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Abstract 

Ducted propellers are widely used in eVTOL and the shape of the duct has a significant impact on aerodynamic 

performance. In the traditional design process, the method of obtaining the aerodynamic performance of ducted propeller 

is CFD, which is very costly. In this work, a deep learning based method for aerodynamic performance prediction of 

ducted propellers is proposed, which can predict the aerodynamic performance within 0.06s under different shapes and 

working conditions, reduce calculation consumption greatly. Two neural networks based on optimal network structures, 

the DNN and the Optimized Network, are used to build surrogate models and compared in this paper. The training results 

show that the Optimized Network is more advantageous in terms of prediction precision. For this problem, neural network 

surrogate model is more interpretable and performs better than traditional surrogate models, such as response surface 

model and Kriging model. 
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1. Introduction 

Ducted propellers are widely used in Electric Vertical Take-off and Landing (eVTOL) as a new type of thrust component. 

The shape of the duct plays an important role in the aerodynamic performance of the ducted propeller, which needs to be 

taken into account during the design process. The traditional design method is to manually apply small disturbances to 

the external shape and obtain performance parameters through CFD numerical simulation, and evaluate the quality of the 

design by comparing the aerodynamic performance. By repeating the above process several times, the optimal design 

solution can be selected. The method of obtaining aerodynamic performance through numerical simulation has high 

precision, but the simulation cycle is long and consumes a lot of computational resources. In the future, duct design should 

consider more design constraints, and the scale of design variables is also expanding. If only high-precision CFD method 

is applied in the ducted propeller design, it is time-consuming to explore the high-dimensional variable space and finding 

the optimal design solution is extremely difficult.  

Considering both efficiency and global search capability, the surrogate-based aerodynamic performance prediction 

method emerges in the aircraft design[1]. Surrogate models built with limited CFD sample data can achieve mapping 

between shape and aerodynamic performance in a short period of time, enabling fast aerodynamic performance prediction. 

At present, response surface[2], Kriging model[3], and data-driven neural network[4] have been developed. However, for 

most aerodynamic prediction models based on surrogate method, all input features are considered equivalent and input 

into the model at once, which leads to different physical features that cannot be fully explored, resulting in unsatisfactory 

prediction results. The inner physical properties of each feature, as well as their relationship, are ignored. These prediction 
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models are difficult to interpret as well. Data-driven neural network is a new product that has certain advantages over 

traditional surrogate model. Users can build their own network structure based on their own needs and the characteristics 

of the dataset, in order to fully explore the interaction relationship between input parameters and improve the predictive 

performance of the surrogate model. 

In the current study, a deep learning based surrogate model is developed for the aerodynamic prediction of ducted 

propellers, which could solve the above-mentioned drawbacks of traditional surrogate models. This surrogate can combine 

different physical properties to improve the prediction precision, and has a certain generalization ability and 

interpretability. Current work incorporates significant innovation. The inclusion of feature extraction and multi-task 

learning allows the neural network surrogate model to effectively fuse geometry, flight conditions and flow field 

information. This higher-order fusion method makes the model more interpretable and more consistent with the physical 

characteristics of the interaction between the aircraft and external flow field. The prediction performance for this problem 

is significantly higher than that of traditional surrogate models. 

2. Problem statement and methodology 

2.1 Basic model and parameters definition 

Fig. 1 shows the basic model for the ducted propeller studied in this work, including important dimensions, working 

condition parameters, aerodynamic definitions. Associated dimensionless coefficients of important aerodynamic 

parameters are defined as 

𝐶𝑇𝑡𝑜𝑡 =
𝑇𝑡𝑜𝑡

𝜌𝛺2𝐷𝑓𝑎𝑛
4

(1) 

𝐶𝐿 =
2𝐿

𝜌𝑉∞
2𝑆

(2) 

𝐶𝑇 =
2𝑇

𝜌𝑉∞
2𝑆

(3) 

𝐶𝑄 =
𝑄

𝜌𝛺2𝐷𝑓𝑎𝑛
5

(4) 

 

Fig. 1. Basic model and parameters of a ducted propeller. 

