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Abstract

Ducted propellers are widely used in eVTOL and the shape of the duct has a significant impact on aerodynamic
performance. In the traditional design process, the method of obtaining the aerodynamic performance of ducted propeller
is CFD, which is very costly. In this work, a deep learning based method for aecrodynamic performance prediction of
ducted propellers is proposed, which can predict the acrodynamic performance within 0.06s under different shapes and
working conditions, reduce calculation consumption greatly. Two neural networks based on optimal network structures,
the DNN and the Optimized Network, are used to build surrogate models and compared in this paper. The training results
show that the Optimized Network is more advantageous in terms of prediction precision. For this problem, neural network
surrogate model is more interpretable and performs better than traditional surrogate models, such as response surface

model and Kriging model.
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1. Introduction
Ducted propellers are widely used in Electric Vertical Take-off and Landing (eVTOL) as a new type of thrust component.

The shape of the duct plays an important role in the aerodynamic performance of the ducted propeller, which needs to be
taken into account during the design process. The traditional design method is to manually apply small disturbances to
the external shape and obtain performance parameters through CFD numerical simulation, and evaluate the quality of the
design by comparing the aerodynamic performance. By repeating the above process several times, the optimal design
solution can be selected. The method of obtaining aerodynamic performance through numerical simulation has high
precision, but the simulation cycle is long and consumes a lot of computational resources. In the future, duct design should
consider more design constraints, and the scale of design variables is also expanding. If only high-precision CFD method
is applied in the ducted propeller design, it is time-consuming to explore the high-dimensional variable space and finding

the optimal design solution is extremely difficult.

Considering both efficiency and global search capability, the surrogate-based aerodynamic performance prediction
method emerges in the aircraft design[1]. Surrogate models built with limited CFD sample data can achieve mapping
between shape and aerodynamic performance in a short period of time, enabling fast aerodynamic performance prediction.
At present, response surface[2], Kriging model[3], and data-driven neural network[4] have been developed. However, for
most aerodynamic prediction models based on surrogate method, all input features are considered equivalent and input
into the model at once, which leads to different physical features that cannot be fully explored, resulting in unsatisfactory

prediction results. The inner physical properties of each feature, as well as their relationship, are ignored. These prediction
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models are difficult to interpret as well. Data-driven neural network is a new product that has certain advantages over
traditional surrogate model. Users can build their own network structure based on their own needs and the characteristics
of the dataset, in order to fully explore the interaction relationship between input parameters and improve the predictive

performance of the surrogate model.

In the current study, a deep learning based surrogate model is developed for the aerodynamic prediction of ducted
propellers, which could solve the above-mentioned drawbacks of traditional surrogate models. This surrogate can combine
different physical properties to improve the prediction precision, and has a certain generalization ability and
interpretability. Current work incorporates significant innovation. The inclusion of feature extraction and multi-task
learning allows the neural network surrogate model to effectively fuse geometry, flight conditions and flow field
information. This higher-order fusion method makes the model more interpretable and more consistent with the physical
characteristics of the interaction between the aircraft and external flow field. The prediction performance for this problem

is significantly higher than that of traditional surrogate models.

2. Problem statement and methodology

2.1 Basic model and parameters definition

Fig. 1 shows the basic model for the ducted propeller studied in this work, including important dimensions, working
condition parameters, aerodynamic definitions. Associated dimensionless coefficients of important aerodynamic

parameters are defined as

€y

(2)

3)

4)

Fig. 1. Basic model and parameters of a ducted propeller.

2.2 Parameterization method
Considering the structure and the clearance between the propeller and the wall, we only control deformation on the

leading edge of the duct. A modified shape parameterization method realizes the accurate description of the duct profile,

especially for the control of leading edge shape. Hicks-Henne shape function is chosen to represent the airfoil shape by
2
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superimposing analytic functions[5]. The shape of the airfoil is defined by the baseline airfoil, shape functions and their

coefficients, which can be written as
N
T = 7 (D) + ) 8efi® 5)
k=1

where ¥, (%) is the shape of the baseline airfoil, ¥ = x/c, N is the number of parameters controlling the shape, &y, is the
coefficient, f, () is chosen shape function, 8y f; (X) is the disturbance to the baseline airfoil. 10 modified Hicks-Henne

shape functions are used to change 20% of the airfoil, with the following expressions,

