, e.g., ∆v = 973 m/s
for the Mars Global Surveyor mission [23, 24, 25, 26, 27, 28]. The effort of this paper is to combine
the advantages of both ballistic capture and aerobraking techniques and, hence, to construct a novel
transfer with lower fuel consumption, flexible arriving period, and moderate flight time for asteroid
sample returns.
easily retrievable objects (EROs) [29, 30, 31, 32, 33]
The sampling return scenario is scheduled as follows. The spacecraft has a “box-wing” configuration.
It departs from the asteroid after finishing proximal operations. Low-thrust engines with a high specific
impulse drive the spacecraft to the neighbourhood of the Earth-Moon system (solar sail propulsion is
also considered for sample return missions, whereas it is beyond the scope of this paper; see, e.g.,
[34, 35]). This interplanetary transfer is viewed as a perturbed two-body problem, and subsequently,
is patched with a ballistic capture leg before arriving a given periapsis distance, labelled as pre-
capture phase. A small periapsis maneuver is performed to arrive a stabler and lower post-capture
orbit, where the conventional aerobraking begins. A series of aerobraking trim maneuvers (ABMs)
will be performed at apoapsis as necessary to maintain the maximum dynamic pressure of each
atmospheric passage. Two strategies, i.e., chemical impulses and yawing angle, are imposed to
manage the orbital inclination with respect to the Earth. This parameter is important for the sample’s
recovery.
The reminder of this paper is arranged as follows. Section 2.provides background notions, including
reference frames and dynamical models involved. In Sect. ??, the basic construction procedure
is described which allows us to snap a general understanding of the method proposed. Detailed
discussions about ballistic capture and aerobraking are presented in Sect. ?? and ??. Study case
is provided in Sect. 4.. Some underlying remarks are drawn in Sect. 5.. Two appendixes are reported
where analytical derivations are given.

2. Mathematical models
The spacecraft experiences a variety of dynamical environments. The Sun’s gravity and low-thrust are
functioned on the spacecraft after its departure from the asteroid and before the ballistic capture near
the Earth. A critical point, denoted by P, is chosen as the switch of the heliocentric and planetocentric
motions. Starting from P, the attractions from the Earth and the Moon are taken into account. The
aerodynamic drag is further considered when the spacecraft passes the sensible atmosphere.
Table 1 reports physical and orbital parameters of the celestial bodies involved, i.e., the Sun, the
Earth and its satellite Moon. The “primary”, of mass mp, is the body revolved by the “secondary” of
mass mt , and µ is defined by µ = mt/(mt +mp). SOI, sphere-of-influence, is defined by at (mt/mp)

2
5 ,

where at is the semi-major axis of the orbit of the secondary relative to its primary. Hill sphere is in
concordance with the distances between the secondary and the Lagrangian points L1 and L2 in the
circular restricted three-body problem (CRTBP); see [36] for details. Both the SOI and Hill sphere is
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provided in units of the Earth’s radius Re for comparison.

Table 1 – Approximate parameters of the bodies considered in the dynamical model.

Body Gravity par. Radius Primary Mass ratio Ecce. Semi-major SOI Rs Hill sphere
km3/s2 R, km µ et axis at , ×Re ×Re Rh, ×Re

Earth 3.986E+05 6,371.0 Sun 3.003E-06 0.0167 23,466 145.03 235.18
Moon 4.903E+03 1,737.4 Earth 1.215E-02 0.0549 60.33 10.36 9.65

2.1 Reference frames
As the spacecraft in the aforementioned return scenario suffers various dynamical environments, an
inertial frame, labelled as (xi,yi,zi), is used to describe the motions for simplicity. In order to control
the post-capture orbital parameters and to facilitate the computation, the xi and yi axes are defined in
the body’s mean equator plane at a reference epoch t0 (the body is referred as the Earth, where the
frame is, in general, centered) [22]. The frame is abbreviated to BME@t0, and its zi-axis is aligned
with the spin axis.
The aerodynamic force functioned on the solar panels is described in a spacecraft central Velocity-
Co-normal-Normal frame (VCN), denoted by (xv,yv,zv), as shown in Figure.1. The xv-axis aligns with
its inertial velocity vvv, the yv-axis goes along the negative orbital normal, and the yv-axis completes the
right-hand triad. The transformation from VCN to BME@t0 is calculated from

Qv→i(t0) = [(xxxv)i (yyyv)i (zzzv)i] , (1)

and the components in (1) are defined by

(xxxv)i =
vvv
‖vvv‖

, (yyyv)i =
vvv× rrr
‖vvv× rrr‖

, (zzzv)i = (xxxv)i× (yyyv)i , (2)

where rrr and vvv are the position and velocity vectors with respect to the BME@t0 frame.
The rotational angle about zv-axis is called the yaw angle, as shown in Figure.1, which is able to
provide aerodynamical forces in two directions, i.e., FFF⊥a perpendicular to the orbital plane and FFF‖a
parallel to it. It should be of special note that this is only possible in rarefied gas flow at a relatively
high altitude of the atmosphere [15].

