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Abstract

The UAV has been used to assist and replace people to execute dirty, boring, and difficult missions due to low
cost, high mobility, and unmanned feature. One of the important technical issues form various engineering
fields is finding an optimal path from start point to end point and designing a controller to manipulate it fol-
lowing the path in an interactive environment. A large amount of research has been devoted to improving the
autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuver-
ing decision-making policy becomes one of the key issues for improving the autonomy of UAV during executing
missions. In this paper, we propose an UAV maneuvering decision-making algorithm based on deep transfer
reinforcement learning for autonomous air-delivery in an interactive environment containing some threatens.
Firstly, we refine the long-distance guidance task and the near-end aiming task from air-delivery mission, and
design the UAV maneuvering decision-making model based on MDPs. Specifically, in order to improve the
learning efficiency of policy, we design a novel reward function based on reward shaping under the guidance
of expert experience. Finally, we propose the UAV maneuvering decision-making algorithm based on Twin De-
layed Deep Deterministic Policy Gradient (TD3). The algorithm we proposed could accelerate the convergence
of the decision-making policy and increase the stability of the policy during the later stage of training process.
The effectiveness of the proposed algorithm is illustrated by the curves of training parameters and extensive
experimental results for testing the trained policy.

Keywords: unmanned aerial vehicle (UAV), maneuvering decision-making, autonomous air-delivery, deep
transfer reinforcement learning, expert experience

1. Introduction
With the rapid development of UAV avionics, the UAV has been used to assist and replace people to
execute dirty, boring, and difficult missions due to low cost, high mobility, and unmanned feature[1].
Therefore, the UAV is widely used to surveillance, search, tracking, delivery, and other missions which
could be finished step by step[2]. Thus, how to improve autonomy of UAV while performing some
tasks without risking human lives has become the research focus. For instance, some people use
UAV to carry out delivery of relief supplies, extinguishing, and so on[2]. Consequently, it has become
one of the key issues for engineering applications to improve the autonomous flight capability of UAV.
Now, the UAV is mainly used to execute some tasks which could be done automatically instead
of finished manually, such as long-distance air-delivery[3]. During the process of performing air-
delivery mission, UAV flies towards required placement area and need to avoid threatens such as
mountain, buildings, no-fly zone and so on. And UAV should adjust its nose so as to make payload
fall on the center of target area after UAV dropping. As shown in Figure 1, the diagram describes
the process of performing long-distance guidance task and near-end aiming task involved in long-
distance air-delivery mission. In this paper, UAV avoids threatens appearing within mission area
while flying towards required placement area in the long-distance guidance task. When UAV enters
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the adjustment area whose radius is 2x dropping range of payload, UAV continues executing near-
end aiming task and need to adjust its nose to make the impact position of payload as close as
possible to the centre of required placement area.

Figure 1 – The diagram of UAV autonomous guidance and aiming problem consist of the
long-distance guidance task and the near-end aiming task.

According to the description of tasks mentioned above, one of the important technical issues from
these tasks is finding an optimal path from start point to end point and designing a controller to
manipulate it following the path [4]. At present, the optimal path should be found by some path
planning algorithms, such as Visibility Graph [5, 6], randomly sampling search algorithms including
Rapidly-exploring Random Tree [7], Probabilistic Roadmap [8], heuristic algorithms including A-Star
[9], Sparse A-Star [10], and D-star [11], genetic algorithms [12], and so on. Then, a controller could
be designed to operate UAV following the path planned by algorithm, where various trajectory tracking
algorithms [13, 14] are proposed. However, there are some disadvantages in the solution mentioned
above. For example, the data of terrain and obstacles is so difficult to obtain that our capability of en-
vironment modelling is limited, because the optimal path relies on lots of priori knowledge about the
environment. Moreover, when the environment becomes dynamic and there are some moving obsta-
cles, the scheme designed above is not flexible enough to alter their control strategies immediately.
A replan of paths has to be scheduled to adapt to the changes in the environment. Furthermore,
because conventional path planning algorithms need much more time to calculate optimal path, it’s
difficult to be applied to solving real-time problems. Therefore, it is necessary to design an end-to-end
algorithm which could be used to operate UAV to fly autonomously in a dynamic environment without
path planning and trajectory tracking.
A research highlight is inspired by AlphaGo developed by Google based on deep reinforcement learn-
ing (DRL), which could play Atari games using a kind of end-to-end decision-making algorithm, called
Deep Q Network (DQN) [15]. The performance of this algorithm reached human level after an exten-
sive training, and it attracts lots of researchers from various fields to study the applications of DRL in
all kinds of engineering problems. Meanwhile, the Deep Deterministic Policy Gradient (DDPG) [16]
was proposed to solve the dimension explosion caused by the continuity of action space and state
space. And the experience replay method sampling from experience buffer is constructed in these
algorithms and allows agent to remember and learn from historical data. Moreover, the Prioritized
Experience Replay (PER) [17] was proposed to improve the efficiency of learning from experiences.
It uses the potential value of historical data to increase the convergence rate of policy network, be-
cause a priority model of each sample is designed to evaluate the profit of samples for training of
policy network at current step.
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In addition, it’s important for training policy to design the reward function of problem. Traditional for-
mulation of reward function comes from original model of problem [15], such as CartPole, Pendulum
and other games from Atari, but there’re not suitable reward founction for a new problem. Thus, how
to construct an appropriate reward function is not the key issue for many popular work, and lots of
researchers mainly focus on the improvements of algorithms instead of modelling. However, it’s also
essential for solving problems from specific research fields to define modified model when we attempt
to apply DRL for a new problem. Traditionally, some researchers consider that the reward function in-
volved in problem model is designed by factual experience so that the trained policy extremely relied
on the capability of designer. Although some work published found effective policy recently, we could
find that different formulation of reward function brought different training effect and trained policy.
In the present work, we aim to tackle the challenges mentioned above and focus on the UAV maneu-
vering decision-making for the long-distance guidance task and the near-end aiming task. The main
work are summarized as follows:

