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Abstract

The problems of in-flight vibration-based detection and localization of early-stage anomalies in propellers of Un-
manned Aerial Vehicles (UAV) that operate under uncertainties have been investigated. In-flight UAV propeller
anomaly detection is achieved via two unsupervised machine learning type methods, that operate within a Mul-
tiple Model (MM) framework and rely on data-driven stochastic non-parametric and parametric models for the
UAV dynamics representation, estimated from vibration signals from a single accelerometer. The first, referred
to as U-MM-PSD employs the Welch-based Power Spectral Density (PSD) estimates as dynamic-informed
and sensitive to propeller anomaly features, while the second, abbreviated as U-MM-AR, the AutoRegressive
(AR) parameter vectors, respectively. On the other hand, the in-flight UAV propeller anomaly localization is
tackled via the two supervised versions of the aforementioned methods, referred to as MM-PSD and MM-AR.
The methods’ performance is assessed using vibration signal measurements from the PADRE data repository
that have been obtained from a quadcopter vehicle operating under unknown conditions and uncertainties.
These measurements correspond to the UAV under nominal state and under four anomalies pertaining to a
propeller with a chipped edge located on a different rotor each time. The results indicate almost excellent
anomaly detection and localization performance of both MM based methods, with the one employing Welch
based PSD estimates achieving the highest correct detection rates for all propeller anomalies and the highest
(98.12%) correct localization score. Finally, a comparison with the typical One-Class Support Vector Machine
(OCSVM) and k-Nearest Neighbors (kNN) machine learning techniques has also been conducted, confirming
the superiority of the postulated MM based methods.!

Keywords: UAV anomaly detection, UAV anomaly localization, in-flight vibration signals, Multiple Model meth-
ods

1. Introduction

In the rapidly evolving field of unmanned aerial vehicle (UAV) technology, ensuring the structural in-
tegrity and operational reliability of components such as propellers is paramount. Propellers play a
vital role in the rotary-wing UAV’s stability and maneuverability, therefore structural anomalies (de-
fects) in their blades, such as surface damages, deformations, imbalances, and so on, may lead to
catastrophic failures during flight, endangering civilian lives and causing damage to property. Such
anomalies may occur during UAV normal operation primarily due to harsh operating conditions and
demanding mission requirements. Therefore, vibration-based anomaly detection and localization for
UAV propellers is of paramount importance, as it is expected to ensure the UAV’s safe operation and
reliable performance in various missions and applications [1], without necessitating the disruption of
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UAV normal operation. The basic principle upon which vibration-based anomaly detection and lo-
calization methods are founded is that any propeller anomaly induces changes in the UAV dynamics
which are, in turn, reflected in the measured random vibration signals and their characteristics.
Vibration-based anomaly detection and localization via machine learning type methods constitute
practical approaches for the structural integrity assessment of UAV propellers, using a reasonable
amount of historical vibration response signals without the need for physics-based models that may
not represent accurately the UAV dynamics [2]. In addition, they may allow for specific adjustments
and targeted repairs in the affected rotor, avoiding thus the entire UAV overhaul and leading to en-
hanced preventive maintenance and optimized UAV designs and protocols, significantly boosting
operational longevity and effectiveness.

Studies within the context of vibration-based anomaly detection via machine learning type meth-
ods, rely mostly on Neural Networks (NNs) [3, 4, 5, 6, 7, 8, 9, 10] and Support Vector Machines
(SVMs) [11, 12]. The employed features in these methods mostly consist of static quantities ex-
tracted from the vibration response signals in the time domain [3], such as the RMS, skewness and
kurtosis that provide gross UAV dynamics information due to their low dimensionality. Other NN-
based methods rely on certain spectrum-related amplitudes and frequency bandwidths in the fre-
quency domain [4], requiring the type of effects of the considered propeller anomaly on the vibration
response spectrum to be a-priori known. Most of the aforementioned methods achieve high anomaly
detection performance under different operating conditions and uncertainties (such as different fly-
ing altitudes, trajectories, speeds, and environmental conditions), yet they operate in a supervised
manner [13, 14, 15, 16, 12, 9, 8, 5] requiring vibration signals from the UAV with propeller anomaly
for their training, which may not be feasible in some applications. This supervised approach may be
attributed to the fact that the selected features obtained from the in-flight UAV vibration signals, such
as the RMS or targeted frequency bandwidths, are not sensitive to propeller anomalies and, perhaps,
are affected by operating conditions and uncertainties, thus the employed models need to recognize
specific complex patterns between the features corresponding to the nominal and the anomalous
UAV propellers. In addition, the inherent lack of transparency on the decision-making process of the
NN based methods, as well as the need for a large number of vibration signals from a single [8]
or multiple sensors [10] for their training, may compromise their applicability in critical applications
[15, 6].