2.2 Equations of motion
The governing equations with respect to the BME@t0 frame are written in the form

ṙrr = vvv

v̇vv = aaag +aaat +aaaa

ṁ =−T/c,

(3)

where the terms aaag, aaaa, and aaat are accelerations due to the gravity, the aerodynamic drag, and the
low thrust, m is the spacecraft’s mass, T is its thrust magnitude, and c = Ispg0 denotes the exhaust
velocity (Isp is the specific impulse of the thrust engine and g0 is the gravitational acceleration at the
sea level). It is also recognized that not all the three accelerations appear for each phase; e.g., aaag

and aaat are active before arriving at the switch point P, the low-thrust engines are not activated during
the aerobraking, and aaaa is only available in proximity of each periapsis.
More precisely, the gravitational acceleration is of the form

aaag =−µc
rrr
r3 −∑

i∈P
µi

(
rrri

r3
i
+

rrr− rrri

‖rrr− rrri‖3

)
, (4)

where P is a set of perturbing bodies. It is empty before arriving the point P, during which the BME@t0
frame is centered at the Sun and µc represents the Sun’s gravity parameter. From P onward, the
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Figure 1 – Yaw angle (ψ) and the aerodynamical force (FFFa): a) 3-D geometry of the yaw angle; b)
Side-view of the panels and aerodynamical force decomposition.

origin of BME@t0 is switched to the Earth, and hence, µc denotes the Earth’s gravity parameter. The
attractions from the Sun and the Moon are considered by the sum term in Eq. (4). The terms µi

(i∈ P) are their gravitational constants, and ri are the positions of the spacecraft with respect to them,
respectively.
The propulsive acceleration aaat is computed from aaat = −TTT/m, where TTT is the thrust vector. The
onboard engines provide low thrust (T < 1 N) with high Isp (' 3000 s). The low-thrust technology
can greatly expand interplanetary mission capabilities [10, 37, 5].
The aerodynamic acceleration aaaa is mostly induced by the solar panels for the “box-wing” architecture.
Figure.2 provides four symmetric configurations, where ψ represents the sweep angle of the solar
wings from a reference plane and θ is a yawing angle that describes the rotation of the spacecraft
along the yv-axis (e.g., by means of reaction-wheels; see [38]). A positive θ corresponds to a counter-
clockwise rotation from the xv-axis, and conversely, a clockwise rotation means a negative θ . It
is observed from Figure.2 that the drags on the “left” and “right” wings are equal for cases (a) to
(c), but are unequal for case (d) due to different approaching angles with respect to both wings.
Therefore, the angular momentum of both wings are neutralized excepting that of case (d). Only the
configurations (a) and (c) are considered in this paper, i.e., ψ = 0. Thus, the total drag is always
perpendicular to the solar panels. In practice, the wind-relative velocity vvvr is not in consistence with vvv
due to the rotating atmosphere (see the angle α in Figure.??). Generally, the discrepancy between
θ and α is small since the atmospheric rotating velocity is far less than the spacecraft’s velocity.
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Figure 2 – Configuration of solar wings.

The magnitude of the aerodynamic acceleration is derived from aa = q̄CdS/m, where q̄ = ρvr
2/2 is the

dynamic pressure, ρ is the current density at an altitude h, Cd is the spacecraft’s drag coefficient, and
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S is its reference area. An exponential model is used; i.e., ρ = ρ0 exp−h−h0
H , where ρ0 is a reference

density at an altitude of h0 and H is the corresponding scale height. We assume the drag coefficient
is Cd0 when α = 0. Thus, Cd =Cd0 cos2 α according to the Newton’s sine-squared law in the hypersonic
aerodynamics [15]. Apparently, the drag coefficient descends down rapidly with the increase of α. No
lift effects are considered. Hence, the aerodynamic acceleration with respect to the BME@t0 frame
is obtained by

aaaa = aaQv→b(t0)Ry(−θ)

 −1

0

0

 , (5)

where Ry is the direction cosine matrix around the yv-axis.
To avoid precision lost and to accelerate the integrations, the equations of motion (3) are normalized
by the parameters in Table 2 for both the interplanetary transfer and the ballistic capture. A 7th/8th

order Runge–Kutta–Felhberg method with automatic step-size control is used. The absolute and
relative tolerances are both set to 10−12.

Table 2 – Normalization parameters.

Symbol Remark Comment Value Unit

MU Gravity parameter unit Earth’s gravity parameter 3.986E+05 km3/s2

LU Length unit Earth’s mean radius 6,371.0 km
TU Time unit

√(
LU3/MU

)
805.46 s

VU Velocity unit LU/TU 7.91 km/s
MAU Mass unit Reference mass 1,000 kg

3. Methodology
3.1 General framework
As stated in the introduction, the 3D overall trajectory connects an asteroid of interest to a LEO with
specified inclination and altitude. Fuel expenditure, other than the flight time, is the primary concern of
the mission design. Two critical points along the route, denoted by Pp and Pi.c. (as shown in Figure.3),
respectively, play key roles in constructing the entire trajectory.
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Figure 3 – Overall asteroid sample return trajectory.

