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Abstract 

Void fraction is a critical parameter in the oil-air two-phase flow within the scavenge pipe of the aircraft engine 
lubrication system. It plays a significant role in analyzing fluid viscosity and density, pressure drop 
characteristics, and heat transfer performance in the scavenge pipe. Therefore, enhancing the accuracy of 
void fraction prediction is essential for improving the design precision of the scavenge pipe. Empirical 
correlations are commonly used in void fraction calculations. This study focuses on the scavenge pipe of the 
aircraft engine lubrication system and establishes void fraction prediction correlations based on different flow 
patterns to enhance prediction accuracy. High-speed photography is employed to simultaneously capture front 
and bottom views of the two-phase flow, constructing three-dimensional fluid images and measuring 247 void 
fraction data points. The extracted features from the captured images are input into machine learning methods 
for flow pattern identification, and the void fraction data points are classified according to different flow patterns. 
The performance of seven commonly used correlations is evaluated based on the classified void fraction data 
points. The root mean square error (RMSE) is used to determine the optimal result for each flow pattern. 
Results indicate that the RMSE for the void fraction correlations based on different flow patterns remains below 
7.5%, significantly improving the prediction accuracy compared to using a single void fraction correlation. This 
improvement is of substantial importance for the design of the scavenge pipe.  
 

Keywords: Scavenge pipe, Void fraction, Two-phase flow pattern identification, K-Nearest Neighbor Algorithm  
 

1. Introduction 
In the lubrication system of an aircraft engine, after lubricating and cooling the bearings, the oil carries 
a small amount of air into the scavenge pipe due to the high-speed agitation of the bearings. This 
results in a complex oil-air two-phase flow within the scavenge pipe. Void fraction, a fundamental 
parameter of two-phase flow, represents the proportion of gas within the fluid. The void fraction in the 
scavenge pipe directly affects the fluid's viscosity and density, which in turn influences the analysis of 
pressure drop and heat transfer characteristics within the pipe. Consequently, the precise calculation 
of the void fraction is crucial for the accurate design of the scavenge pipe. 
 
To obtain accurate void fraction values, many scholars have conducted experimental studies and 
proposed various correlations. Classic correlations include those by Lockhart and Martinelli [1], 
Bankoff [2], Thom [3], Zivi [4], Baroczy [5], Smith [6], Beggs and Brill [7], Chisholm [8], and Gomez[9]. 
However, these classic correlations are limited by experimental conditions. Therefore, some 
researchers have developed void fraction correlations suitable for specific conditions by considering 
these classic correlations comprehensively. For instance, Payne [10] et al. chose three classic 
correlations to find a suitable void fraction correlation for two-phase flow in hilly terrain oil pipelines, 
finding that the Beggs and Brill correlation performed best. Parrales [11] et al. selected the most 
suitable correlation from 50 void fraction correlations to describe two-phase flow mechanisms in 
double-pipe helical vertical evaporators. Woldesemayat and Ghajar [12] compared 68 void fraction 
correlations and proposed a correlation considering both flow patterns and pipe inclination angle, 
improving the accuracy of void fraction predictions. However, these studies indicate that a single 
correlation is used to predict the void fraction for all flow patterns. 
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Void fraction in gas-liquid two-phase flow is sensitive to changes in flow patterns [13], [14]. Therefore, 
proposing void fraction prediction formulas for different flow patterns can significantly enhance 
prediction accuracy. Hasan [15] developed a void fraction prediction model for bubbly and slug flows, 
effectively representing void fraction data for these two flow patterns. Shi [16] et al. used experimental 
data to evaluate prediction errors of 12 classic void fraction correlations, demonstrating that using the 
same prediction model for different flow patterns is unreasonable. They subsequently established a 
void fraction correlation considering five flow patterns, which fit the experimental data well. Thus, 
establishing void fraction correlations based on different flow patterns is an effective way to improve 
prediction accuracy. However, most studies in this field are concentrated in the petroleum and 
chemical industries, with experimental media primarily being air-water. There is a lack of research on 
the void fraction of oil-air two-phase flow within the scavenge pipe of the aircraft engine lubrication 
system. Compared to the pipelines in the petroleum and chemical industries, the two-phase flow in 
the scavenge pipe involves actual working media and exhibits more complex properties. Therefore, it 
is essential to conduct research in this area. 
 
