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Abstract 

 

This study introduces a deep learning approach integrated with Computational Fluid Dynamics (CFD) for 

efficient prediction of aerodynamic turbulent flow fields, particularly for wing section geometries. Utilizing 

minimal datasets, the research leverages the PARSEC method for precise airfoil geometry extraction, 

significantly enhancing prediction speed and accuracy. This method demonstrates versatility and robustness 

in predicting complex flow patterns, showcasing potential for diverse aerodynamic applications. 
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1. Introduction 

 

In the field of aerodynamics, the use of Computational Fluid Dynamics (CFD) is common for 

capturing complex flow patterns, but its computational demands have led to the exploration of 

surrogate models [1]. These surrogate models, however, often lack detailed flow field data crucial 

for advanced design. One significant trend is replacing CFD solvers with neural networks, enabling 

faster simulations f for aerodynamics coefficient [2], pressure distributions [3], or entire flow field [4]. 

While structured grid representations simplify data processing, real world scenarios often require 

unstructured grids [5]. To bridge this gap, methods like pixelation have been used to project 

scattered CFD data onto Cartesian grids [6]. Convolutional Neural Networks (CNNs) are particularly 

notable in this shift, effectively substituting computationally intensive parts.  However, this approach 

has limitations in precision and efficiency. Furthermore, they often encounter difficulties in accurately 

capturing subtle flow variations [7]. Another promising approach is viewing CFD data points as a 

point cloud rather than pixels, offering advantages in predictive accuracy and adaptability to complex 

geometries [8]. Despite these innovations, challenges remain in accurately predicting flow fields for 

diverse geometric conditions. 

This study introduces a method that leverages minimal datasets for predicting flow fields using neural 

networks, integrating the geometry construction method of PARSEC [9] and CFD data extraction. 

The goal is to enhance accuracy in predicting flow fields for varying geometric conditions while 

optimizing dataset preparation and the machine learning model's structure for the training process. 

Additionally, this study emphasizes the adaptability of deep learning in addressing complex 

aerodynamic scenarios such as turbulence. 

 

2. Methodology 
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The current approach is divided into two sections: the geometry dataset and the flow field dataset. 

In the first section, to extract the geometry, the PARSEC method is employed instead of traditional 

image-based methods. A major benefit of this approach is that it avoids the distortion problems 

commonly faced in image-based techniques. Additionally, the number of parameters needed to 

define a wing section using PARSEC is fewer compared to universal methods such as class shape 

function transformation (CST) [10] and Free Form Deformation (FFD) [11]. 

In the second section, the flow field values preserved at the control volume of the computational grid 

are extracted without modifications, eliminating the need for flow field images. This ensures that the 

training and prediction accuracy remains closely aligned with CFD results. As shown by Nemati and 

Jahangirian [12], these features enable the model to predict flow fields in compressible turbulence 

scenarios with fewer data compared to other methods. Their findings, for a fixed geometry under 

various flow conditions, demonstrate the ability to predict the flow field with high accuracy. However, 

to predict different geometric conditions, geometric parameterization is required to generate an 

accurate shape with the fewest parameters, as mentioned in the first part. 

Since predicting the flow field around variable geometries is a primary objective of this study, we will 

use the parameterization method suggested in Ref. [12] for this purpose.  

2.1  Geometry Parameterization 

Using a geometry parameterization method involves three essential principles: efficiency, reliability, 

and adaptability. Firstly, to achieve optimal computational performance, the number of parameters 

should be minimal. Secondly, the method should consistently produce shapes that are both 

physically and geometrically logical. Thirdly, the model must be sufficiently adaptable to generate a 

wide range of geometries. While methods with numerous design variables can represent intricate 

shapes and potentially yield innovative designs, they also increase the computational cost due to the 

expanded design space. Additionally, adding more parameters can sometimes result in the creation 

of shapes that lack physical realism. 

The PARSEC method uses a polynomial function with only few defining parameters for wing section 

representation. A unique advantage of PARSEC is its inclusion of physical geometric attributes, such 

as the location and curvature of the airfoil’s crest, into its design variables. The PARSEC geometry 

parameterization method consists of 10 input parameters is used in this work (figure 1).  

These parameters encompass the leading edge radius, rLE, upper and lower crest locations (X UP,Y 

UP, X LO,Y LO), upper and lower curvatures (Y XXUP,Y XXLO), trailing edge position (Y TE),and direction 

trailing edge wedge angles (αTE ,β TE). 

 

 

Figure 1 – PARSEC airfoil 
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The airfoil’s geometry is represented by the linear blend of shape functions. 

                                                                ZK= ∑ an,k
6
n=1 X

k

n-1

2  ,  k=1,2                                                    (1) 

   

According to the aforementioned equation, the airfoil is segmented into its upper (k = 1) and lower 

(k = 2) sections, each developed independently. In this method, with 10 parameters, it’s possible to 

accurately model the geometry for a wide range of desired wing sections which can be utilized for 

producing input geometries for the neural network. 

 

2.2 Neural Network Architecture 

In this section, the architecture of the neural network designed for predicting multiple flow field 

variables, such as Mach number, pressure, u and v velocity components, and turbulent kinetic 

energy, within a unified framework is introduced. This neural network employs a loss function 

calculated independently for each flow field. Equation 2 presents the Mean Squared Error (MSE), 

which is used as the loss function. 