The first critical point, Pp, is the patch point that connects the heliocentric transfer arc and the geocen-
tric part. Prior to Pp, only the Sun’s gravity is considered for the propagation of the spacecraft’s state,
while thereafter, the gravities of the Earth, Moon, and Sun will all be taken into account. In other
words, Pp is the delimiter of using two-body dynamics or multi-body dynamics. For the two-body part,
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in order to minimize the energy cost, optimised low-thrust is to be implemented for the interplanetary
heliocentric transfer, which takes as initial guess the Lambert’s arcs in an iterative manner, as will be
elaborated in Sec.3.2. For the multi-body part, starting from the patch point Pp, impulsive delta-v’s are
used to construct the ballistic capture trajectory. From a backwards-in-time perspective, Pp can also
be viewed as an “escape point”.
The second critical point, Pi.c., is located at the periapsis of the Earth (see Figure.3) and functions
in two aspects. The time epoch associated to Pi.c. is denoted by t0. The first role it plays is to
generate the initial conditions for ballistic captures about Earth. This is done by extensive search via
numerical integration over a multi-dimensional phase space formed by four classical orbit elements
(details given in Sec.3.2). It should be noted that Pp is the end point of the ballistic capture trajectory if
propagating PIC backwards in time. The second role Pi.c. plays is to initialize the aerobraking process.
A delta-v, denoted by ∆vvv0, is implemented at Pi.c. in order to shorten the range that the trajectory
thereafter can reach and, meanwhile, to redirect the spacecraft to a certain level of atmosphere. The
detailed aerobraking process is given in Sec.3.3.

3.2 Phase I: Patching interplanetary transfer and ballistic capture
The objective of this design phase is to obtain a transfer trajectory that connects the departure point
on the asteroid and the arrival point at the periapsis of the Earth, i.e., Pi.c.. The entire trajectory is in
fact composed of two segments that are patched at Pp. Four major steps are taken to accomplish the
task.

3.2.1 Step 1: Patch time estimation
The journey from the asteroid to the vicinity of the Earth accounts for the major part of both the
time and the fuel expenditure, and therefore should be handled in the first place. Without loosing
generality, we assume the departure time from the asteroid is t = 0.
Since the patch point Pp is still undetermined at this step, the idea is to use the Sun-Earth L1/L2 as
destinations to estimate the time and energy cost, as shown in Figure.4. It is because, as revealed
in [39, 40], the Jacobi integral of the spacecraft following a ballistic capture transfer to the vicinity of
L1 or L2 is approximately equal to the Jacobi integral of L1 or L2, respectively. This fact would help to
insure a smooth transition to the ballistic capture part starting from Pp.
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L
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0t
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t t

0

0t

1
v

2
v
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Figure 4 – Time and energy cost estimation by using Lambert arcs.

As stated above, only the Sun’s gravity is considered during the heliocentric transfer part, so impulsive
Lambert arc can be readily computed from a given departure date and a time of flight (TOF). The
total delta-v is the sum of the two ones at both ends, denoted by ∆vvv1 and ∆vvv2, respectively, as
shown in Figure.4. An extensive search over different combinations of the departure date and TOF is
implemented respectively for L1 and L2, since the objective of this step is to find among innumerous
candidates the best Lambert arc with the minimum total delta-v, as well as the associated TOF (the
same as the final time epoch) denoted by tmin. As will be shown in the following, tmin will be used as
a good reference for the further refinement of the patch time.
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3.2.2 Step 2: Ballistic capture construction
Now the focus is directed to the first periapsis of the Earth (Pi.c. in Figure.3), where the construction
of the ballistic capture trajectory is initialized by following the procedure preliminaryly described in
hyeraci2010 and later generalized in luo2014a. For the completeness of the work, it is briefly outlined
as follows.
In the first place, the spacecraft state at Pi.c. (t = t0) can be computed from the initial condition (i.c.)
defined by the classical orbit elements in the BME@t0 frame. Combining the sampling of each ele-
ment within its valid range will generate a large population of i.c.’s. Note that the orbit inclination i0
has been specified for a given mission, and the true anomaly f0 always equals zero because Pi.c. is
located at the periapsis.
Each i.c. of the spacecraft is propagated by both forward and backward integration using Eq. (3). We
note that t0 plays an essential role in constructing the capture orbit because it correlates with different
relative configurations of the Moon, the Earth and the Sun, whose gravities are all considered in the
numerical integration. Based on tmin, the value of t0 is taken from a discretized time span, therefore
adding one more dimension to the problem of ballistic capture orbit design. According to the follow-on
behaviors in both directions, the i.c.’s are classified into different sets [22, 31]. The related two ones
are:

1) Weakly Stable Set, Wn (n ≥ 1): whose orbits perform n complete revolutions about the Earth
without impacting with or escaping from it when integrating forward in time;

2) Unstable Set, X−1: whose orbits escape from the Earth without completing any revolution
around or impacting with it when integrating backward in time.