Current measurement methods for void fraction in pipes include optical methods[17], [18], acoustic 
methods [19], radiation methods [20], [21], electrical methods [22], [23], [24], [25], [26], quick-closing 
valve methods [27], [28], and high-speed photography. These methods can be divided into invasive 
and non-invasive types. Invasive methods generally provide more accurate two-phase flow 
characteristics but can disturb the fluid flow and introduce impurities over time, causing measurement 
errors. Among non-invasive methods, acoustic methods are susceptible to environmental interference, 
radiation methods have safety issues, and tomographic imaging methods have low resolution and 
complex reconstruction techniques, limiting their application. High-speed photography, offering non-
intrusiveness, rich information, and high sampling frequency, is widely used in experimental research 
and industrial applications [29], [30], [31], [32], [33], [34]. Existing high-speed photography methods 
typically capture fluid flow images from a single perspective and use image processing based on 
bubble-shape assumptions to obtain void fractions. Considering the slip and interaction between 
phases within the pipe, researchers have employed dual-perspective imaging to acquire more 
complete flow information, enabling more accurate void fraction measurements [35], [36], [37]. 
 
Reviewing the literature reveals that establishing void fraction correlations based on flow patterns can 
effectively enhance prediction accuracy. However, there is a lack of research on void fraction 
prediction correlations for different flow patterns within the scavenge pipe of the aircraft engine. This 
study aims to develop a void fraction prediction model for scavenge pipe based on flow patterns, using 
the highly reliable and widely used high-speed photography method to capture oil-air two-phase flow 
patterns and void fractions. 
 
This study simulates typical operating conditions in aircraft engine scavenge pipe using high-speed 
photography to capture oil-air two-phase flow images from two different perspectives within the test 
section. Image processing techniques are employed to reconstruct the three-dimensional gas-phase 
image of the two-phase flow, enabling more accurate void fraction correlations. A machine learning-
based flow pattern recognition model is established using the captured images. Void fractions are 
then classified according to the corresponding flow patterns, and void fraction correlations are 
developed for different flow patterns. The second part of this article details the experimental setup, 
the third section introduces the methods used to establish the void fraction correlation, the fourth 
section presents the calculation results, and the fifth section summarizes the conclusions and 
prospects for future research. 

2. Experimental Set-up  
2.1 Introduction to the Experimental System 
The schematic diagram of the experimental system is shown in Figure 1. The experimental system 
consists of an oil supply system, an air supply system, an oil return system, and a multi-angle image 
acquisition system. The oil supply system and air supply system transport pure lubricating oil and air 
to the oil-air mixing section, respectively. The oil supply system comprises a lubricating oil tank, a 
solenoid valve (J4V310-08B), an oil pump (YCB1-1), a lubricating oil filter (WUA63 200P), a lubricating 
oil flow meter (80F08-1082/0, with an accuracy of 0.1%), and a check valve. The lubricating oil passes 
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through these devices in sequence before entering the mixing section. The air supply system consists 
of an air compressor, an air tank, a solenoid valve, a dryer, an air filter, an air flowmeter 
(JFQ20D107745, with an accuracy of 1% F.S), and a check valve. After the lubricating oil and air 
mixture thoroughly in the mixer, they enter the experimental pipeline. The multi-angle image 
acquisition system includes the experimental pipeline, an isosceles prism, panel light sources, a high-
speed camera (X213), and data acquisition equipment. After collecting fluid information through the 
multi-angle image acquisition system, the oil-air mixture enters the oil return system. The oil return 
system separates the oil-air mixture in the experimental pipeline. The oil-air mixture is pumped into 
the oil-air separator (YCB2.5/0.6-2), where the air is discharged into the atmosphere, and the 
remaining lubricating oil is cooled by a heat exchanger (AH1012-3P-CA3/B) before being recycled in 
the lubricating oil tank. 
 
As shown in Figure 1, in the arrangement of the multi-angle image acquisition system, one right-angle 
side of the isosceles prism is close to the experimental pipeline, and the other right-angle side is 
perpendicular to the imaging plane of the high-speed camera. The 45° reflective surface reflects the 
bottom flow image of the pipeline, enabling the high-speed camera to simultaneously capture both 
the front and the reflected bottom flow images of the pipeline. 
 
The inner diameter of the experimental pipeline is 14 mm. The experiment is conducted at room 
temperature, with 4050 lubricating oil and air as the experimental media, having densities of 972.2 
kg/m³ and 1.205 kg/m³, respectively, under normal temperature. The experimental range is as follows: 
air flow rate ranging from 0.1 to 31.623 m/s and lubricating oil flow rate ranging from 0.25 to 1 m/s. 
 