On the other hand, studies within vibration-based localization via machine learning methods focus on
the determination of which UAV rotor exhibits propeller anomaly via Support Vector Machines (SVMs)
[11] and Random Decision Forests [15] and rely on static, scalar, frequency domain features, such as
the average vibration response spectrum amplitude within a narrow frequency bandwidth, requiring
a large number of vibration signals for their training in order to discriminate the propeller anomaly
location effectively. Other methods rely on the discrimination of changes in the vibration response
spectrum [13, 14] due to the different locations of the UAV propeller anomalies. Such methods
rely on more dynamics-informed feature vectors, and in particular on the Fast Fourier Transform
amplitudes of wider frequency bandwidths, thus the changes due to the different propeller anomaly
locations may be effectively reflected [13, 14]. However, their effectiveness requires prior knowledge
of the different location effects on the vibration response spectrum, and the operating condition levels
(speed, altitude, trajectory) to be known, thus limiting their adaptability and automation. Furthermore,
it should be noted that the methods described above focus on severe UAV propeller anomalies, such
as cracks or totally broken blades, with obvious effects on the vibration signals.

The goal of the present study is to investigate and address the problems of vibration-based detection
and localization for UAV propeller anomalies occurring at a single rotor using vibration measurements
from a single sensor. This is to be achieved under three main requirements: (a) achievement of high
propeller anomaly detection and localization performance, (b) robust detection and localization under
unknown uncertainties affecting the in-flight measurements, and (c) the use of limited instrumentation
and simple, interpretable decision procedures for the UAV state.

The sub-problem of vibration-based anomaly detection is presently tackled via two unsupervised
machine learning type methods that operate within a Multiple Model framework. These rely on
data—driven stochastic non-parametric and parametric models for the partial representation of the
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UAV dynamics as “viewed” by the employed sensor. The Multiple Models of the first unsupervised
method consist of Welch-based estimates of the vibration response Power Spectral Density (PSD),
thus this method is referred to as U-MM-PSD, whereas the second incorporates Multiple AutoRegres-
sive Models, and is abbreviated as U-MM-AR. The sub-problem of vibration-based anomaly localiza-
tion is tackled via the supervised versions of the aforementioned methods, which, for easy distinction
from their unsupervised counterparts, are referred to as MM-PSD and MM-AR, respectively. The
Welch-based PSD estimates are chosen to constitute the feature (also known as characteristic quan-
tity) of the U-MM-PSD and MM-PSD, whereas the AR model parameter vector is the feature of the
U-MM-AR and MM-AR ones.

The performance of the postulated methods for anomaly detection and localization is assessed using
in-flight vibration signal measurements from the PADRE data repository that have been obtained from
a quadcopter vehicle moving under unknown operating conditions and uncertainties. The employed
signals in this study correspond to the UAV under nominal state and under four propeller anomalies
of the same type (chipped edge propeller) located on a different rotor each time.

UAV propeller anomaly detection and localization consist of two phases, the baseline and inspection
phase, and involve the detection of changes in each method’s feature (pseudo-sufficient statistics)
using hypothesis testing between in-flight vibration signals obtained during the two phases. In partic-
ular, the baseline (off-line) phase of UAV propeller anomaly detection methods is based on in-flight
signals collected from a UAV in a nominal state without propeller anomalies, whereas the inspection
(on-line) phase on a fresh in-flight vibration signal corresponding to the UAV of unknown state (un-
known propeller condition). On the other hand, UAV propeller anomaly localization methods operate
within a classification framework with the baseline phase relying on vibration signals from the UAV
with propeller anomaly on specific, known, locations (rotors), and the inspection phase on a fresh
in-flight vibration signal from the UAV of with propeller anomaly at an unknown location (rotor).
Beyond introducing the aforementioned framework and methods, the study offers a number of addi-
tional features and unique characteristics, including the following:

+ Performance assessment for each of the MM based methods under unknown operating uncer-
tainty, using a minimal number of vibration signals from a single accelerometer.

+ Accurate detection and localization of early-stage UAV propeller anomalies, the effects of which
on the UAV dynamics are masked by the operating uncertainties via unsupervised and super-
vised versions of the postulated MM based methods, respectively.

» Detection and localization of early-stage UAV propeller anomalies rely on unique dynamic fea-
ture vectors that, compared to gross characteristics such as the RMS, or certain spectrum
frequencies it is sensitive to the subtle effects caused to the UAV dynamics by the different
propeller anomaly location, and additionally may separate them from corresponding effects due
to the unknown operating uncertainties.