For the backwards integration leg, we introduce an escape criterion, which judges the spacecraft
having escaped from the Earth at time te (the associated location denoted by Pp) if the following two
conditions are simultaneously satisfied [22],

H(te)> 0, r(te)> RSOI, (6)

where RSOI is the radius of the sphere of influence (Table 1) and H is the Kepler energy of the
spacecraft with respect to the Earth,

H(t) =
v2(t)

2
−

Gmp

r(t)
. (7)

The function H(t) is not constant due to the perturbation from the Moon and the Sun.
The capture set, i.e., the set of i.c.’s associated to ballistic capture orbits, is obtained by

C n
−1 = X−1∩Wn. (8)

Starting from the i.c. in C n
−1, a spacecraft can: 1) escape the Earth backwards in time (X−1), or

equivalently approach it in forward time, and 2) perform at least n natural revolutions about the Earth
(Wn); refer to hyeraci2010 and luo2014a for details.
In general, the capture set C n

−1 will contain more than one point, while solutions with regular post-
capture behaviors are more favorable as they can offer multiple repetitive insertion conditions. A
stability index S has been introduced in luo2014a, that is

S =
tn− t0

n
, (9)

where tn is the time at which the n-th revolution is accomplished. Physically speaking, the value of S
depicts the mean orbital period in n revolutions [22, 31, 32].
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3.2.3 Step 3: Low-thrust trajectory conversion
Each solution in the capture set corresponds to an escape point, Pp, which will be used as the
patch point that connects the heliocentric trajectory and the ballistic capture part. Two-body Lambert
algorithm is used for a second time to solve for the trajectory stretching from the asteroid to the patch
point, Pp. The total delta-v is denoted by ∆va.
All the candidates will be assessed in terms of fuel consumption and the post-capture stability, e.g.,
stability index S defined in [22], which is relevant to the risk assessment, such as the hazards asso-
ciated to single-point injections or a broken-down component (see [24]). The output of the process is
the best Pp, as well as its associated time, te.
Using the obtained impulsive Lambert arc as an initial guess, a method based on Pontryagin’s max-
imum principle is adopted to convert it to a low-thrust trajectory; see, e.g., russell2007b, jiang2012,
zhang2015. Since the low-thrust orbit design falls out of the scope of this work, only the optimization
results will be given in Sec. 4..

3.3 Phase II: Aerobraking and LEO insertion
The objective of aerobraking is to diminish the energy of the spacecraft and, at the same time, to
insure a given orbital inclination at the final LEO insertion. An initial maneuver is performed at the
first periapsis (i.e., Pi.c. at time t0) in order to reduce the apoapsis altitude of the post-capture orbit, as
shown in Figure.5. Thereafter, ABMs at the apoapsis, if necessary, will be executed to manage the
parameters during atmospheric passages. Chemical impulses or a yawing angle of solar wings are
introduced to nullify the inclination discrepancies, which form two aerobraking modes.
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Figure 5 – Aerobraking and LEO insertion.

3.3.1 Mode 1: Inclination targeting by apoapsis maneuver
In the section, we present the difference of performing aerobraking during ballistic capture transfer
with traditional aerobraking missions. As was done in the past Venus and Mars aerobraking missions,
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an insertion maneuver is used to capture the spacecraft into a highly elliptical orbit (e.g., apoapsis and
periapsis altitude of 54,025.9 km and 262.9 km for the Mars Global Surveyor), where the perturbing
gravities can be nearly ignored [23]. In comparison, ballistic capture gently changes the Kepler energy
and places the spacecraft on an elongated and weakly stable orbit by natural multi-body dynamics.
To be specific, the post-capture apoapsis altitude reaches up to 1.5 SOI for the Sun-Mercury or Sun-
Mars systems [41, 22]. As also noted in [22], the spacecraft can be deployed into a cislunar orbit after
a close lunar swingby, although the approach condition is not trivial. Numerical experiments in the
Earth-moon-sun system show that perturbing attractions will greatly increase the amount of ABMs,
especially due to the Moon. For this reason, a periapsis maneuver ∆v0 at t0 is suggested in order to
brake the spacecraft into the near-Earth space. This operation is also beneficial to shorten the total
capture time. This maneuver follows the inverse velocity vector. Thus, we have

∆v0 =

√
2
r0
− 1

0.5(r0 + ra0)
− v0, (10)

where ra0 is the required apoapsis distance after performing ∆v0. The updated mass is calculated by
m1 = m0 exp −∆v0

c , where m0 and m1 are masses before and after the maneuver, respectively, and c is
the exhaust velocity of the chemical propulsion system.
After ∆v0, a series of ABMs at apoapses are actualized to control the impact on solar panels, e.g.,
dynamic pressure in this paper. Throughout these ABMs, the maximum dynamic pressure is main-
tained within a safe range. Without loss of generality, a fixed maximum dynamic pressure is adopted,
denoted by qmax. Special attention is paid to the orbital inclination with respect to the Earth because
it involves the retrieval of the sample. Two strategies are developed and implemented for inclina-
tion management; the first one is based on chemical impulses, and the second one is based on the
attitude control (i.e., maneuvers are no longer required).
According to the Gauss’s equations, a maneuver vertical to the orbit plane is required to change the
inclination for a small ∆i

∆vi = ∆i
na2
√

1− e2

r cosu
(11)

where n, a, and e are the angular velocity, semi-major axis, and eccentricity, respectively, and u=ω+ f
is the argument of latitude (see Figure.??). For simplicity, the inclination maneuvers ∆vi are also
implemented at apoapses, where the ABMs are performed. To minimize ∆vi of (11), a value of ω close
to 0 or π is preferred. This echoes with the condition i) in Sect. ??. Therefore, the total ABM at the
kth apoapsis is given by ∆vck =

√
(∆v2

rk +∆v2
ik), where ∆vrk and ∆vik are the in-plane and out-of-plane

maneuvers at the kth revolution, respectively. Note that ∆vik is delimited by a maximum inclination
correction, ∆imax. Appendix A derives the predicted aerobraking time from an initial apoapsis distance
to a specified value by two-body assumptions (see Eq. (A12)).

