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Abstract

The present work employs linear system techniques for the identification of aerodynamic loads over an airfoil
with a control surface subject to unsteady airflow at transonic Mach number. The response of the aeroelastic
system inputs in pitch, plunge and control surface degrees of freedom are computed by solving the unsteady
Euler equations. The mesh displacement simulating the airfoil movement is imposed using Radial Basis Func-
tions (RBFs) with compact support and compared against the rigid body movement for the plunge and pitch
degrees of freedom. Discrete steps are used to displace the mesh and the transfer functions are obtained
using the SIMO system identification methodology. As a preparation for the next steps of the research, open
and closed loop flutter stability analyses at low Mach number are performed on a NACA0012 airfoil with three
degrees of freedom. An optimal linear quadratic regulator (LQR) is designed to increase the flutter speed.
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1. Introduction

Aeroservoelastic phenomena are complex interactions of the inertial, elastic and aerodynamic forces
with the flight control systems of an aircraft which can lead to instabilities and induce a structural
collapse. With the evolution of control systems theory and the emergence of digital computers in the
mid-1960s, control laws were employed in the aircraft design to improve its flight dynamics charac-
teristics [1]. In these early developments the aerodynamic loads were obtained from an extension of
some form of the Generalized Theodosen’s Function or Jones’ approximation to Wagner’s function
to the three-dimensional case using, for instance, the strip theory [2]. One noticeable limitation of
the this approach is that all the aerodynamic frequency response relations are dependent solely on
the Theodorsen’s function. As the aeroeslatic systems become more complex, it is unlikely that the
transfer functions in all the degrees of freedom can be well modeled by only one impulse response
function. Vepa [3] applied Padé’s Approximats Matrices to enable different functions for each term in
the aerodynamic influence matrix. Edwards [4] used these matrices to compute the flutter boundaries
in a NACAO0012 airfoil obtaining good results on the design of active flutter suppression control laws.
rog [5] approximated the transfer functions employing Rational Function Approximationis (RFA) with
fixed poles. Eversman and Tewari [6, [7] improved this approach by allowing variable poles in the
RFAs, improving the approximation to the aerodynamic response.

An additional limitation arising by using the Theodorsen’s function and its approximations to obtain
the aerodynamic transfer functions resides in the fact that the solution is obtained from the potential
flow theory, which does not account for viscosity or transonic effects. It was not until the 1970s with
work from Jameson and Caughey [8] or Pulliam and Steger [9] that transonic flows described by the
Euler equations of fluid dynamics were numerically solved.

In the authors’ research group, Oliveira [10] first obtained the aerodynamic transfer functions of a
typical section using an in-house developed Computational Fluid Dynamics (CFD) code, employing
Eversman and Tewari’s RFAs with variable poles. Linear Time Invariant (LTI) systems techniques
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were employed to obtain the transfer functions in a Single Input - Multiple Output (SIMO) fashion
moving the airfoil as a rigid body for both plunge and pitch degrees of freedom (DOF). Later, Mar-
ques and Azevedo [11] demonstrated that for very small displacements the response of the nonlinear
Euler equations of motion (EOM) presents a linear behaviour warranting the application of LTI sys-
tems theory. This conclusion applies even for transonic Mach numbers. In that work the rigid body
mesh movement approach was also compared with a spring analogy approach showing that the
mesh motion introduced errors inviabilized the solution for the later. This is a significant limitation
for aeroservoelastic analysis as relative displacements of the mesh are required to model the con-
trol surface movement. In the present work Radial Basis Functions (RBFs) are used to simulate the
airfoil motion employing the methodology described in Lyrio et al. [12, [13]. A validation is performed
against for the transfer functions due to pitch and plunge displacements presented in Oliveira [10].
The transfer functions due to a third degree of freedom are also computed, namely aerodynamic lift,
pitching moment and hinge moment response to the displacement of trailing edge or control surface.
As a preparation for the next step of the present research, a control law is designed to delay the
flutter onset point of the three DOFs aeroelastic system in subsonic conditions with the aerodynamic
response obtained by Edwards [4]. The root locus of both open and closed loop system are presented
alongside a simulation of an initial disturbance on the airfoil angle of attack.