_ (05(1—%)°25(1 —5%)e72%%, k=16
fe) = {O.ZSsin3 [r(5%)¢®@] k€{2,3,45U{7,8,9,10} ®)
1) = [n0.5 ;
e(k) = eD) (7

where x;, = 5x. When k is taken as {2, 3,4, 5} or {7, 8,9, 10}, X is taken as {0.04, 0.08, 0.12, 0.16} correspondingly.
Ten coefficients from §;~65 and §¢~0J;,, i.€., shape parameters, are introduced to control the shape of the upper and

lower surfaces of the airfoil, respectively. The modified Hicks-Henne shape functions are shown in Fig. 2.
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Fig. 2. Modified Hicks-Henne shape functions.

In order to avoid incorrect geometric shapes, combined with the flight state of the ducted propeller vehicle, the variable

design space of 10 shape parameters and 2 operating parameters is shown in Table 1.

Table I The variable design space with 10 shape parameters and 2 operating parameters.

Shape parameters Lower bound Upper bound Shape parameters Lower bound Upper bound
Vo 0 30 a 0 30
5, 0.1 0.1 56 0.1 0.1
6, -0.05 0.05 65 -0.09 0.04
63 -0.04 0.04 Og -0.04 0.03
6, -0.03 0.03 8y -0.03 0.02
I -0.01 0.01 810 -0.01 0.01
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2.3 Numerical simulation and validation
A quasi-steady numerical simulation method based on Reynolds Averaged Navier Stokes (RANS) and Multiple
Reference Frame (MRF)[6] is used to investigate the aerodynamic performance of ducted propeller. The mesh of the

ducted propeller is shown in Fig. 3.

Rotation field

Front interface Back interface

Fig. 3. Grid details of the ducted propeller.
According to the data provided in literature [7], the comparisons of the lift coefficient C; and forward thrust coefficient

Cy with the experimental results are shown in Fig. 4. It can be concluded that the calculation method used in our work

has high reliability.
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Fig. 4. Comparisons between experiments and CFD in term of (a) lift coefficients C; (b) forward thrust coefficients Cy.

Optimal Latin Hypercube Design (OLHD)[8] method is used as DOE in our work. 400 sampling points are selected
initially in the design space consisting of each parameter in Table I, and construct complete dataset by CFD to train the

neural network.

2.4 Structure of network

The surrogate model established in our work is built by the neural network, which can quickly predict the
aerodynamic performance of the ducted propeller. We consider the input features as 2 operating parameters V,,,a, and
10 shape parameters 6, ~681q, as shown in Table I, and the output features as 4 aerodynamic performance parameters,
Crtot> Cp, Cr, Co, which are defined in equation (1) to (4).

Deep Neural Network (DNN) is a multi-layer unsupervised neural network, which uses the output features of the

previous layer as the input of the next layer for learning, and mapping features layer by layer. Considering that the
4
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physical properties, magnitude, and design space of the 10 shape parameters and the 2 operating parameters differ
greatly, and the aerodynamic performance is sensitive to each parameter, we isolate the input parameters and training
them separately to fully explore and extract the features of each data before combining them. An Optimized Neural
Network structure combining the High-order component and Low-order component is developed. The High-order
component is a DNN that can capture high-order features, accepting the normalized features as input. The core idea of
Low-order component is Cross Layer, which could learn feature interactions between parameters with different

characteristics. The network structures of DNN and the Optimized network are shown in Fig. 5.
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Fig. 5. Structure of (a)DNN and (b)Optimized network

3. Results and discussion
We generated 400 samples with the different combinations of working condition parameters and shape parameters by

OLHD, and calculate the aerodynamic data according to the CFD method described above. 90% samples are normalized
and processed as the training set, and the remaining 10% samples are used as the validation set. The trained network can
predict the aerodynamic performance of a duct propeller for any combination of working condition and shape
parameters in the design space. The loss functions in the training processes for 10,000 iteration steps of DNN and

Optimized Networks are shown in Fig. 6, and the training is finished with the convergence of loss function.
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Fig. 6. Loss function curve during training of (a) DNN and (b) the Optimized Network.