3.3.2 Mode 2: Inclination targeting by aerodynamical force
A second method is proposed to economize on fuel. Recall the four configurations of solar wings
in Figure.2. Case (c) and (d) will bring an out-of-plane aerodynamic force. As stated in Sect. 2.2
, only case (c) is considered for simplicity. Thus, the derivative of the inclination with respect to time
is obtained by the Gauss’s equations

di
dt

=

√
1− e2 cosu

na(1+ ecos f )
aan, (12)

where aan is the drag component due to the yawing angle θ . Analytical equation (B4) in Appendix
B show that the derivative of the inclination with respect to the time increases with the decrease of
the semi-major axis. This reminds us that an efficient inclination correction strategy is to activate the
yawing angle θ at the ending of aerobraking, where the semi-major axis is minimum. We assume
solar wings are rotated to a non-zero θ at a semi-major axis aθ and are fixed at θ until the required
semi-major axis a f is achieved. The in-plane and out-of-plane motions are coupled by the value of the
yawing angle θ . The best situation is that the aerobraking terminates at a f ; meanwhile, the inclination

9
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arrives the required value, say, i f (see Eqs. (B8) and (B9)). According to (B10), the value of aθ varies
with the yawing angle θ if iθ is given. The flight time from iθ to i f is minimized using an optimization
procedure (see from Eq. (B13) to Eq. (B16) in Appendix B).
The flowchart of constructing aero-ballistic capture orbits is summarized in Algorithm 1. Note that the
first inclination correction strategy is activated until a critical apoapsis distance rai , where perturbing
attractions is negligible and the inclination is comparatively stable (see Sect. 4.for more details).

Algorithm 1 Algorithm to derive aero-ballistic capture orbits.
1: θ = 0, k = 1
2: Set inclination control strategy (IncMode = 1 and 2 for chemical impulses and attitude controls, respectively
3: Calculate ∆v0 with (10), integrate (3) until next apoapsis, and obtain apoapsis distance rak
4: while rak > r f do . r f : apoapsis distance of the final orbit
5: Compute orbital elements of kth apoapsis, e.g., aak, eak, iak, and ωak
6: if IncMode = 1 and rak < rai and |i f − iak|> δ i f then . δ i f : allowable tolerance; see Sect. 4.
7: if |i f − iak|> ∆imax then
8: ∆ik = sign(i f − iak) ·∆imax
9: else

10: ∆ik = i f − iak
11: end if
12: Compute ∆vik with (11), where uak = ωak +π . fak = π

13: else
14: ∆vik = 0
15: end if
16: if IncMode = 2 and rak < 0.1 SOI then . 0.1 SOI is chosen by empirical analyses
17: Calculate an optimization θ̄ and its corresponding semi-major axis a

θ̄

18: if aak < a
θ̄

then
19: Update the yawing angle θ with θ̄

20: Set IncMode = 0 . close the optimization algorithm from now on
21: end if
22: end if
23: Target required qmax for next atmospheric passage with a ABM ∆vrk
24: Update the apoapsis velocity with ∆vvvck, where ∆vvvck = ∆vvvik +∆vvvrk
25: Update the mass after ∆vck by Tsiolkovsky’s rocket equation
26: Integrate (3) until next apoapsis
27: k = k+1
28: end while

4. Simulations
A spacecraft with the following configurations is used in the simulation: 1) the initial mass m0 = 600 kg
(at the asteroid departure epoch); 2) the reference area S = 25 m2 with cases (a) and (c) of Figure.2;
3) the drag coefficient Cd0 = 1.95; 4) a suit of impulse engines with Isp = 300 s and Tmax = 240 N and
a suit of low-thrust engines with Isp = 3,000 s and Tmax = 0.3 N are equipped for trajectory correction
maneuvers and interplanetary transfers, respectively.
The spacecraft is assumed to return samples from the asteroid 1991 VG, which has been proved
as an easily retrievable object [11, 12]. The states of 1991 VG are obtained from the HORIZONS
Interface of JPL Solar System Dynamics2; see Table 3. The parameters of other bodies involved are
extracted from DE405 ephemeris. The Earth is considered as a standard sphere. The atmospheric
exponential model is fitted from the 1976 U.S. Standard Atmosphere, i.e., ρ0 = 1.063× 10−8 kg/m3,
h0 = 125 km, and H = 6.78 km [15]. These parameters are only available for a short altitude range
near h0. The atmosphere is deemed to rotate with the Earth. The maximum dynamic pressure is
qmax = 0.8 N/m2, which is slightly higher than the settings in [23, 24]. The critical apoapsis distance
rai = 30 Re and ∆imax = 1 deg for each correction. The scenario that injects the spacecraft into the
circular orbit of ISS is used and thus, i f = 51.6 deg and r f , a f = Re +h f (δ i f = 0.05 deg and h f = 360
km).
Following the procedure of Sect. ??, we can obtain the rough return epochs firstly, as shown in
Figure.6. Only these two-impulse orbital transfers that can be converted to low-thrust trajectories are

2see http://ssd.jpl.nasa.gov/horizons.cgi/ [retrieved 12 January 2015].
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Table 3 – Orbital elements of 1991 VG at JD 2457023.5 in the Earth Mean Equator and Equinox
J2000.0 frame.