 
Figure 1 - Schematic diagram of oil-air two-phase flow experimental setup 

 

2.2 Datasets  
Before establishing void fraction correlations for different flow patterns in the scavenge pipe under 
various experimental conditions, it is necessary to identify the flow patterns in the fluid flow images 
from the experiment. The purpose of identifying flow patterns is to classify the images, which facilitates 
the establishment of different void fraction correlations. The flow pattern recognition model is built 
using the machine learning method, with the input data for machine learning referred to as the dataset. 
The choice of dataset affects the results of flow pattern recognition. Therefore, the dataset used for 
the recognition model is introduced next. 
 
In the experiment described in section 2.1, four different flow patterns were obtained: plug flow, 
stratified flow, wavy flow, and annular flow. Figure 2 presents typical images of these four flow patterns. 
The recognition model's dataset will be derived from these images. 
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(a) Plug flow (b) Stratified flow 

  
(c) Wavy flow (d) Annular flow 

Figure 2 - Schematic diagram of oil-air two-phase flow experimental setup 
 

To distinguish different flow patterns, features that can differentiate between the flow pattern 
categories need to be extracted from the images. Wavelet packet decomposition is a feature 
extraction method. After performing digital image preprocessing on the experimental flow pattern 
images, wavelet packet decomposition is used to extract features from the dataset images, yielding 
seven features: first-layer wavelet decomposition energy, second-layer wavelet decomposition 
energy, first-layer wavelet decomposition norm, second-layer wavelet decomposition norm, mean, 
approximate coefficient variance, and information entropy. The dataset for the recognition model 
consists of these extracted features. 
 
It is important to note that differences in the number of samples for each category in the dataset can 
complicate the training process of the recognition model. To prevent issues arising from class 
imbalance, 1000 sample images for each flow pattern were included in the dataset, totaling 4000 
images. The dataset is divided into the training and testing set, used for training the recognition model 
and evaluating its recognition capability, respectively. The number of samples in the training and 
testing set follows a 4:1 ratio. The distribution of samples in the dataset is shown in Table 1. 
 

Table 1 Sample distribution for flow pattern recognition model 

Flow pattern Plug flow Stratified flow Wavy flow Annular flow Sum 

Training data 800 800 800 800 3200 

Testing data 200 200 200 200 800 

 

3. Methods  
3.1 Flow Pattern Recognition Model 
It is essential to establish a highly accurate flow pattern recognition model to improve the accuracy 
of void fraction prediction models based on different flow patterns. This study selects the K-nearest 
neighbor (KNN) method as the flow pattern recognition model. The following is an introduction to the 
KNN method. 
 
The KNN algorithm is a simple and easily understandable algorithm that can overcome the problem 
of linear inseparability and is suitable for multi-classification problems. Figure 3 shows the schematic 
diagram of the KNN algorithm, where the horizontal and vertical coordinates represent two different 
features extracted from the sample. The dots in the figure represent sample objects, with different 
colors indicating different categories. The gray dot is the new sample point to be predicted. The KNN 
algorithm predicts the category of the new sample point based on the K nearest points. When K=3, 
as shown by the black dashed circle, the green category 1 sample points outnumber the yellow 
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category 2 sample points, so the prediction is category 1. When K=5, as shown by the black solid 
circle, the yellow category 2 sample points outnumber the green category 1 sample points, so the 
prediction is category 2. Therefore, the choice of K value is crucial in the KNN algorithm. 
 

 
Figure 3 - Schematic diagram of the K-nearest neighbor algorithm 

 
After inputting the training dataset from Section 2.2 into the KNN model, the model was trained with 
K values ranging from 1 to 30. It was found that the training set achieved the best identification 
performance when K=7. Subsequently, the model's identification performance was further tested 
using the test set with K=7. The confusion matrix of the recognition results for the test set, input into 
the trained model, is shown in Figure 4. In Figure 4, '1' represents plug flow, '2' represents stratified 
flow, '3' represents wavy flow, and '4' represents annular flow. The recognition error of the model is 
small, primarily occurring between stratified flow and wavy flow due to their similarity, as seen in the 
images in Figure 2. Overall, the recognition accuracy for the test set is 96.63%, indicating that the 
recognition model can effectively distinguish the four different flow patterns. 
 

 
Figure 4 - Confusion matrix of flow pattern recognition model 

 

3.2 Void Fraction Calculation Method  
Calculating void fractions through digital image processing is a common method for obtaining void 
fractions, as shown in studies by Sukamta [29] and Huang [38], among others. These studies derive 
void fractions by counting the gas phase pixel numbers in single-view binary flow pattern images. 
However, this method only considers the two-dimensional characteristics of two-phase flow along 
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the axial section of a circular pipe. For the specific structure of cylindrical pipes, the transverse 
section also contains information on the gas phase distribution. Therefore, extracting information 
from a single view can lead to inaccuracies in void fraction calculations. 
 