2. Theoretical Formulation

2.1 Aeroelastic Formulation

An aeroservoelastic analysis is performed on the three degrees of freedom typical section shown in
Fig. It is a two-dimensional representation of a wing section equipped with a control surface on
the trailing edge. The typical section is connected to a linear actuator not shown in the figure. The
actual control surface displacement relates to the system input by a linear function of the stiffness on
actuation chain.

Figure 1 — Typical section with a control surface, adapted from [14].

The equations of motion of the aeroelastic system are given by

Ms]{# (1)} + [K:l{n (1)} = {Qa(t)} + {G}u(), (1)

&(t)
{n}=qoal) ., (2)
B(t)

is the vector whose components are the non dimensional generalized coordinates describing the
displacements in both pitch (), plunge (§) and control surface deflection () degrees of freedom.

where:
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The generalized coordinate describing the displacement in plunge, &, is obtained by dividing the
physical coordinate, 4, by the typical section semi chord b, £ =h/b .

1 Xo X
[My] = | Xe o g+ aplc—a), (3)
X rpt+aplc—a) i

is the generalized structural mass matrix. It is described in terms of the dimensionless static unbal-
ances, xq and xg, as well as the dimensionless radii of gyration, r, and rg. The dimensionless static
unbalances are given by yq = Sq/mb and xg = Sg/mesh. Sq = mx,b is the dimensional static unbal-
ance of the typical setcion. It is function of m, the mass of the airfoil combined with the control surface,
x, the distance of the elastic axis to center of mass, and b the semi chord as shown if Fig |1} In the
same sense Sg = mesxgh is the dimensional static unbalance of the control surface, which is function
of mcs, the mass of the control surface. The reader should note that the static unbalance of the control
surface is also non-dimensionalized by the typical section semi-chord b. The dimensionless radius of
gyration in pitch of the typical section is given by rq = /I /mb?, where I, is moment of inertia of the

typical section measured on the pitch axis passing through the center of mass. rg =  /Ig/mcsb? is the

dimensionless radius of gyration of the control surface where Iz is moment of inertia of the control
surface measured on the hinge line.

wy, 0 0
K]=|0 rg0p O |, (4)

2 32

0 0 rp g

is the generalized stiffness structural matrix described in terms of the natural circular frequencies for

the plunge, pitch and control surface rotational modes, @, = \/k/m, ®q = \/ka/lo, and wg = 4 /kg /I,

respectively. k, is the stiffness of the typical section in the plunge structural mode, k,, is the stiffness
in the pitch structural mode and kg in the control surface structural mode. The vector containing the
aerodynamic loads, i.e, lift force, pitch moment and hinge moment, is given by

{Qa(r)} = | L= ] . (5)

The function u(r) is the control surface position commanded by the controller, whereas {G} is the
control input distribution vector which relates the applied hinge moment to the control surface position.
The above equations are dimensionless in terms of the generalized displacements, however not with
respect to time. In order to make them dimensionless also in terms of the time variable a reference
circular frequency, o,, considered herein equal to wy, is used to obtain the non dimensional time
variable 7 = rw,. Applying the chain rule on the time derivative, one gets the dimensionless form of
the equations of motion, Eq.[1] as:

M {71 (D)} + [KN{n ()} = {Qa(®)} + {G}u(@), (6)

The generalized mass matrix and the control input distribution vector, [M,] and {G} respectively, are
the same as previously described as none of their terms are dependent on time whereas

K] =1/} [K] (7)

and o
{Qa(1)} = 1/} {Qa(r)}. (8)
The aerodynamic lift force and pitch and hinge moments are obtained using the fluid mechanics Euler
equations solved by a CFD code developed in the research group. The flow solver is based on a cell

centred, finite volume scheme. The time marching scheme is a second-order accurate, 5-stage, ex-
plicit scheme. It does not include pre-conditioning schemes and its validation for transonic conditions

3
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is presented in Azevedo [15], Marques and Azevedo [11] and Oliveira [10]. Marques and Azevedo
[16] show that, as long as the analysis is restricted to small perturbations, the unsteady aerodynamic
force and pitch moment can be assumed as linear functions of the displacements in pitch and plunge.
This holds even at high Mach numbers, where the Euler equations have a strong nonlinear charac-
ter. A study is performed in the present work showing that the same linearity assumption can be
considered for the aerodynamic response to perturbations on the control surface angle. This con-
text warrants the use of the well-developed linear time invariant (LTl) system theory to predict and
simulate the behavior of the aeroelastic system applying the convolution operation. This operation is
facilitated if performed in the frequency domain where it converts to a simple multiplication operation.
In the frequency domain, the equations of motion, Eq. [6] are given by

S MR )} + [KH{x(5)} = 0als) +{G} % (5), (9)

where 5 = s/ w,, is the non dimensional Laplace transform variable; x(s) and % (s) are the Laplace
transforms of the generalized coordinate and control input distribution vectors, respectively.