1991 VG Semi-major Eccentricity Inclination RAAN Pericenter Mean anomaly
axis, AU deg deg anomaly, deg deg

Value 1.02696 4.91488E-02 2.38764E+01 3.43399E+00 9.53927E+01 3.95188E+01

presented (refer to Eq. (??)). The total maneuvers ∆va to L1 and L2 points of the Sun-Earth system
are illustrated by colored bars. Four epochs with local minimum maneuvers (tmin) are labeled in
Figure.6, i.e., 0 and 180 days from JD 2458092.5 for approaching by L1 and −46 and 181 days from
JD 2458092.5 for approaching by L2. The epoch JD 2458092.5 corresponds to 5 December 2017.
Both Lagrangian points are placed at a fixed distance of 1.5 million km from the Earth, in despite of
the pulsating Sun-Earth distance.
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Figure 6 – Cost contours of two-impulse orbital transfer from 1991 VG to L1 and L2 of the Sun-Earth
system (filtered by Eq. (??), where ct = 0.6 and m = m0). The horizontal axis represents the time that

arrives L1 or L2.

Analyses show that the spacecraft will spend 1/8∼ 1/4 revolution period from the neighbourhood of
Lagrangian points to the periapsis [39]. For this reason, the initial epoch t0 for generating ballistic
capture is tmin ≤ t0 ≤ tmin + Te/4, ∆t0 = Te/8, where Te is the period of the Earth around the Sun
(Te = 365.25 days). It is remarked that the Earth’s atmosphere is used to decelerate the spacecraft.
A small r0 is essential so not to waste propellant for periapsis corrections. The parameters of initial
conditions are: 1) the periapsis distance r0 ∈ [1Re+ε,1.2Re] with spacing ∆r0 = 10 km, where ε = 1 km;
2) the osculating eccentricity e0 = 0.98 and 0.99; 3) the inclination i0 = i f ; 4) the RAAN Ω0, 0≤Ω0 < 360
deg, ∆Ω0 = 45 deg; 5) the argument of periapsis ω0, 0≤ ω0 < 360 deg, ∆ω0 = 0.5 deg. The revolution
number for the post-capture phase is n = 6, as was used in [41, 22]. This provides at least 5 more
opportunities for orbit insertions, in case of any failure at t0.
The transfer maneuvers from 1991 VG to the escape point P of each solution in C 6

−1 is recalculated.
As presented in Eq. (??), the index J1 consists of two portions: ∆vl and ∆vc, where ∆vl relies on
the value of ∆va to the point P and ∆vc depends on ∆v0 and subsequent ABMs ∆vc1, ∆vc2, etc. The
value of ∆v0 is determined by r0, v0, and ra0 according to Eq. (10), where r0 and v0 are relevant to
the so-called “stability index S ” (a quantitative index that describes the post-capture stabilities; see
[22] for details). Figure.7 shows a capture set C 6

−1 with values of t0 = 2458092.5 JD, e0 = 0.98, and
Ω0 = 315 deg. The value of ∆va of each solution in C 6

−1 is the minimum transfer maneuver from 1991
VG to its corresponding point P when the departure time varies. As noted in Figure.7, sample A has
a minimum stability index, sample C has a minimum ∆va, and sample B reaches a trade-off between
stability index and ∆va. Solutions A, B, and C are chosen as candidates of the aero-ballistic capture.
Table 4 shows fuel costs and final orbital parameters of the samples A to C with different insertion
strategies. An impulsive strategy is presented for comparison and only the sample B is taken as
an example due to their similarities. The spacecraft arrives a periapsis altitude of 181 km at t0. An
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Figure 7 – Stability index vs. two-impulse transfer maneuvers to the switch point P.

initial maneuver ∆vl injects it into a transfer orbit of 181×360 km and then an apoapsis maneuver ∆v f

achieves the final circular orbit (360×360 km and i f ). The capture time ∆tc is counted from t0 to the
epoch of ∆v f , i.e., a half period of the transfer orbit and ∆t is the time from the asteroid departure
to the epoch of ∆v f . Two inclination modes are presented in Table 4 and the capture maneuver
∆vc = ∆vr +∆vi +∆v f . Note that qmax of the final aerobraking revolution may be less than 0.8 N/m2

for arriving an apoapsis altitude of 360 km. In Table 4, the solutions A and C has a maximum and
minimum ∆vl, respectively; however, the solution B has a minimum total ABMs and thus has maximum
residual masses for both modes. Also, the second inclination control strategy can save the fuel cost
at the expense of the flight time; i.e., m f /m0 increases from 0.866 to 0.872 and the aerobraking time
is elongated for 2 days, taking the sample B for instance. The final inclination meets the requirement.
This also demonstrates the feasibility of the analytical derivations and approximations in Appendices
A and B.