By capturing flow images from a vertical view of the pipeline, it is possible to reconstruct a three-
dimensional image of the fluid and calculate the volumetric void fraction. The volumetric void fraction 
comprehensively reflects the gas phase proportion in the two-phase flow, and the three-dimensional 
image of the fluid provides information on the gas phase distribution. This method will be used to 
obtain a more accurate void fraction in this section. 
 
Figure 5 shows the original image and the binary image obtained through digital image processing. 
By scanning the gas phase pixel information in the binary image, the obtained pixel information 
serves as input for reconstructing the three-dimensional image. Assuming that the bubble surface is 
smooth and the cross-section in the radial direction is elliptical, the binary images from the two views 
provide the major and minor axis information of the ellipse. By scanning the number of white pixels 
in the binary image, the major and minor axis information is obtained. After drawing the elliptical 
cross-section of each bubble in the radial direction, the ellipses are stacked along the axial direction 
to complete the three-dimensional reconstruction of the bubble. 
 

Original image Binary image 

  
Figure 5 - Original and binary image obtained through digital image processing 

 
As previously discussed, the KNN algorithm achieves a flow pattern recognition accuracy of 96.63%, 
effectively distinguishing different flow patterns. Therefore, the predicted image features are input 
into the recognition model to obtain the corresponding category, and the void fraction is calculated 
using the following formulas: 
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The parameter n refers to the n-th gas bubble in the plug flow. The parameter lk denotes the length 
of the k-th gas slug. The parameter d(k, i)represents the number of pixels in the cross-sectional height 
at pixel i. The parameter d refers to the diameter of the pipe. The parameter λ represents the actual 
length per pixel. The parameter N denotes the number of pixels in the image width. 
 
While calculating the void fraction, the three-dimensional image is constructed simultaneously. The 
three-dimensional images of four typical flow patterns are shown in Figure 6: 
 

 Original images The three-dimensional reconstruction images 

(a) 

 
 

(b) 

 
 

(c) 

 
 

(d) 

 
 

Figure 6 - Three-dimensional reconstruction images of flow patterns: (a) plug flow; (b) stratified 
flow; (c) wavy flow; (d) annular flow 

 
These three-dimensional images better reflect the spatial distribution and flow characteristics of the 
flow patterns, significantly improving the accuracy of void fraction and gas phase spatial distribution 
measurements. In void fraction calculation, the binary image from digital image processing provides 
the axial section void fraction, and the transverse section void fraction can be obtained from the 
sliced images. Additionally, combining three-dimensional and transverse section images allows for 
the calculation of volumetric void fraction, enhancing measurement accuracy. 
 

3.3 Void Fraction Calculation Correlation  
On the one hand, the void fraction can be obtained through the void fraction calculation method 
described in section 3.2. On the other hand, existing void fraction correlations from the literature are 
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used to calculate the void fraction under different experimental conditions, resulting in a predicted 
void fraction. By comparing the experimentally measured void fraction with the void fraction predicted 
by the correlations for different flow patterns, the suitable void fraction correlations for different flow 
patterns can be identified. 
 
Seven existing void fraction correlations were selected from the literature, as shown in Table 2. 
These correlations were used to calculate the void fraction for different flow patterns, and the 
calculated values were compared with the measured void fraction values for each flow pattern. The 
experimental conditions for different flow patterns are listed in Table 3. 
 

Table 2 Correlations for void fraction. 

 
Table 4 Number of data points for different flow patterns 

Flow patterns Number of points 

Plug flow 79 

Stratified flow 58 

Wavy flow 60 

Annular flow 50 

 

4. Result 
To evaluate the predictive capability of the void fraction correlations in section 3.3, the root mean 
square error (RMSE) was used. Equation 8 provides the expression for RMSE. 
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After comparing the void fraction correlations with the experimental values, the RMSE for each 
correlation in each flow pattern was obtained, as shown in Table 5. Among the seven void fraction 
correlations, the prediction accuracy varies for different flow patterns. The best-performing void 
fraction correlation also varies among the different flow patterns. The Bestion correlation performs 

Author Void fraction correlation 

Lockhart-Martinelli (1949) 0.64 0.36 0.07 1[1 0.28((1 ) / ) ( / ) ( / )) ]v l g l gx xα ρ ρ ρ ρ −= + −  