• We refine the long-distance guidance task and the near-end aiming task and the UAV maneu-
vering decision-making model based on MDPs is built. Particularly, we design a dynamic state
space to adapt to different stage including flying towards target, avoiding threaten and aiming.
Among the components of model, we devote our air-to-ground drop theory to designing the
UAV maneuvering decision-making model.

• We propose the UAV maneuvering decision-making algorithm for tasks we presented above
based on TD3 [18] with a novel reward function to train a policy for generating efficient control
signal to manipulate UAV in an interactive environment. Specially, we designed a novel reward
function based on reward shaping under the guidance of expert experience. By contrast, the
reward model we defined could improve the training efficiency.

• We design and construct lots of experiments to validate the availability of our proposed algo-
rithm and model. Simulation results show that the algorithm we proposed could improve the
autonomy of UAV during the long-distance guidance task and the near-end aiming task. And
the novel reward function modified by expert experience could improve the training efficiency of
algorithm.

2. Methodology
The UAV has been used to help people finish some dangerous and repetitive missions, such as
crop protection, wildlife surveillance, traffic monitoring, electric power inspection, search, and rescue
operations. A need for more advanced and simple UAV autonomous flight solution has emerged. As
mentioned above, traditional solution of real time obstacle avoidance for manipulators and UAVs is
that algorithm plans an optimal path and then UAV follows path by trajectory tracking method. In this
paper, we redefined the process of UAV autonomous flight and constructed the UAV Maneuvering
Decision-Making Model for Air-delivery mission based on MDPs. On the other hand, we proposed a
novel UAV Maneuvering Decision-Making algorithm based on Deep Transfer Reinforcement Learning
(DTRL).
As shown in Figure 2, we constructed the UAV Maneuvering Decision-Making Model for Air-Delivery
consisting of long-distance guidance task and the near-end aiming task based on MDPs firstly.
Among this model, we designed action space, state space and basic reward of each task which were
used to demonstrate the characteristics of UAV autonomous flight during air-delivery. Moreover, we
designed and realized the UAV maneuvering decision-making algorithm including UAV maneuvering
decision-making policy based on neural network, and policy network was optimized according to data
sampled from historical experiences by PER. Meanwhile, we constructed the shaping reward of each
task to increase the convergence rate of policy network.

2.1 The UAV Maneuvering Decision-making Model for Air-delivery Mission Based on MDPs
As mentioned above, the air-delivery mission was decomposed into long-distance guidance task and
the near-end aiming task. We would present the definitions of long-distance guidance task and the
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Figure 2 – The verification structure of UAV Maneuvering Decision-making algorithm showing
relationship between UAV Maneuvering Decision-making Model and UAV Maneuvering

Decision-making Algorithm.

near-end aiming task and design the state space, action space and reward function of each task
based on MDPs in this section.

2.1.1 The Definitions of Long-distance Guidance Task and Near-end Aiming Task
In this paper, we defined that UAV should fly from start point to a specific point and finish aiming at
required target area while avoiding threatens appearing within the mission area in order to execute
air-delivery mission. Furthermore, we refined Long-distance Guidance Task and Near-end Aiming
Task, while we described the definitions of Long-distance Guidance Task and Near-end Aiming Task
in detail.

(1) Long-distance Guidance Task
Within the air-delivery mission, UAV needed to avoid threatens appearing in mission area during
the preliminary stage of flying from start point to a specific point. UAV could perceive surrounding
threatens by some airborne sensors. Meanwhile, UAV should fly towards required placement area
containing target point when it considers avoiding threatens.

Figure 3 – The vector diagram of relationship among UAV, threatens and required placement area
involved in the long-distance guidance task.

As shown in Figure 3, UAV started from a random point, and flying to required placement area was its
purpose. In this paper, the flight state of UAV could be defined by position ~XUAV and velocity ~VUAV. The
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surrounding i-th threaten could be described by posion ~X i
thr and influence radius Ri

thr. Threatens
were usually no-fly zones, peaks, buildings and other areas which UAV isn’t allowed to enter. And
required placement area could be defined by position ~Xtgt and effective radius Rtgt.

Figure 4 – The perception diagram of UAV observing threatens existing in the surroundings.