2.2 System Identification Techniques Applied to Aerodynamic Transfer Functions

Linear continuous time invariant (LT1) systems have the property that the response to impulsive ex-
citations contains all information about the system and the response to every other input is obtained
by the convolution integral [17]:

ﬂg:hapm@yzéﬂﬂzy@—zym, (10)

where H(A) the transfer function of the system, which is the response of the system to the Dirac delta
function, or impulse function, applied to any of the system DOFs. As this function is the derivative
of the Heaviside function, or step function, it can be shown that the transfer function can also be
obtained applying a step excitation to the system’s input. As discussed by Noll and Azevedo [16], the
discretization process converts the continuous time aerodynamic EOMs to a discrete time system,
which enables the usage of the discrete equivalent functions to the continuous excitations, namely
unit sample (US) and discrete step (DS) functions. Muniz and Azevedo [18] showed that the DS

input, given by
0,n<0,
u[n]:{l Z>0.’ (1)

provides better results using the CFD code employed in this work at transonic Mach numbers.

On a SIMO system, the transfer function obtained from the solution of a DS input is computed per-
forming a Fourier Transform (%) on the difference operator (A) applied to the solution of the aerody-
namic coefficient of interest:

G[I’l] = y(A(SDS)) = f(SDS[n] — Sps[l’l — 1]) y (12)

where Spg is the array whose elements are the response of the aerodynamic coefficients. For the
typical section analyized in this work, the aerodynamic transfer function matrix reads then

CL(5) Cu(3) Cus)

— &Y & &)

- (5 (s (s
Qa(s)= %5 Em Ew |- (13)

CL(5) Cu(s) Cy(5)

B Be) PO

2.3 Rational Function Approximation (RFA)

In order to solve the aeroelastic EOMs, the tabulated values of aerodynamic transfer functions ob-
tained from the CFD solutions are approximated by rational functions. Vepa [3] proposed and Ed-
wards [4] implemented Padé approximants to the aerodynamic transfer functions. rog [5] employed
different poles on the rational terms which were further simplified by Eversman and Tewari [6] with



LINEAR SYSTEM TECHNIQUES APPLIED TO NONLINEAR AEROSERVOELASTIC ANALYSES

the removal of the Laplace variable on the numerator leading to the following RFA used in the present
work,

N P]
=Xy

Q. = [R) + [P]s' + [Po]s” + (14)
The coefficients of the rational polynomial, Pj, the number of poles and the poles themselves are
obtained by an optimized least-squares approximation method in which the nonlinear lag parameters,
y;j, are interactively evaluated by a Simplex Search Method [19]. The lag state variables for this RFA

formulation are given by
1

- s+ U*’}/j
The dynamic and input matrices of the state space equations, Eq. then become

Ma(s); n(s). (15)

0 I 0
A=|-M'k -M7'B —(Y)M7'py (16)
0 I — (%) mwl
and
B=[0 M 'G o], (17)

The sub-matrices M, B and K, elements of the matrix A, are given by M = M, — %pbz[Pz], B =
—1pbU[P] and K = K, — $pbU?[R)], whereas [R), [Pi], [P], ..., [Py] are those defined accordingly
to Eq. [[4]and the optimized least-square method.

2.4 Radial Basis Function with Compact Support and Mesh Movement

Marques and Azevedo [11] presented a comparison of two mesh movements strategies, namely rigid
body and spring analogy motions. It shows that the former provided adequate transfer functions.
However, the latter could result in significantly larger numberical errors with the current flow solver,
depending on the amount of perturbation resulting from the mesh motion. In the present work, the
prescribed motions are obtained by the application of a Radial Basis Function (RBF) interpolation
[12, 13} 20], given by

i=N
d(x)= Y o9 (|lx—xi]). (18)

i=1
where d(x) is the displacement of a node at the location x and ¢ is the RBF. x; is the location of the
RBF center used to limit the nodes being repositioned to those lying within the range of the compact
support radius, ry,,. The RBFs used in this work are the zero and second Wendland’s functions [21],

Wendland’s CO: ¢ (||x||) = (1—||x]|)?. (19)

2.5 Control System and Aeroservoelasticity

The aeroservoelastic analysis considers the effect of a control system interacting with the typical
section. Figure [2| shows an adaptation of the traditional Collar’s diagram to represent this new ele-
ment interacting with the inertial, elastic and aerodynamic forces characterizing the aeroservoelastic
system.