2.2 Parameterization method 

Considering the structure and the clearance between the propeller and the wall, we only control deformation on the 

leading edge of the duct. A modified shape parameterization method realizes the accurate description of the duct profile, 

especially for the control of leading edge shape. Hicks-Henne shape function is chosen to represent the airfoil shape by 
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superimposing analytic functions[5]. The shape of the airfoil is defined by the baseline airfoil, shape functions and their 

coefficients, which can be written as 

𝑦̅(𝑥̅) = 𝑦̅𝑏(𝑥̅) + ∑ 𝛿𝑘𝑓𝑘(𝑥̅)

𝑁

𝑘=1

(5) 

where 𝑦̅𝑏(𝑥̅) is the shape of the baseline airfoil, 𝑥̅ = 𝑥/𝑐, 𝑁 is the number of parameters controlling the shape, 𝛿𝑘 is the 

coefficient, 𝑓𝑘(𝑥̅) is chosen shape function, 𝛿𝑘𝑓𝑘(𝑥̅) is the disturbance to the baseline airfoil. 10 modified Hicks-Henne 

shape functions are used to change 20% of the airfoil, with the following expressions, 

𝑓(𝑥) = {
0.5(1 − 𝑥̅)0.25(1 − 5𝑥̅)𝑒−20𝑥̅, 𝑘 = 1,6

0.25𝑠𝑖𝑛3[𝜋(5𝑥̅)𝑒(𝑘)]                , 𝑘 ∈ {2, 3, 4, 5} ∪ { 7, 8, 9, 10}
(6) 

𝑒(𝑘) =
𝑙𝑛0.5

𝑙𝑛 (𝑥𝑘)
(7) 

where 𝑥𝑘 = 5𝑥̅. When k is taken as {2, 3, 4, 5} or {7, 8, 9, 10}, 𝑥̅ is taken as {0.04, 0.08, 0.12, 0.16} correspondingly. 

Ten coefficients from 𝛿1~𝛿5 and 𝛿6~𝛿10, i.e., shape parameters, are introduced to control the shape of the upper and 

lower surfaces of the airfoil, respectively. The modified Hicks-Henne shape functions are shown in Fig. 2. 

 

Fig. 2. Modified Hicks-Henne shape functions. 

In order to avoid incorrect geometric shapes, combined with the flight state of the ducted propeller vehicle, the variable 

design space of 10 shape parameters and 2 operating parameters is shown in Table I. 

Table I The variable design space with 10 shape parameters and 2 operating parameters. 

Shape parameters Lower bound Upper bound Shape parameters Lower bound Upper bound 

𝑽∞ 0 30 𝜶 0 30 

𝜹𝟏 -0.1 0.1 𝜹𝟔 -0.1 0.1 

𝜹𝟐 -0.05 0.05 𝜹𝟕 -0.09 0.04 

𝜹𝟑 -0.04 0.04 𝜹𝟖 -0.04 0.03 

𝜹𝟒 -0.03 0.03 𝜹𝟗 -0.03 0.02 

𝜹𝟓 -0.01 0.01 𝜹𝟏𝟎 -0.01 0.01 
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2.3 Numerical simulation and validation 

A quasi-steady numerical simulation method based on Reynolds Averaged Navier Stokes (RANS) and Multiple 

Reference Frame (MRF)[6] is used to investigate the aerodynamic performance of ducted propeller. The mesh of the 

ducted propeller is shown in Fig. 3. 

 

Fig. 3. Grid details of the ducted propeller. 

According to the data provided in literature [7], the comparisons of the lift coefficient 𝐶𝐿 and forward thrust coefficient 

𝐶𝑇 with the experimental results are shown in Fig. 4. It can be concluded that the calculation method used in our work 

has high reliability. 