Table 4 – A comparison of different insertion strategies

Sample Strategy
Maneuvers (m/s) Flight time (days) m f

m0

Science orbit
∆vl ∆vr ∆vi ∆v f ∆t ∆tc h f , km i f , deg

B Impulse 1,495.8 3,121 – 51.9 206.0 0.031 0.323 360 51.60
A

Mode-1
1,590.0 206.1 35.4 70.8 430.0 221.0 0.857

360
51.61

B 1,495.8 184.0 37.3 70.8 429.1 223.1 0.866 51.62
C 1,485.9 219.0 38.5 70.8 426.6 220.6 0.856 51.63
A

Mode-2
1,590.0 205.5 0 70.8 432.4 223.4 0.863

360
51.60

B 1,495.8 183.1 0 70.8 431.2 225.2 0.872 51.61
C 1,485.9 218.5 0 70.8 429.2 223.2 0.862 51.60

Figure.8(a) shows the trajectory from the asteroid departure to the epoch that 6 post-capture revolu-
tions are accomplished (the sample B). The geocentric ballistic capture and ABC orbits are presented
in Figure.8(b). The apoapsis distance of ABC orbit is greatly reduced due to ∆v0. This can be clearly
recognized in Figure.8(d). The mass history is illustrated in Figure.8(c), where ∆v0 is larger than the
subsequent ABMs.
More details are reported in Figure.9. The solar panels are rotated to an optimized yawing angle θ̄ for
Mode-2 (see Figure.9(c)). Figure.9(d) shows that the variation of RAAN and argument of periapsis
can be ignored (see Eq. (B5) and (B6) in Appendix B).
As previously mentioned, the value of ∆v0 depends on ra0, e.g., an initial maneuver of 83 m/s inserts
the spacecraft into an orbit with an apoapsis distance of 40 Re (see Figure.9(a)). In principle, a lower
ra0 is helpful to reduce third-body perturbations and to shorten the ABC duration; however, it requires
a higher ∆v0 and more fuel consumption.
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5. Conclusions
This paper studies the method of constructing low-thrust, low-energy transfers from a near-Earth
asteroid to a low-Earth orbit. The transfer consists of a heliocentric transfer and an aero-ballistic
capture. The asteroid departure epoch is estimated by solving a two-body Lambert problem. Can-
didate ballistic capture orbits are obtained by an intersection manipulation. Preferable solutions are
selected by several performance indices. Two inclination control strategies are introduced. Numerical
simulations demonstrate the feasibility of the whole algorithm. The method proposed can be applied
in the asteroid sample return or even asteroid retrieval missions.
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Appendix A: Analytical Prediction of Aerobraking Time
The reduction of the semi-major axis a per periapsis passage can be found in [42]. It is briefly
recalled for derivations in Appendix B. The derivative of a with respect to the time is formulated as
follows according to the Gauss’s equations

da
dt

=−2
√

1+2ecos f + e2

n
√

1− e2
aa. (A1)

The Earth’s rotation and wing’s yawing angle is not considered. Substituting the Kepler’s equation
and the Vis Viva equation into (A1), we obtain the derivative of a with respect to the eccentric anomaly
E

da
dE

=−ρAa2

[
(1+ ecosE)3

1− ecosE

] 1
2

, (A2)

where A = Cd0S/m. Assume for simplicity that the reference altitude h0 is exactly the altitude at
pericenter and ρ0 is the density at pericenter. Reusing the Kepler’s equation, the exponential model
is rearranged in terms of E as follows:

ρ = ρ0 exp [−κ(1− cosE)] , (A3)
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where κ = ae/H. Hence,

da
dE

=−ρ0Aa2 exp [−κ(1− cosE)]

[
(1+ ecosE)3

1− ecosE

] 1
2

. (A4)

The fact that the aerobraking occurs in the vicinity of pericenter for an highly elliptic orbit. The eccen-
tric anomaly E is a small quantity close to 0. Thus, we have

1− cosE = 2sin2 E
2
≈ E2

2
. (A5)

Integrating Eq. (A4) in combination with (A5), we obtain the semi-major axis variation over one revo-
lution

∆a =
∫ 2π

0

da
dE

dE

≈−ρ0Aa2
∫ 2π

0
exp
(
−κ

E2

2

)[
(1+ ecosE)3

1− ecosE

] 1
2

dE

≈−ρ0Aa2

[
(1+ e)3

1− e

] 1
2 ∫ ∞

−∞

exp
(
−κ

E2

2

)
dE.

(A6)

Since
∫

∞

−∞
exp(−x2) =

√
π (Gaussian integral), then clearly,

∆a≈−ρ0Aa2

[
(1+ e)3

1− e

] 1
2
√

2π

κ
. (A7)

An equivalent conclusion was presented in [23, 43, 44]. Suppose now that we are interested in the
secular prediction of semi-major axis. The average value of ∆a over one orbit reads

da
dt

=
∆a

2π
√

a3/µc

=− ρ0Cd0S
m

[
µcH (1+ e)3

2πe(1− e)

] 1
2

.