Equation [1| does not completely describe the dynamics of the aeroservoelastic system as the con-
troller logic is still absent in the formulation. The modern control theory tools employed in this work
for the controller design require the system represented in the state space form. The controller and
the aeroelastic system, or the plant, are combined in a feedback arrangement forming a closed loop
system. A full feedback system is characterized by all the outputs of the plant feeding the controller.
The outputs of the control loop, i.e. the control law, are the actual inputs to the plant. The state space
equations for a generic closed loop linear time invariant (LTI) system are given by

% (1) = A1) + Bl-Ky (1)) = [A — BRIy (1)

]
3p(t) = Cxy(0). (20)

5
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A: Aerodynamic Forces
E: Elastic Forces

I: Inertial Forces

K. Feedback Control Gain
L: Observer Gain

Figure 2 — Adaptation of the Collar’s diagram by the authors to include the control system.

Equation [20] holds for a linear control law in the form y. = u, = —[K]x,(r), where the sub-indices "p
and "¢" stands for the plant and controller related variables, respectively. The y. signal is the ouput
of the controler which is fed as the input of the plant, u,. The stability assessment is performed
employing a root locus analysis on the system’s poles obtained from the characteristic equation

det ([A— BK]—A[1]) =0, (21)

where [I] is the identity matrix, and A are the closed loop matrix eigenvalues. An appropriate choice
of the gain matrix, [K], can place the poles at any desired location of the complex plane. In this work,
an optimum Linear Quadratic Regulator is designed by minimizing the cost function

J= ;/Ow (x" (£)Ox(t) +u” (t)Ru(t) +2x" (t)Nu(t)) dt. (22)

In this equation, Q is the state-cost weighted matrix, R is the input-cost weighted matrix and N the
input-output cross matrix. The minimization procedure employs the "Igr" MATLAB® function to solve
for S in the Riccati equation, given by:

ATS4+SA—(SB+N)R ' (B"S+N")+0=0. (23)
The gain matrix K is then obtained using S as:
K=R'(B'S+NT) (24)

The solution algorithm is described in Arnold and Laub [22].
6
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3. Results

In this section, the validation of the process to obtain the aerodynamic response of a NACA0012
airfoil at M = 0.8 using RBF to execute the mesh displacements is presented. The assumption that the
solution of the Euler equations can be represented by a linear superposition with regard to the modal
motions, for small displacements, is also demonstrated for the control surface degree of freedom.
The development of a control law to delay the flutter onset point is also demonstrated alongside the
root-locus and time-domain simulations, after initial distrubances, to show the controller effectiveness.

3.1 RBF Validation

Muniz and Azevedo [18] demonstrated that the aerodynamic transfer functions due to pitch and
plunge displacements of an NACA 0012 obtained with rigid mesh (RM) displacements are better
identified using discrete steps to disturb the flow. The same approach is employed herein aiming
at the validation of the calculation of the transfer functions using RBFs, including the displacements
of the control surface. The aerodynamic response in this later case is obtained by the same CFD
code, which was previously employed to compute aerodynamic transfer functions using a rigid body
displacement of the grids, adapted to read the displaced mesh generated by a different code. A
constant time step of 0.003 dimensionless time units is used, and the total simulation time is 300
dimensionless time units. The amplitudes of the pitch and plunge motions are o = 1. x 10~* deg. and
h=1.x 1075 dimensionless length units, respectively. Marques and Azevedo [16] demonstrated the
suitability of the linearity assumption that justifies the application of the LTI system theory for these
step amplitudes. The radial basis function used to interpolate the mesh displacement is the CO Wend-
land Function. Lyrio et al. [12] suggest that the supporting radius should be 0.3 < rsup/CMA < 1.10.
Nonetheless, a supporting radius of 1. x 1072 nondimensional length units is used in this work. This
lower value is more suitable for the current application as the displacements herein applied are much
smaller than the ones employed in that work. An advantage of this approach is that it adds less
numerical errors to the solution as the perturbations on the mesh are confined to a smaller region
in space. Figure [3]illustrates the effect of moving the mesh and the control surface using the RBF
approach for an step input. The size of the steps in this picture are exaggerated for clarity.