Moreover, UAV could observe threaten on left, threaten in front and threaten on the right by airborne
sensors, such as radar, electro-optical pod, SAR and so on. As shown in Figure 4, when threatens
entered into the perception range of sensors, UAV could observe that threaten and obtain the position
of it. But the number of threatens information is up to 3, it means that the closest threaten can be
observed separately on left, on right and in front. We defined a simplified criterion which was used to
determine whether UAV could observe threaten ~X i

thr as

gsensor(~XUAV,~X i
thr) =


90◦ ≤ δψthr < 30∧dthr ≤ dmaxsensor Threaten on Left

30◦ ≤ δψthr <−30∧dthr ≤ dmaxsensor Threaten in Front
−30◦ ≤ δψthr <−90∧dthr ≤ dmaxsensor Threaten on Right

(1)

where δψthr was the relative azimuth between threaten and UAV’s observation axis. dthr indicated
the distance between threaten and UAV and dmaxsensor represented the maximum observation distance
of airborne sensors. Next, we could obtain three sets Wleft

thr , Wfront
thr , Wright

thr including threatens on
left, in front, on right separately. Then, we got the closest threaten to the UAV on left, in front and on
right in terms of dthr and gsensor. For example, we could obtain the closest threaten on left by

gleftsensor = argmin
i∈Wleft

thr

di
thr (2)

where di
thr indicated the distance between UAV and i-th threaten which belonged to Wleft

thr .
In addition, we defined the termination condition of long-distance guidance task as

g1(s) =
{
‖~XUAV−~X i

thr‖ ≤ Ri
thr, i = 1,2, · · · ,Nthr Failed termination

‖~XUAV−~Xtgt‖ ≤ Rtgt Successful termination
(3)

where Nthr indicated the number of threatens. Equation 3 showed that if UAV flies into the cutoff
area of any threaten, this task will be failed. Otherwise, UAV finished task successfully when UAV
entered the effective area of target point.

(2) Near-end Aiming Task
If UAV entered the effective area of target point, that meant UAV flyied into required placement area,
UAV would continue to execute aiming task. Different from guidance task, UAV needed to adjust its
attitude for eliminating impact error of payload by updating the maneuvering value of UAV.
As shown in Figure 5, we calculated the falling trajectory ~Adrop of payload for estimating the impact
position of payload. Comparing with target position ~Xtgt, we assessed the impact error ~ωdrop of
payload, and corrected the control input of UAV to elimating the impact error of payload. When UAV
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Figure 5 – The vector diagram of relationship between UAV and required placement area involved in
the near-end aiming task.

was located in ~XUAV, we calculated ~Adrop by 3 degree of freedom kinematic model. Then, we could
obtain the impact position of payload by

~Xpayload = ~XUAV+~Adrop (4)

where ~Xpayload indicated the payload’s landing position. Next, we could calculate the impact error by

~ωdrop = ~Xtgt−~Xpayload (5)

Moreover, we defined the termination condition of aiming task as

g2(s) =
{
‖~XUAV−~Xtgt‖> emaxaiming Failed termination
‖~ωdrop‖ ≤ Rfine

impact Successful termination
(6)

where emaxaiming indicated the maximum distance of aiming for UAV, that meant the aiming task ended
failed when the distance between UAV and target exceeded emaxaiming. Rfine

impact represented the allow-
able maximum deviation for UAV dropping, that meant UAV finished aiming task successfully when
‖~ωdrop‖ was less than it.

2.1.2 Markov Decision Processes
During the process of performing air-delivery mission, UAV maneuvering decision-making could be
regarded as a sequential decision processes. Moreover, the pilot of UAV usually considered current
information from environment while selecting optimal control input. Thus, we could consider that this
decision processes was Markovian and use MDPs to model the UAV maneuvering decision-making
model for air-delivery.
The MDPs could be described by a tuple

{T,S,A(s),P(·, |s,a),R(s,a)} (7)

where T represented the decision episode, S represented the state space, A(s) represented the
action space, and the transition probability P(·, |s,a) represented the probability distribution of the
environment at the next moment when the action a ∈ A(s) was executed in the environment in the
state s ∈ S. The reward function R(s,a) represented the benefit that agent gets when a ∈ A(s) was
taken in the state s ∈ S. Then, we could make a complete mathematical description of the sequence
decision problem based on MDPs.
As shown in Figure 6, MDPs could be described as follows: when the state of environment was initial-
ized by s0, the agent chose the action a0 = π(s0), where π(s) represented the policy of agent, and the
state of environment would be updated to s1 according to P(s1, |s0,a0). Meanwhile, the environment
also returned the reward signal r0 = R(s0,a0) to agent. This process mentioned above would end until
the state of environment became termination state.
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Figure 6 – The traditional structure of finite Markov decision processes.

During the process of interactions between environment and agent, a sequence of rewards (r0,r1, · · ·)
was produced. Among this process, agent was stimulated by external rewards, and the policy of agent
would converge when the expectation of future rewards about policy was maximum. Therefore, the
utility function (in the state s ∈ S, the expected rewards obtained by adopting the policy π(s)) is v(s,π).
When current policy was optimal, the 8 should be satisfied.

v(s) = supv(s,π),s ∈ S (8)

Based on the characteristics of the UAV maneuvering decision-making problem for air-delivery, we
used the infinite stage discount model as the utility function, as shown in 9.

v(s,π) =
∞

∑
t=0

γ
tEs

µ [R(st ,at)],s ∈ S (9)

In the above formula, γ ∈ [0,1] was the future reward discount factor, and E represented mathematical
expectation. Then, the optimal policy under the discount model could be obtained by solving 8.