(A8)

The pericenter density ρ0 is, apparently, relevant to the maximum dynamic pressure Pmax

ρ0 =
2qmax

v2
p

=
2qmax

µc(
2
r0
− 1

a)
. (A9)

Thus,
da
dt

=−

√
2H
πµc

qmaxCd0S
m

[G (a)]−1 , (A10)

where G (a) is a function of a, as

G (a) =
√

a− r0

ar0(2a− r0)
. (A11)

Simulations show that the periapsis distance varies slightly from a revolution to the next one, so that,
r0 is taken as a constant during aerobraking. Therefore, Eq. (A11) is a function that only depends on
the value of a. Rearranging (A10) and integrating both sides, we obtain the aerobraking time from an
initial ai to a final a f ∫ a f

a0

G (a)da =−

√
2H
πµc

qmaxCd0S
m

∆t. (A12)

As no explicit integral for G (a) is found, numerical technology is used to solve (A12).
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Appendix B: Optimization of Yawing Flight Time
When the yawing angle θ 6= 0, the drag component along the orbital normal vector is written as

aan =aa cos2
θ sinθ

=
cµcρA(1+2ecos f + e2)

2a(1− e2)

(B1)

by using configuration (c) of Fig. 2, where θ =α and c= cos2 θ sinθ . Following the manner of Appendix
A, we have, from Eq. (12)

di
dE

=
ρ0caAcosω(1+ ecosE)(cosE− e)exp [−κ(1− cosE)]

2
√

1− e2

−ρ0caAsinω sinE(1+ ecosE)exp [−κ(1− cosE)]
2

.

(B2)

As sinE is an odd function, the integral of the second term in the right-side of (B2) is zero. As was
done in (A6), the inclination change over one orbit is approximated by

∆i =
∫ 2π

0

di
dE

dE

≈ρ0caAcosω

∫ 2π

0

(1+ ecosE)(cosE− e)

2
√

1− e2
exp
(
−κ

E2

2

)
dE

≈ρ0caAcosω

√
1− e2

∫
∞

−∞

exp
(
−κ

E2

2

)
dE

=ρ0caAcosω

√
1− e2

√
π

2κ
.

(B3)

The average value over one loop is of the form

di
dt

=
ρ0Cd0S sinθ cos2 θ cosω

am

√
µcH (1− e2)

πe
. (B4)

Similarly, the derivatives of RAAN and argument of periapsis are obtained as

dΩ

dt
=

ρ0Cd0S sinθ cos2 θ sinω

amsin i

√
µcH (1− e2)

πe
(B5)

and
dω

dt
=− cos i

dΩ

dt
. (B6)

Obviously, the inclination can be decoupled from Ω and ω when ω = 0 or π. In this case, dΩ

dt = dω

dt = 0.
Besides, dω

dt = 0 when i = π/2. The derivative of a is directly written by multiplying (A8) with cos3 θ , as

da
dt

=− ρ0Cd0Scos3 θ

m

[
µcH (1+ e)3

2πe(1− e)

] 1
2

. (B7)

Note that da
dt cubically decreases with the increase of θ , but is almost stable for a fixed θ during

aerobraking, no matter θ = 0 or θ 6= 0.
The goal now is to calculate the semi-major axis aθ , where the solar wings begin to be yawed to θ .
The inclination associated with aθ is iθ . Dividing Eq. (B4) by Eq. (B7) and rearranging it, we have

di =− tanθ cosω(1− e)
2a(1+ e)

da. (B8)

Integrating both sides of (B8) and substituting r0 = a(1− e), we derive∫ i f

iθ
di =− r0 tanθ cosω

2

∫ a f

aθ

1
2a2− r0a

da, (B9)
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wherein ω and rp is considered as constants. Solving the integrals in (B9), we have

i f − iθ = tanθ cosω

[
tanh−1

(
4a f

r0
−1
)
− tanh−1

(
4aθ

r0
−1
)]

. (B10)

Based on Eq. (B10), infinite values of aθ and their corresponding θ can be found for a specific
∆i , i f − iθ . The yawing angle that requires a minimum flight time is exactly the solution expected,
say, θ̄ . For ease of notation, we will denote

σ =−

√
2H
πµc

qmaxCd0S
m

(B11)

and

F (aθ ) = tanh−1
(

4a f

r0
−1
)
− tanh−1

(
4aθ

r0
−1
)
. (B12)

Referring to Eq. (A12), we can derive the aerobraking time when a yawing angle is imposed, as

∆t =

∫ a f
aθ

G (a)da

σ cos3 θ
. (B13)

Thus, the derivative of ∆t with respect to aθ is obtained by the chain rule

d∆t
daθ

=
3sinθ

∫ a f
aθ

G (a)da

σ cos4 θ

dθ

daθ

− G (aθ )

σ cos3 θ

=
1

σ cos3 θ

[
3tanθ

∫ a f

aθ

G (a)da
dθ

daθ

−G (aθ )

]
︸ ︷︷ ︸

L (aθ )

,
(B14)

where dθ

daθ
is calculated from (B10)

dθ

daθ

=− 4∆icosω

r0 [∆i2 +F 2 (aθ )cos2 ω]

[(
4aθ

r0
−1
)2
−1
] .

(B15)

Since |θ | < π/2 and σ 6= 0, the flight time arrives its extremum (i.e., minimum) when and only when
L (aθ ) = 0. Substituting (B15) into L (aθ ) = 0, we have

L (aθ ) =−
12∆i2

∫ a f
aθ

G (a)da

r0F (aθ ) [∆i2 +F 2 (aθ )cos2 ω]

[(
4aθ

r0
−1
)2
−1
] −G (aθ )

=0.

(B16)

As previously stated, no explicit integral is obtained for G (a). Again, numerical methods, e.g., the
Newton’s iteration, are used to solve a aθ̄ that let L (aθ̄ ) = 0 and ∆t be minimum.
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