E S
\
e =+

(a) Plunge displacement. (b) Pitch displacement. (c) Control surface deflection.

Figure 3 — NACA 0012 Airfoil Meshes - Exaggerated displacements showing the RBF effect.

Figure [4] presents the time histories of the lift and pitch moment coefficients for the airfoil subject to
step inputs in pitch and plunge. Only the initial 0.1 dimensionless time units of the response are shown
for clarity. The differences between the coefficients obtained from the simulations employing both the
rigid body and RBF motion approaches are also shown. The errors are of the order of magnitude
of 1073 of the response in each case, i.e., 0.1% of the corresponding coefficients. It shows that no
relevant differences between the two approaches can be observed. Figure 5] shows the aerodynamic

7



LINEAR SYSTEM TECHNIQUES APPLIED TO NONLINEAR AEROSERVOELASTIC ANALYSES

%10 - %107 «104 7><210'7
0 /// ™~ o —
| / 1.2 5r1) 1~
/. —— Rigid Body Motion m ‘w‘\‘ -~ 11 W
| ~~-- RBF Motion 1 B 4t o
o 5l Error ! | !
2 5\;\ 08% S35 o2
o | | \ B o a Rigid Body Motion =
— | 2N 06 2 o 2]\ -~~~ RBF Motion 4 2
o 1 : \ @ 1) / — b
-10 1/ 104 0 R rror *
i i |\ 2%
' 0.2 of N —————
50 : : : : ‘0 Ak : ' : : 13
0 002 004 006 008 0.1 0 002 004 006 008 0.1
Time Time
(a) C, response due to plunge input. (b) Cy response due to pitch input.
-4 108 4 108
4 x10 >6 1 x10 ><20
|
| ST
3l | o or / 15
I ) -1 A m
o ||| ’ S x s T ~Rigid Body Motion o
c 27 — . Z s/ -~~~ RBF Motion 102
=l [ Rigid Body Motion 135 510/ . E =
a || RBF Motion 25 e | fror 5
S 1 | — Error 5 o -2 il 5 5
3 8 /| ‘£
0 N e < 37 0 <
-1 -4 4 5
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Time Time

(c) C,, response due to plunge input. (d) G, response due to pitch input.

Figure 4 — Lift and pitching moment coefficient time histories, for calculations using RM and RBF,
and the absolute error.
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Figure 5 — Comparison of transfer functions obtained using RM vs RBF approaches.



LINEAR SYSTEM TECHNIQUES APPLIED TO NONLINEAR AEROSERVOELASTIC ANALYSES

transfer functions obtained from these same time histories. It is worth mentioning that there is a
smoothing effect that the RBF mesh displacements bring to the data at very low frequencies. An
enlarged view of the results in this low frequency range is shown in Fig. [6]

The results presented demonstrate the equivalence between obtaining the transfer functions using
RBF or RM mesh motions. Furthermore, the validation presented herein shows not only the equiv-
alence of both mesh displacements approaches, but it also demonstrates an improvement on the
quality of the identified transfer functions for the RBF mesh motion due to the smoothing effect. The
hinge moment coefficient (Chm) responses to both plunge and pitch inputs are presented in Fig.
for the RBF and RM mesh motions. The differences between the results obtained using both ap-
proaches are presented alongside the time histories. These differences are four orders of magnitude
less than the coefficients themselves. Therefore, the results indicate errors of less than 0.01%. Figure
also shows the transfer functions of the hinge moment due to both plunge and pitch inputs. The
smoothing effect at low reduced frequencies also appears on the hinge moment response. The plot
evidencing this effect will not be shown here as it is similar to the one presented in Fig.[6] Therefore,
the equivalence of the mesh motion approaches, RM and RBF, is also present in the hinge moment
transfer functions due to pitch and plunge inputs.