Figure 7 – The simulation structure of UAV maneuvering decision-making model for air-delivery.

In the following, we would construct the UAV Maneuvering Decision-making Model for Air-delivery
based on the definitions of long-distance guidance task and near-end aiming task. As shown in
Figure 7, we designed and realized the simulator core including UAV kinematic model, threaten
model and target model, which would generate the samples for optimizing policy. In the environment
implemented based on this structure, agent manipulated UAV to execute the long-distance guidance
task and the near-end aiming task. On this basis, we would design state space S, action space A(s),
reward function R(s,a) of each task.

7
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2.1.3 The State Space, Action Space and Reward Function of Air-delivery
We designed the state space, action space and reward function of each tasks involved in air-delivery
mission.

(1) The State Space of Long-distance Guidance Task
Considering the definition of long-distance guidance task, we defined the state space as

Sguidance = {vUAV,hUAV,NUAV
z ,dtgtlos ,φ

tgt
los ,d

front
thr ,φfront

thr ,dleftthr ,φleft
thr ,drightthr ,φright

thr } (10)

where vUAV, hUAV and NUAV
z were UAV’s speed, height and steering overload. dtgtlos and φ

tgt
los rep-

resented the distance and azimuth of required placement area relative to UAV. dfrontthr and φfront
thr

indicated the distance and azimuth of threaten in front relative to UAV. dleftthr and φleft
thr were the

distance and azimuth of threaten on left relative to UAV. drightthr and φ
right
thr were the distance and

azimuth of threaten on right relative to UAV.

(2) The State Space of Near-end Aiming Task
Considering the definition of near-end aiming task, we defined the state space as

Saiming = {vUAV,hUAV,NUAV
z ,dtgtlos ,φ

tgt
los ,θ

tgt
los ,apayload} (11)

where θ
tgt
los indicated the pitch of target relative to UAV. apayload represented the maximum horizontal

range of payload in current situation.

(3) The Action Space of Each Task
Based on the simulator core of UAV maneuvering decision-making model, we could establish the
action space of long-distance guidance task and near-end aiming task as

A(s) = {Nz} (12)

where Nz indicated the steering overload of UAV.

(4) The Reward Function of Each Task
Moreover, in order to optimize UAV’s policy, we defined the reward function as below, that considered
the termination condition of each tasks.

R(s,a) =


1.0, Successfully Termination
−1.0, Failed Termination
0.0, Otherwise

(13)

13 showed that if task terminated successfully, R(s,a) would return 1.0. If task satisfied failed termi-
nation, R(s,a) would return -1.0. Otherwise, R(s,a) returned 0.0. Thereby, reward could encourage
agent to find policy that maximizes the expectation of future rewards.

2.2 The UAV Maneuvering Decision-making Algorithm for Air-delivery based on DTRL
According to UAV maneuvering decision-making model for Air-delivery implemented above, we pro-
posed the UAV maneuvering decision-making algorithm for air-delivery based on PER-TD3. Due to
Markov property of long-distance guidance task and near-end aiming task, we designed the UAV
maneuvering decision-making policy based on neural network and used TD3 [18] to optimize the
policy network. Meanwhile, PER was used to generate training samples in order to speed up training
process. Moreover, we introduced a novel shaping reward function under the guidance of expert
experience so as to accelerate the convergence of policy. As shown in Figure 8, the algorithm we
proposed was composed of PER, policy network, shaping reward function and training procedure.
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Figure 8 – The structure of UAV maneuvering decision-making algorthm for air-delivery.

2.2.1 The Framework of PER-TD3
PER-TD3 was a model-free, off-policy and DRL-based algorithm designed by Actor-Critic architec-
ture. It was used to solved those problems having continuous state space and action space. Mean-
while, because TD3 didn’t consider the diversity of data and doesn’t fully utilize historical experience,
policy converged in TD3 exhibit low convergence rate and poor stability. Therefore, PER was used
to generate training data, which could improve the utilization of the potential value of historical data,
thereby increasing convergence rate and enhancing the stability of trained policy.
As shown in Figure 9, in order to solve overestimation and suboptimal policy due to function approx-
imation error, PER-TD3 was composed of clipped double q-learning (CDQ), delayed policy updating
and target policy smoothing regularization.
Because of overestimation, Double Deep Q-Network used target network to reduce the influence for
policy training. PER-TD3 used similar mechanism to eliminate overestimation, and proposed that two
target critic networks Qθ1 , Qθ ′1

, Qθ2 and , Qθ ′2
were used to restrict the upper bound of value estimation.