 

Fig. 4. Comparisons between experiments and CFD in term of (a) lift coefficients 𝐶𝐿 (b) forward thrust coefficients 𝐶𝑇. 

Optimal Latin Hypercube Design (OLHD)[8] method is used as DOE in our work. 400 sampling points are selected 

initially in the design space consisting of each parameter in Table I, and construct complete dataset by CFD to train the 

neural network. 

2.4 Structure of network 

The surrogate model established in our work is built by the neural network, which can quickly predict the 

aerodynamic performance of the ducted propeller. We consider the input features as 2 operating parameters 𝑉∞,𝛼, and 

10 shape parameters 𝛿1~𝛿10, as shown in Table I, and the output features as 4 aerodynamic performance parameters, 

𝐶𝑇𝑡𝑜𝑡, 𝐶𝐿, 𝐶𝑇, 𝐶𝑄, which are defined in equation (1) to (4). 

Deep Neural Network (DNN) is a multi-layer unsupervised neural network, which uses the output features of the 

previous layer as the input of the next layer for learning, and mapping features layer by layer. Considering that the 
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physical properties, magnitude, and design space of the 10 shape parameters and the 2 operating parameters differ 

greatly, and the aerodynamic performance is sensitive to each parameter, we isolate the input parameters and training 

them separately to fully explore and extract the features of each data before combining them. An Optimized Neural 

Network structure combining the High-order component and Low-order component is developed. The High-order 

component is a DNN that can capture high-order features, accepting the normalized features as input. The core idea of 

Low-order component is Cross Layer, which could learn feature interactions between parameters with different 

characteristics. The network structures of DNN and the Optimized network are shown in Fig. 5. 

 

Fig. 5. Structure of (a)DNN and (b)Optimized network 

 

3. Results and discussion 

We generated 400 samples with the different combinations of working condition parameters and shape parameters by 

OLHD, and calculate the aerodynamic data according to the CFD method described above. 90% samples are normalized 

and processed as the training set, and the remaining 10% samples are used as the validation set. The trained network can 

predict the aerodynamic performance of a duct propeller for any combination of working condition and shape 

parameters in the design space. The loss functions in the training processes for 10,000 iteration steps of DNN and 

Optimized Networks are shown in Fig. 6, and the training is finished with the convergence of loss function. 

 

Fig. 6. Loss function curve during training of (a) DNN and (b) the Optimized Network. 

We verify the trained neural network surrogates using R2, as shown in Table II. R2 can be expressed as 
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𝑅2 = 1 −
∑  𝑖 (𝑦𝑝

(𝑖)
− 𝑦(𝑖))

2

∑  𝑖 (𝑦̅ − 𝑦(𝑖))2
(8) 

where 𝑦(𝑖) is the model observation, 𝑦𝑝
(𝑖)

 is the prediction and 𝑦̅ is the sample average value. Fig. 7 provides a closer 

look into the predictions versus model observations on the validation set. 

 

Fig. 7. Comparison of prediction and observation of (a) 𝐶𝑇𝑡𝑜𝑡 (b) 𝐶𝐿 (c) 𝐶𝑇 (d) 𝐶𝑄. 

 

Table II 𝑅2 for the neural network surrogates. 

R2 DNN Optimized 

𝑪𝑻𝒕𝒐𝒕 0.9943 0.9916 

𝑪𝑳 0.9705 0.9845 

𝑪𝑻 0.9904 0.9946 

𝑪𝑸 0.8226 0.9617 

 

The R2 values shows that two networks have similar prediction performance and high precision. In more detail, the 

prediction precision of the Optimized Network is slightly higher than that of DNN, especially when predicting 𝐶𝑄. 