3.2 Linearity Assumption for Flap Motion

An assessment of the linearity assumption regarding the input amplitude of the control surface is
performed, similar to the one presented in Marques and Azevedo [16] for pitch and plunge inputs.
Figure |8| shows the resulting transfer functions relating the aerodynamic coefficients due to control
surface displacements for three step amplitudes, 6., = 0.001 deg., d.,; = 0.01 deg. and ., = 0.5 deg.
The transfer functions match for the first and second deflections but not for the third one. This exercise
demonstrates that 0.01 deg. is the limit for the linearity assumption and is the value assumed in the
forthcoming analysis.
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Figure 6 — Comparison of transfer functions obtained using the RM vs RBF approaches, in the low
frequency range.
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Figure 8 — Transfer functions due to control surface deflection showing the effect of the input
amplitude variation.

3.3 Subsonic Aeroservoelastic Analysis
The flow over the three degrees typical section at M = 0.2, also analyzed in this work, is well described
by the potential flow theory. Aerodynamic transfer functions are obtained from the Theodorsen solu-
tion to the potential flow and harmonic oscillations, and extended to generic displacements by Jones
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[23]. Aeroelastic analyses for both open and closed loop systems are performed on a typical section
with the structural properties presented in Table [1]

Table 1 — Typical section properties.
W = 100rad/sec c=0.6 a=0
o, = 50rad/sec Xa=0.2 &=0
wg =300rad/sec | rp =025 [{3=0
u =40 xp = 0.0125
a=-04 r% = 0.00625

The open loop root locus analysis is presented in Fig.[9 It shows the flutter onset point at U /bow, =
2.99. An optimal LQR controller is designed to delay the flutter onset point by minimizing the cost
function shown in Eq. (22). In that equation, the components of the state-cost and input-output cross
matrices, Q and N, are all set to zero. For the input-cost matrix, R, the identity matrix is assumed.
The control is designed to delay the flutter onset point to U/bw, = 3.25, which is set as the control
law design point. However, as one can be see in the closed loop root locus also presented in Fig. [9]
the flutter onset speed is actually raised to U /bw, = 3.65.

a0 Root Locus - Open Loop Typical Section 3DOF Root Locus - Closed Loop Typical Section 3DOF
' 4.0
s Present Work cl Mod
3.5 | =— Edwards, 1977 4’. 35 4 ; ap Moae
C - Flap Mode e

3.0 1 3.0

2.5 . 2.5
3., 3504
5 2.0 3 2.0

15 4 1.5 4 A - Plunge Mode

72-=2.99 —
hiy
101 B-Torsion Mode — / 101 -
. I et B - TOrsion Mode U -365
c._...._..“_... P
0.5 4 0.5 4 -/
A - Plunge Mode
0.0 T T T ' 0.0 T - T r
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.4 -0.3 -0.2 0.1 0.0 0.1
alwa a/wa
(a) Open loop root locus. (b) Closed loop root locus.

Figure 9 — Open vs closed loop root locus for a three degree of freedom airfoil employing potential
theory.

Figure [10| shows simulations in time of the typical section subject to an initial displacement on the
angle of attack of 1 deg. at U/bw, = 3.25. The effect of the controller is evident by a comparison
between the open and closed loop traces of the plunge (&) and pitch () DOFs responses. Whereas
on the open loop simulation they are divergent, in the closed loop analysis the control surface (), or
flap, acts effectively to stabilize the system. These results obtained with the potential theory will be
used on the validation of the methodology employed in this work for subsonic Mach numbers.

4. Concluding Remarks

This work presented the theoretical development of an aeroservoelastic analysis for an airfoil typical
section with three degrees of freedom: pitch, plunge and trailing edge control surface deflection. The
work highlighted the limitations of the rigid mesh displacement approach to compute the aerodynamic
response of the disturbed flow due to the impossibility of applying this methodology for the control
surface response. The implementation in the research group of the RBF approach to compute mesh
displacements is validated. The paper also demonstrates the linear character of the aerodynamic
response to the control surface inputs under small displacements. Finally, the development of a
control law to delay the flutter onset point is presented. The controller increases the flutter speed
by 22%, when compared to the open-loop behavior of the aeroelastic system. The root-locus plots
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Time History - Open Loop Typical Section 3DOF Time History - Close Loop Typical Section 3DOF
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(a) Open loop time histories. (b) Closed Loop time histories.

Figure 10 — Open vs closed loop time histories for initial condition a = 1 deg.

of both the open and closed loop systems are presented alongside a time simulation of an initial
disturbance in pitch angle to demonstrate the control law effectiveness.
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