Thus, the optimization target function of critic network was defined as

y = r+ γ min
i=1,2

Qθ ′i
(s′,a) (14)

Because of CDQ, the value estimation tended to low variance, which improved the robust of policy
updating. Though CDQ could reduce overestimation bias, the basic problem, that was estimation
variance, should be accomplished. Therefore, the policy network πφ (s) was updated after critic net-
works were updated Ndelayed times, because the value error of critic network could be reduced by
multiple training sessions. We could use 15 to update parameters of critic networks and actor net-
works. {

θ ′i = τθi +(1− τ)θ ′i , i = 1,2
φ ′ = τφ +(1− τ)φ ′

(15)

τ ∈ (0,1) was a hyperparameter involved in the "Soft" updating. Moreover, due to deterministic policy,
the peaks of value estimation was usually overfitted. Thus, target policy smoothing regularization
was used to evaluate state-action pair, which was defined as

y = r+ γ min
i=1,2

Qθ ′i
(s′, ã) (16)

where ã was exeploratory action attached minor noise, which was generated by

9
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ã = πφ ′(s)+ ε,ε ∼ clip(N(0, σ̃),−c,c) (17)

where clip(x,xmin,xmax) was used to limit x between xmin and xmax. N(0, σ̃) indicated normal distribu-
tion whose variance was σ̃2.

Figure 9 – The framework of PER-TD3.

2.2.2 Structure of UAV Maneuvering Decision-making Policy Network
As mentioned above, PER-TD3 consisted of two critic networks Qθ1 and Qθ2 , actor network πφ and
their target networks Qθ ′1

, Qθ ′2
and πφ ′ . Therefore, we must design the structure of critic networks and

actor network respectively.

(1) Structure of Actor Network
The actor network πφ (s) was mainly used to output action in real-time according to state. The input
of network was the environment state s ∈ S, and its output was action a ∈ A(s). The structure of the
designed actor network was shown in Figure 10.
Therefore, the input dimension of actor network was equal to the dimension of state space dim(S).
The output dimension of actor network was equal to the dimension of action space dim(A(s)).

(2) Structure of Critic Network
The critic network Qθi(s,a) was used to evaluate the advantage of current action a ∈ A(s) output by
πφ (s). The input of Qθi(s,a) was the combination of state and action (s,a), and the output of Qθi(s,a)
was the state-action value function Q(s,a). The structure of the designed critic network was shown in
Figure 11.
Therefore, the input dimension of critic network was equal to the dimension of state space dim(S+A(s)).
The output dimension of actor network was equal to 1.

10
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Figure 10 – The structure of actor network involved in PER-TD3.

In addition, before running these networks, the input value should be normalized for eliminating the
influence of data’s physical meaning. Moreover, the structure of target networks Qθ ′i

and πφ ′ was
similar to Qθi and πφ , and only the method of parameters updating was different.

Figure 11 – The structure of critic network involved in PER-TD3.

2.2.3 Reward Shaping under The Guidance of Expert Experience
Although the algorithm we proposed could learn an optimal policy according to the reward function
shown in 13, there was a serious challenge that could influence the convergence rate of policy,
because the rewards environment returned were too sparse to learn useful knowledge such as those
transitions whose reward was not zero.
Therefore, some researchers proposed a technique called reward shaping (RS) [19], which leveraged

11



INSERT RUNNING TITLE HERE

the expert knowledge to reconstruct the reward model of the target domain to improve the agent’s
policy learning. More specifically, in addition to reward from environment, RS provided a shaping
function F : S× S× A→ R to render auxiliary rewards, where R indicated the set of real number.
Intuitively, RS would assign higher rewards to more beneficial transitions, which could guide the
agent to find the optimal policy quickly. As a result, the agent would learn its policy by the newly
shaped rewards R′ = R+F , which meant that RS had altered the original reward with a different
shaping reward function.
Along the line of RS, the potential-based RS (PBRS) [20] was one of the most classical approaches.
PBRS gave algorithm an external signal for learning the optimal policy more quickly than before
by adding a new reward shaping function F(s,a,s′), formed by the difference between two potential
functions

F(s,a,s′) = γΦ(s′)−Φ(s) (18)

where Φ(s) came from the knowledge of expertise and evaluated the quality of a given state. Thereby,
if we constructed a function over both the state and the action to form the potential function Φ(s,a),
PBRS would be extended to a novel approach, called potential based state-action advice (PBA) [21],
which could evaluate how beneficial an action is to take from state

F(s,a,s′,a′) = γΦ(s′,a′)−Φ(s,a) (19)

Therefore, we proposed a novel reward function of air-delivery mission based on PBRS and PBA,
introducing domain knowledge and expert experience, as shown in Figure12.

Figure 12 – The structure of reward shaping under the Guidance of Expert Experience.

(1) The Shaping Function of Long-distance Guidance Task
When UAV was performing long-distance guidance task, the distance and azimuth between UAV
and required placement area, and the distance between observed threatens and UAV were the main
influence factors. Therefore, we could construct the shaping function as

Fguidance(s,a,s′) = γ

[
Φd(s′)+Φφ (s′)+

2

∑
i=0

Φ
i
thr(s

′)

]
−

[
Φd(s)+Φφ (s)+

2

∑
i=0

Φ
i
thr(s)

]
(20)
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where Φd(s) represented the distance potential function, and Φφ (s) represented the azimuth potential
function. Considering the normalization of different influence factors, we designed Φd(s) and Φφ (s)
as shown in 21 and 22.