We verify the trained neural network surrogates using R, as shown in Table II. R? can be expressed as



R?=1
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where y® is the model observation, yzsi) is the prediction and ¥ is the sample average value. Fig. 7 provides a closer

look into the predictions versus model observations on the validation set.
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Fig. 7. Comparison of prediction and observation of (a) Cr¢o¢ (b) €y, (¢) Cr (d) Cp.
Table IT R? for the neural network surrogates.
R? DNN Optimized
Creot 0.9943 0.9916
C; 0.9705 0.9845
Cr 0.9904 0.9946
Co 0.8226 0.9617

The R? values shows that two networks have similar prediction performance and high precision. In more detail, the

prediction precision of the Optimized Network is slightly higher than that of DNN, especially when predicting Cy.

Considering that the propeller rotational speed is constant, the values of C;, are very close when under various working

conditions, which is a challenge for the DNN network to predict concentrated values. The Optimized Network has

significantly improved the precision of predicted Cy,. In conclusion, the Optimized Network exhibits better prediction

performance compared with the DNN.
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The computational time of the quasi-steady simulation is about 2000s, while the neural network trained by NVIDIA
GeForce GTX 1650 takes sonly 0.06s to obtain the aerodynamic parameters for a specified case. It can be seen that the
application of the surrogate model greatly improves the prediction efficiency, which will be conducive to our
subsequent analysis. All of the simulations in this work are performed on an Intel(R) Xeon(R) Gold 6238R CPU
processor running at 2.20 GHz with 28 cores and 125 GB RAM memory.

We also investigate the generalization capabilities of the established surrogates. We extrapolated the two working
condition parameters V_, and a by 10% to test whether the surrogate model can make accurate predictions for data not

included in the training set. The prediction results with 10% V_ and a are shown in Fig. 8(a) and (b). As this figure

shows, DNN has the ability to predict data outside the training set better than the Optimized Network. The
generalization capabilities can be checked using Average Percent Error (APE) as shown in Table III. For Cr(¢, Cp,
and Cr, the APE of DNN is all within 3%, while the error of Cj, is less than 10%. is. Most of the errors that Optimized

Network predicts are in the 10% range, but in the region of 17%.
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Fig. 8. Prediction using two networks with 10% extrapolation of (a) V_, and (b) a respectively.

Table III APE for the neural network surrogates generalization capabilities..

APE(%) DNN Optimized

Crtor <2.99 <8.02
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c, <241 <14.05
Cr Xy <1551
Co <9.35 <8.38

Response surface model and kriging model are also built based on the Isight platform to evaluate the performance of

traditional surrogates and neural network surrogate. The prediction precision of the prediction is checked by different
methods using the Mean Absolute Error (MAPE) as shown in Table IV. We can conclude that the prediction accuracy of
the neural network surrogate is much higher than the traditional surrogate for all flight features in our study. The structure

of the neural network is able to fully integrate the shape of the duct and working condition parameters

Table IV Performance comparison of different surrogate models.

MAPE(%) Optimized Network response surface model kriging model
Creor 1.4066 2.3298 4.8709
C, 7.7888 12.3137 15.7977
Cr 1.4982 3.6011 7.8625
Co 0.9079 1.7740 1.1762

To summary, the deep learning based surrogate model exhibits high precision, efficiency and a certain generalization
capability. The prediction precision of Optimized Network is slightly higher than that of DNN, but DNN is better at
generalization capability. Compared with traditional surrogate models, deep learning-based surrogates can better explore
data feature relationships and have higher prediction accuracy and interpretability. In the future deep learning based

surrogate models can be applied to a variety of domains.

4. Conclusion

In this work, a deep learning based method for aerodynamic performance prediction of ducted propellers is proposed.
The established deep learning based surrogate model can predict the aecrodynamic performance within 0.06s under
different shapes and working conditions, which greatly reduces calculation consumption. Two neural networks based on
optimal network structures, the DNN and the Optimized Network, are used to build surrogate models and compared in
this paper. The training results show that the Optimized Network is more advantageous in terms of prediction precision.
For this problem, neural network surrogate model is more interpretable and performs better than traditional surrogate

models, such as response surface model and Kriging model.
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