Considering that the propeller rotational speed is constant, the values of 𝐶𝑄 are very close when under various working 

conditions, which is a challenge for the DNN network to predict concentrated values. The Optimized Network has 

significantly improved the precision of predicted 𝐶𝑄. In conclusion, the Optimized Network exhibits better prediction 

performance compared with the DNN.  
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The computational time of the quasi-steady simulation is about 2000s, while the neural network trained by NVIDIA 

GeForce GTX 1650 takes sonly 0.06s to obtain the aerodynamic parameters for a specified case. It can be seen that the 

application of the surrogate model greatly improves the prediction efficiency, which will be conducive to our 

subsequent analysis. All of the simulations in this work are performed on an Intel(R) Xeon(R) Gold 6238R CPU 

processor running at 2.20 GHz with 28 cores and 125 GB RAM memory.  

We also investigate the generalization capabilities of the established surrogates. We extrapolated the two working 

condition parameters 𝑉∞ and 𝛼 by 10% to test whether the surrogate model can make accurate predictions for data not 

included in the training set. The prediction results with 10% 𝑉∞ and 𝛼 are shown in Fig. 8(a) and (b). As this figure 

shows, DNN has the ability to predict data outside the training set better than the Optimized Network. The 

generalization capabilities can be checked using Average Percent Error (APE) as shown in Table III. For 𝐶𝑇𝑡𝑜𝑡, 𝐶𝐿, 

and 𝐶𝑇, the APE of DNN is all within 3%, while the error of 𝐶𝑄 is less than 10%. is. Most of the errors that Optimized 

Network predicts are in the 10% range, but in the region of 17%. 

 

Fig. 8. Prediction using two networks with 10% extrapolation of (a) 𝑉∞ and (b) 𝛼 respectively. 

 

Table III APE for the neural network surrogates generalization capabilities.. 

APE(%) DNN Optimized 

𝑪𝑻𝒕𝒐𝒕 ≤2.99 ≤8.02 
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𝑪𝑳 ≤2.41 ≤14.05 

𝑪𝑻 ≤2.72 ≤15.51 

𝑪𝑸 ≤9.35 ≤8.38 

 

 

Response surface model and kriging model are also built based on the Isight platform to evaluate the performance of 

traditional surrogates and neural network surrogate. The prediction precision of the prediction is checked by different 

methods using the Mean Absolute  Error (MAPE)  as shown in Table IV. We can conclude that the prediction accuracy of 

the neural network surrogate is much higher than the traditional surrogate for all flight features in our study. The structure 

of the neural network is able to fully integrate the shape of the duct and working condition parameters 

 

Table IV Performance comparison of different surrogate models. 

MAPE(%) Optimized Network response surface model kriging model 

𝑪𝑻𝒕𝒐𝒕 1.4066 2.3298 4.8709 

𝑪𝑳 7.7888 12.3137 15.7977 

𝑪𝑻 1.4982 3.6011 7.8625 

𝑪𝑸 0.9079 1.7740 1.1762 

 

To summary, the deep learning based surrogate model exhibits high precision, efficiency and a certain generalization 

capability. The prediction precision of Optimized Network is slightly higher than that of DNN, but DNN is better at 

generalization capability. Compared with traditional surrogate models, deep learning-based surrogates can better explore 

data feature relationships and have higher prediction accuracy and interpretability. In the future deep learning based 

surrogate models can be applied to a variety of domains. 

4. Conclusion 

In this work, a deep learning based method for aerodynamic performance prediction of ducted propellers is proposed. 

The established deep learning based surrogate model can predict the aerodynamic performance within 0.06s under 

different shapes and working conditions, which greatly reduces calculation consumption. Two neural networks based on 

optimal network structures, the DNN and the Optimized Network, are used to build surrogate models and compared in 

this paper. The training results show that the Optimized Network is more advantageous in terms of prediction precision. 

For this problem, neural network surrogate model is more interpretable and performs better than traditional surrogate 

models, such as response surface model and Kriging model. 
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