Φd(s) =
dmaxlos −dtgtlos

dmaxlos −dminlos

(21)

In 21, dmaxlos and dminlos indicated the maximum distance and the minimum between UAV and target
respectively.

Φφ (s) =
π−φ

tgt
los

π
(22)

Moreover, Φi
thr(s), i= 0,2,3 represented threaten on left, in front and on right potential function, which

was defined as

Φ
i
thr(s) =

 0, If d·thr > dmaxsensor
dmaxsensor−d·thr
dmaxsensor−R·thr

, If d·thr > Rthr
(23)

where d·thr indicated the distance between UAV and threaten and Rthr represented the influence
radius of threaten.
In order to accelerate the convergence of policy, we proposed a event-based burst reward under the
guidance of expert experience based on PBA. In daily life, if we want to train dog to teach it some
skills, we will give it some awards when it makes our desirable response. Gradually, when we want it
to finish some work, we could give it some commands through changing information that it recives.
Therefore, we could introduce expert experience to navigate agent to reach optimal state faster, as
shown in 24.

F(s,a,s′,a′) = γΦ(s′,a′)−R† (24)

R† represented the advice reward coming from the expert experience, which could be defined by

R† =


1.0, If dt-1los ≥ dtlos
1.0, If Nt-1

thr ≥ Nt
thr

0.0, Otherwise
(25)

where dt-1los and dtlos represented the distance between UAV and target at the last moment and
present moment. Nt-1

thr and Nt
thr represented the number of observed threatens at the previous

moment and the present moment. 25 meant that agent could receive positive motivation when UAV
got close to target and avoided threatens successfully.

(2) The Shaping Function of Near-end Aiming Task
After UAV entered the near-end aiming task, the impact error and the azimuth between target and
UAV were the main influence factors. Therefore, we can construct the shaping function as

Faiming(s,a,s′) = γ
[
Φie(s′)+Φφ (s′)

]
−
[
Φie(s)+Φφ (s)

]
(26)

where Φie(s) represented the impact error potential function, which was defined as

Φd(s) =
dmaximpact−dimpact

dmaximpact

(27)

In 27, dmaximpact indicated the maximum impact error and dimpact indicated the impact error in current
situation.
Similar to long-distance guidance task, we defined the advice reward of near-end aiming task as

R† =

{
1.0, If dt-1impact ≥ dtimpact
0.0, Otherwise

(28)
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where dt-1impact and dtimpact indicated the impact error of payload at the last moment and present
moment. 28 meant that agent would receive award when the impact error of payload was reduced.

2.2.4 Training Procedure of UAV Maneuvering Decision-making Policy
As we mentioned above, we could design the training procedure of UAV maneuvering decision-
making policy. In addition, we should construct experience replay method based on PER. The expe-
rience replay memory D was defined as

D =
{

s,a,s′,r
}

(29)

where s was current state, a was action selected by agent, s′ was state at the next moment, and r
was reward agent received. Traditionally, experience replay method selected training data from D
uniformly, which meant the probability P(i) of each sample to be select was equal. On the contrary,
P(i) in PER was not same, as defined in 30.

P(i) =
pα

i

∑
k

pα
k

(30)

pi was the priority of i-th sample in D, and α was a hyperparameter. When α = 0, it was pure uniformly
experience replay method. pi was defined based on TD-Error, as shown in 31.

pi = |δi|+ ε (31)

δi was TD-error of i-th sample in D. In addition, a minimum ε was introduced to prevent pi from being
zero. δi was defined as

δi = yi− min
j=1,2

Qθ j(s,a) (32)

where yi was the optimization target of critic, which was defined in 16. In order to reduce the distribu-
tion bias of transitions sampled by PER, importance sampling (IS) weights were used to correct the
distribution bias of training data caused by PER. The IS weight ω j could be calculated by

ω j =

(
1
N
· 1

P( j)

)β

(33)

where N was the size of D. When β = 1, the distribution error of training set was fully compensated.
When δ j was calculated, the actual updating target was ω j · δ j. Therefore, the gradient of critic
network was

∆ = ∑
j

ω j ·δ j ·∇θiQθi(s j,a j), i = 1,2 (34)

In order to ensure the stable convergence of Qθi(s j,a j), ω j was normalized by ω j
max

i
ωi

. Thereby, the

real IS weight ω j could be defined as

ω j =

(min
i

P(i)

P( j)

)β

(35)

Moreover, so as to improve the exploration ability of deterministic policy, we added random noise
sampled from N(0,σ) into the action output by πφ (s), as shown in 36.

at = πφ (st)+N(0,σ) (36)

To sum up, we could design the training procedure of UAV maneuvering decision-making algorithm
for air-delivery, as shown in Algorithm 1.
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Algorithm 1 The Training Procedure of UAV Maneuvering Decision-Making Algorithm for Air-delivery.
Input:

The hyperparameters of training networks: the size of minibatch k, networks’ learning rate η ;
The hyperparameters of updating policy: learning period K, memory capacity N, network
parameters updating episode τ, actor updating episode Ndelayed;
The hyperparameters of sampling: the availability exponent of PER α, IS exponent β ;
The control parameters of simulation: maximum period M, maximum step per period T .