Flanigan (1958) 
11.0061 3.063( )v gJα
−− = +   

Baroczy (1966) 0.74 0.65 0.13 1[1 ((1 ) / ) ( / ) ( / )) ]v l g l gx xα ρ ρ ρ ρ −= + −  

Mattar and Gregory (1974) 
1

1.3( ) 0.7v g g lJ J Jα
−

 = + +   

Mishima and Hibiki (1996) 
1

(1.2 0.51exp( 0.691 ))( )v g g lJ D J Jα
−

 = + − +   

Jowitt (1982) {[1 0.796 ( 0.061( / ))]( ) 0.034(( / ) 1v g l g g l l gJ exp J Jα ρ ρ ρ ρ= + − + + −
 

Bestion (2002) 
10.25( ) 0.188( )v g g l l g gJ J J gDα ρ ρ ρ
−

 = + + −   
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best for plug flow, the Lockhart-Martinelli correlation for stratified flow, the Mishima and Hibiki 
correlation for wavy flow, and the Mattar and Gregory correlation for annular flow. The RMSE 
between the predicted and measured void fractions is less than 7.5% for these correlations. 
Therefore, establishing void fraction correlations based on different flow patterns can improve 
prediction accuracy. 
 

Table 5 - RMSE of void fraction prediction for different flow patterns using different correlations 

 
Figure 7 to Figure 10 show the predictive performance of the best void fraction correlations for the 
four flow patterns. It can be observed that the prediction deviation of the void fraction correlations 
in Figure 7 to Figure 10 mostly remains within ±10%. 
 

 
Figure 7 – Predictive performance of the Bestion correlation for void fraction in plug flow 

Author Plug flow Stratified flow Wavy flow Annular flow 
Lockhart and 

Martinelli 6.44% 7.48% 24.14% 9.21% 

Flanigan 10.74% 24.08% 9.75% 7.37% 
Baroczy 9.82% 16.5% 17.43% 9.27%% 

Mattar and Gregory 7.42% 9.48% 14.04% 4.77% 
Mishima and Hibiki 8.01% 10.95% 7.13% 14.25% 

Jowitt 7.61% 10.68% 19.1% 6.33% 
Bestion 5.67% 14.16% 33.57% 7.3% 
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Figure 8 – Predictive performance of the Lockhart-Martinelli correlation for void fraction in stratified 

flow 

 
Figure 9 – Predictive performance of the Mishima and Hibiki correlation for void fraction in wavy 

flow 
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Figure 10 – Predictive performance of the Mattar and Gregory correlation for void fraction in 

annular flow 
 

5. Conclusion  
This study investigates the void fraction of oil-air two-phase flow in the scavenge pipe of an aero-
engine lubrication system. To enhance the accuracy of void fraction prediction, void fraction 
correlations based on different flow patterns were established. First, the KNN flow pattern recognition 
model was developed using frontal and bottom views of oil-air two-phase flow captured by high-
speed photography. This recognition model achieved a flow pattern identification rate of 96.63%. 
The model was then used to classify the flow images under various conditions. Next, a three-
dimensional model of the two-phase flow was constructed to calculate the void fraction for different 
experimental conditions. Finally, the predictive capabilities of seven existing void fraction correlations 
were evaluated, and the four best correlations were selected for predicting the void fraction in the 
scavenge pipe's oil-air two-phase flow. The main conclusions are as follows: 
 
1. Among the seven existing void fraction correlations, none can accurately predict the void fraction 
for all flow patterns, consistent with the findings of Shi et al. [16]. Therefore, selecting the best void 
fraction correlation for each flow pattern can effectively improve the accuracy of void fraction 
prediction in the scavenge pipe's oil-air two-phase flow. 
 
2. Through evaluation and analysis of the existing correlations, the best-performing void fraction 
correlation for each flow pattern was identified, with the RMSE kept below 7.5%, and most data 
points having a prediction error within ±10%. Therefore, it can be considered that under conditions 
similar to those in this study, the Bestion correlation can be selected to predict the void fraction for 
Plug flow, the Lockhart-Martinelli correlation for Stratified flow, the Mishima and Hibiki correlation for 
Wavy flow, and the Mattar and Gregory correlation for Annular flow. This selection can ensure 
prediction accuracy to a certain extent. 
 
 
Since a supervised classification model, such as the K-nearest neighbor method, introduces some 
subjectivity, future research will aim to reduce this subjectivity and increase the dataset size to 
establish a more broadly applicable void fraction prediction model. 
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