                                                             MSE=
1

n
∑ (Ei-Pi)

2n
i=1                                                                  (2) 

Here, n denotes the total number of data points for each output, E represents the exact CFD data, 

and P signifies the predicted values. This setup allows the neural network to handle inputs (geometry 

parameters) and outputs (free stream inputs) and simultaneously output variables, matching the 

complexity of the problem. The neural network architecture consists of five dedicated input layers, 

each associated with a specific flow field variable, Mach number, pressure, velocity components and 

turbulent kinetic energy. The ReLU (Rectified Linear Unit) activation function is employed for 

nonlinearity and efficiency. During training, 17% validation split is utilized, alongside early stopping 

and model check pointing. The training process involves a maximum of 2000 epochs and a batch 

size of 60, ensuring effective learning. Batch normalization, employed in these layers, introduces 

nonlinearity and improves the learning process. By normalizing the outputs of each layer, it plays a 

crucial role in enhancing the stability of the training process. This is particularly vital in addressing 

the challenge of internal covariate shift, a common issue when input variables exhibit significant 

differences in scale, thereby boosting the model’s overall performance. 

 

2.3  Dataset preparation 

For effective neural network training, selecting an appropriate dataset is vital. This study uses the 

Latin Hypercube Sampling (LHS) [13] method, a stratified sampling technique ensuring uniform 

representation across variable ranges. LHS is particularly advantageous in models with multiple 

variables, as it captures extreme behaviors and complex interactions better than simple random 

sampling. The study considers two main input parameters: 

1- Geometrical Representation: PARSEC method based on standard form are employed to evaluate 

neural network training efficiency. 

2- Flow Inputs: This includes the Mach number (0.2 to 0.5) and the angle of attack (1 to 5 degrees). 

After determining the geometry, a computational grid is generated using a dynamic mesh method, 

starting with an initial network around a reference airfoil. As the geometry evolves, the grid adapts 

accordingly. The dynamic mesh method maintains consistent cell numbers by shifting cell centers, 

allowing for quick grid reconstruction. Linear and torsional spring analogies are used to enhance 

spatial resolution, numerical accuracy, element angles, and overall computational robustness.  

The final computational grid, once established, stores flow parameters within its cells, forming the 

basis for neural network training outputs. 

In this study, the compressible Navier–Stokes equations are solved using a finite volume, cell 

centered implicit scheme based on the methodology described in Ref. [14] for unstructured grids. 

Additionally, a two-equation 𝑘 − 𝜖 turbulence model is applied in combination with the Reynolds 

averaged Navier–Stokes equations. 
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3. RESULTS 

 

The training process utilizes TensorFlow with Keras, running on top of Python’s TensorFlow library 

[15]. Figure 2 illustrates a typical computational grid used in this study, consisting of 5436 

computational cells. Cell values will be used as the neural network's output. The dataset for training 

the neural network comprises 1300 samples, with 81% allocated to training, 17% to validation, and 

2% to testing. After training the network, the mean square error for the trained neural network on the 

flow field characteristics has reached the order of 10−5. For the kinetic energy, this error has even 

decreased to 10−7.  

Training data is used to train the neural network to recognize patterns and make predictions. 

Validation data evaluates model performance during training and helps fine tune model parameters. 

Test data assesses the model's performance on new, unseen data after training and validation, 

ensuring it generalizes well to new examples. The airfoil parameters are generated based on the 

range specified in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1: Training range of input parameters. 

 

Parameters      Lower bound Upper bound 
 

rLE 0.02 0.09 

Xup 0.4 0.54 

Yup 0.05 0.08 

Yxxup -0.61 -0.41 

αTE 7.73 17.7 

βTE 6.00 16.0 

Xlo 0.4 0.54 

Ylo -0.08 -0.04 

Yxxlo 0.58 1.00 

ZTe 0.0 -0.1 

Mach number 0.1 0.5 

Angle of Attack 

(degrees) 
1 5 

 

 

 

 

 

Figure 2 – Computational grid around testing airfoil 
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Figure 3 displays the MSE results for all flow fields. The neural network training took around 16.30 

hours for 1250 samples. With early stopping activated at epoch 1700, training concluded at epoch 

1885. All flow variables, except for turbulent kinetic energy, showed similar slopes on the graph. The 

values of turbulent kinetic energy decreased more rapidly due to their smaller magnitude. 

Table 2 presents the prediction results. The Mach number and angle of attack for this test are 0.34 

and 3.5 degrees, respectively. The trained network can predict all flow variables for a new case 

within the range of the trained parameters in approximately 3 seconds, which is 227 times faster 

than CFD. 

Figure 4 displays the predicted contours for the flow field around a testing geometry beside the CFD 

computed results, emphasizing the network's effectiveness in replicating the flow field distributions 

and capturing essential flow features. In this figure, the absolute errors between the CFD and 

predicted results are also presented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 2: Prediction results of test case at M = 0.34 and AOA = 3.5◦. 

 

Variables 

CFD 

time 

( s )  

Prediction 

time 

(s) 

MSE 

(10−4) 

 

Speed up 

 

M 

683 3 

5.15 

227 

P 6.18 

U 5.72 

V 1.11 

K 0.003 

 

 

In certain regions of the pressure field and kinetic energy contours, some discrepancies are observed 

between the CFD results and the predictions. To visualize the extent of the scatter, the regression 

results of the predicted fields shown in Figure 5 also indicate some fluctuations compared to the CFD 

results. Nevertheless, there is a very good overall agreement between the results. 

The method used demonstrates that the constructed model has the capability to predict a wide range 

of arbitrary airfoil sections. This approach can train the process with various flow input parameters 

and establish their relationship with the flow field, which is the output of the neural network. One of 

the main features of this method is its ability to train with a very small amount of training data. 

Figure 3 – Training loss over epochs for random test Case, 

involving Mach number, pressure, u, v, and k flow fields. 
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Additionally, due to the direct use of CFD data in the training dataset, the predictions are also made 

in the order of the original results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Computed and predicted results for a testing airfoil at M= 0.34 

 and AOA= 3.5 degrees. 
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