Output:
Critic network Qθi(s,a), i = 1,2 and their target network Q′

θi
(s,a), i = 1,2;

Actor network πφ (s) and its target network π ′
φ
(s).

1: Initialize Qθi(s,a), i = 1,2, πφ (s) and their target Q′
θi
(s,a), i = 1,2, π ′

φ
(s).

2: for m = 1 to M do
3: Reset environment and read the initial state s0.
4: Output a0 according to equation (36).
5: for t = 1 to T do
6: Observe current state st and reward rt of environment and calculate current action at accord-

ing to equation (36).
7: Save current transition (st ,at ,st+1,rt) into experiences memory D.
8: if t mod K ≡ 0 then
9: Reset the gradient ∆ = 0 of critic networks with IS.

10: for j = 0 to k do
11: Sample traing data j ∼ P( j) according to equation (30)
12: Calculate IS weight ω j according to equation (35)
13: Calculate TD-error δ j of training data according to equation (34) and update its priority

according to equation (31)
14: Accumulate ∆.
15: end for
16: Update the parameters of Qθi(s,a), i = 1,2 according to ∆ with learning rate η .
17: Update the parameters of target networks Q′

θi
(s,a), i = 1,2 according to equation (15)

18: if t mod Ndelayed then
19: Update the parameters of πφ (s) according to target function max [mini=1,2 Qθi(s,a)].
20: Update the parameters of target networks π ′

φ
(s) according to equation (15)

21: end if
22: end if
23: end for
24: end for

3. Results and Analysis
Based on the model and algorithm we presented above, experiments were conducted to prove the
rationality of the model and verify the availability of the algorithm. In the following, we will explain
settings of the simulation experiments, details of the training process, results of Monte-Carlo (MC)
test experiments, as well as their analysis.

3.1 The Settings of Simulation Experiments
In the simulation experiments, the mission area was restricted to 100km×100km airspace and height
of UAV was bound to [500m,10000m]. For each simulation experiment, the UAV’s initial state and
threatens’ position was randomly generated. In order to make simulation data as close to real world
as possible, we set simulation step to 0.5s because operator of UAV always manipulates it every
[0.5s,1.0s].
According to the training procedure of algorithm, before we started to train, some hyperparameters
should be assigned. Hyperparameters assignments of the algorithm are shown in Table 1. Moreover,
we designed the structure of critic networks and actor networks in each tasks, which were shown in
Table 2, Table 3, Table 4 and Table 5 respectively. In this paper, the networks were all designed to be

15



INSERT RUNNING TITLE HERE

Table 1 – The parameters assignment of algorithm for air-delivery mission.

Parameter Value Meaning

K 100 policy’s learning period
N 100000 historical buffer capacity
τ 0.01 soft updating parameter

Ndelayed 10 delayed updating period
k 128 size of minibatch
η 0.001 networks’ learning rate
α 0.5 availability exponent of PER
β0 0.4 initial IS exponent
M 1000 maximum training episodes
T 5000 maximum steps per episode

Table 2 – The structure of critic network Qθi(s,a), i = 1,2 for the long-distance guidance task.

Layers Layer Structure
Units Activation Function

Input layer of state 128 ReLU
Input layer of action 128 ReLU

Hidden layer 1 256 ReLU
Hidden layer 2 256 ReLU
Hidden layer 3 256 ReLU
Hidden layer 4 256 ReLU
Hidden layer 5 256 ReLU
Hidden layer 6 256 ReLU
Hidden layer 7 256 ReLU
Hidden layer 8 256 ReLU
Output layer 1 -

Table 3 – The structure of actor network πφ (s) for the long-distance guidance task.

Layers Layer Structure
Units Activation Function

Input layer 64 tanh
Hidden layer 1 256 tanh
Hidden layer 2 256 tanh
Hidden layer 3 256 tanh
Hidden layer 4 256 tanh
Hidden layer 5 256 tanh
Hidden layer 6 256 tanh
Hidden layer 7 256 tanh
Hidden layer 8 256 tanh
Output layer 1 tanh

dense network.

3.2 The Simulation Results and Analysis of Air-delivery Mission
After effective training, we collected some parameters generated during the process of training critic
and actor. In Figure 13 and Figure 14, we plotted the loss curve of critic and actor, the successful rate
curve in long-distance guidance task by PER-TD3 with base reward and advice reward. In Figure 15
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Table 4 – The structure of critic network Qθi(s,a), i = 1,2 for the near-end aiming task.

Layers Layer Structure
Units Activation Function

Input layer of state 128 ReLU
Input layer of action 128 ReLU

Hidden layer 1 256 ReLU
Hidden layer 2 256 ReLU
Hidden layer 3 256 ReLU
Hidden layer 4 256 ReLU
Output layer 1 -

Table 5 – The structure of actor network πφ (s) for the near-end aiming task.

Layers Layer Structure
Units Activation Function

Input layer 64 tanh
Hidden layer 1 256 tanh
Hidden layer 2 256 tanh
Hidden layer 3 256 tanh
Hidden layer 4 256 tanh
Output layer 1 tanh

and Figure 16, we plotted the loss curve of critic and actor, the successful rate curve in near-end
aiming task by PER-TD3 with base reward and advice reward.
In Figure 13a, Figure 13b, Figure 14a, Figure 14b, Figure 15a, Figure 15b, Figure 16a and Figure 16b,
the loss of actor and critic involved in PER-TD3 with base reward and advice reward for long-distance
guidance task and near-end aiming task were plotted. We could find that the curve of actor network’s
loss climbs gradually over time and is stable after enough training in long-distance guidance task.
The curve of actor network’s loss declines gradually over time and is stable after enough training in
near-end aiming task. Meanwhile, the loss of critic network decreases gradually over time, and finally
become stable to a small amount. Moreover, we could find that the loss of critic by PER-TD3 with
advice reward is stabler than those by PER-TD3 with base reward. We think that those meaningful
samples are used to improve policy by adding advice reward which could be regarded as special
features.
In addtion, Figure 13c, Figure 14c, Figure 15c and Figure 16c are the successful rate over time in
long-distance guidance task and near-end aiming task by PER-TD3 with base reward and advice
reward, respectively. We can find that the successful rate is approaching 100% after a period of time.
The successful rate indicates the ratio of successful count to total count in the last 100 interactive pe-
riods. In an interactive period, UAV starts from random position and ends while satisfying termination
conditions.
Furthermore, we performed a group of Monte-Carlo (MC) experiments to evaluate the quality of
trained results of the algorithms. Some results from MC experiments were visualized, including the
flight trajectory of UAV in air-delivery mission, involving long-distance guidance task and near-end
aiming task, as shown in Figure 17 and Figure 18, which are the flight trajectory of UAV trained
by algorithm with base reward and advice reward respectively. In these figures, the red solid line
represents the flight trajectory of UAV, the red point and the green "x" indicate the start position
and the end position of UAV respectively, the blue "x" indicates the target position, the red dashed
line represents the trajectory of payload, the green dash-dot line represents the observed radius
of threaten, the green dashed line represents the influence radius of threaten, and the green "x"
represents the position of threaten.
Among all the results of Figure 17 and Figure 18, we can see that UAV could avoid threatens au-
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(a) The Loss Curve of Actor
Network.

(b) The Loss Curve of Critic
Network. (c) The Successful Rate Curve.

Figure 13 – The Evaluation Curve of Training Experiment for Long-distance Guidance Task by
PER-TD3 with Base Reward.

(a) The Loss Curve of Actor
Network.

(b) The Loss Curve of Critic
Network. (c) The Successful Rate Curve.

Figure 14 – The Evaluation Curve of Training Experiment for Long-distance Guidance Task by
PER-TD3 with Advice Reward.

(a) The Loss Curve of Actor
Network.

(b) The Loss Curve of Critic
Network. (c) The Successful Rate Curve.

Figure 15 – The Evaluation Curve of Training Experiment for Near-End Aiming Task by PER-TD3
with Base Reward.

(a) The Loss Curve of Actor
Network.

(b) The Loss Curve of Critic
Network. (c) The Successful Rate Curve.

Figure 16 – The Evaluation Curve of Training Experiment for Near-End Aiming Task by PER-TD3
with Advice Reward.
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(a) NO.1 test experiment. (b) NO.3 test experiment.

(c) NO.4 test experiment. (d) NO.5 test experiment.

Figure 17 – The flight trajectory of UAV controled by agent trained by base reward while executing
air-delivery mission.

(a) NO.1 test experiment. (b) NO.3 test experiment.

(c) NO.5 test experiment. (d) NO.5 test experiment.

Figure 18 – The flight trajectory of UAV controled by agent trained by advice reward while executing
air-delivery mission.
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tonomously and fly towards target point from arbitrary position and random azimuth. And UAV could
adjust its attitude automatically to aim required palcement area. These results show that the trained
policy of each algorithm with base reward and advice reward in air-delivery mission has converged
to near optimal performance.

4. Conclusions
In the present work, we refined and described the long-distance guidance task and the near-end
aiming task from air-delivery mission. According to the definitions of tasks, we proposed the UAV ma-
neuvering decision-making algorithm based on DTRL to execute air-delivery mission autonomously.
Among this work, we designed and constructed the UAV maneuvering decision-making model based
on MDPs, consisting of state space, action space and reward function of each task. Specifically,
we introduce expert experience to modify reward function, where we construct shaping reward func-
tion based on PBRS and PBA to generate base reward and advice reward. This novel construction
method of shaping function take domain knowledge and expert advice into account to improve the
inference quality of trained policy network.
Furthermore, we designed extensive experiments to verify the performance of proposed algorithms
and model. We used base reward and advice reward to train policies repectively and compared
their loss curve and successful rate during the process of convergence. Among these simulation
results, we can see that advice reward could help algorithm converge more stably than base reward.
Moreover, we made lots of MC experiments. Simulation results demonstrate that the algorithm we
proposed could obtain effective policy to execute the long-distance guidance task and the near-end
aiming task.
In the future, we will consider the influence of information dimension loss, which means environment
is partially observed. And we will extend the proposed algorithm to manipulate real UAVs in a 3D
environment while performing special missions.
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