» Performance comparisons with conventional machine learning methods for detection and local-
ization of UAV propellers anomalies.

2. Operating Frameworks

This section delineates the way the sub-problems of anomaly detection and anomaly localization for
UAV propellers are treated, including all necessary prerequisites for the presented methods’ proper
training and real-time operation using vibration signals from a single accelerometer mounted on a
UAV that operates under unknown uncertainty levels (speed, position, route, wind speed).

In-flight anomaly detection for UAV propellers

The problem of in-flight vibration based anomaly detection for UAV propellers is treated in an unsu-
pervised manner which is precisely stated as follows:

Given:

» Baseline phase: This is the training phase of the method which is performed once, using n
measurements of random vibration acceleration signals, say y;[t] (i =1,...,n) with 7 designating
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the normalized discrete time, each obtained from the “nominal” UAV consisting of nominal UAV
propellers without any structural anomaly (or fault).

* Inspection (on—line) phase: This phase is performed in real-time once the baseline phase has
been completed, using a new acceleration signal y, [¢] from the same sensor location used in the
baseline phase, corresponding to unknown (subscript ‘U’ designates unknown) UAV propeller
condition and, in turn, the unknown UAV health state.

Determine: if the condition of the UAV propellers is similar or not to that of the nominal ones and, in
turn, if the UAV state is “nominal” or not.

In-flight UAV propeller anomaly localization

The problem of in-flight vibration-based anomaly localization for UAV propellers constitutes an exten-
sion of the previous sub-problem and is treated separately in a supervised manner. This is precisely
stated as follows:

Given:

» Baseline phase: It is formulated once and off-line based on n random N-sample long vibration
response signals per propeller anomaly location j associated with a UAV rotor, that are denoted
asy![t] i=1,...,nand j=1,...,m with m designating the overall number of rotors).

* Inspection phase: It is performed in real-time (on-line) using exclusively a fresh response signal,
yu[t], from the same sensor location as in the baseline phase under unknown propeller anomaly

location or else rotor location; the subscript “u” designates the unknown propeller anomaly
location.

Determine: the propeller anomaly location that is in which rotor the propeller anomaly occurs.

Remarks: In-flight anomaly detection and anomaly localization for UAV propellers are presently
achieved in batch mode. In this sense, batches of short-duration vibration signals that may be ob-
tained during the UAV’s normal operation in a periodic mode or on-demand are used in the postulated
method, while the final decision-making is performed at the end of a data batch. Furthermore, the
former operates in an unsupervised manner, whereas the latter is supervised. Finally, they may
be performed either successively or individually, depending on the specific requirements of the UAV
operation and the objectives of the monitoring process.

3. The dataset, the propeller anomalies and preliminary analysis

3.1 The PADRE dataset

In the present study, the anomaly detection and anomaly localization for UAV propellers is based
on vibration signals from the recently introduced PADRE database [17]. This expanding, publicly
accessible repository contains sensor-generated data from flight sessions across different multirotor
propeller anomalies. Raw vibration signals, obtained from 4 accelerometers and 4 gyroscopes posi-
tioned close to the UAV propellers are available. Thus, for each one of the 8 sensors, measurements
from three dimensions are obtained, providing thus a total of 24 vibration signals unprocessed sig-
nals. The vibration signals are obtained with a sampling frequency of f; = 500 Hz. Details on the
experimental procedure may be found in [17].

3.2 The propeller anomalies, propeller anomaly locations and the employed vibration signals
The considered anomalies in the UAV in the present study are sourced from the PADRE data repos-
itory [17] and pertain to a propeller with chipped edge that occurs in various rotor configurations,
affecting thus one, two, three, or four rotors according to the dataset description in [17]. Since the
main aim of the present study is the detection and localization of early-stage propeller anomalies,
the single-rotor configuration is employed in order to highlight and address the significant challenges
posed by early-stage UAV propeller anomalies due to their subtle nature and minimal impact on the
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Table 1 — Details on the UAV health states and the vibration signals

UAV state No. of available signals
Nominal propellers (0000) 13
Single Chipped Edge propeller 52
(F1000; FO100; FO010; FOO0O01) (13 per anomaly location)

'0’: healthy propeller, '1’: indicating which of A;B;C;D rotors has a chipped edge (Fig.1)
Sampling frequency: 500 Hz; signal length: 6 144 samples (12.29 s)

UAV dynamics, often making them indistinguishable from normal operation variability and uncertain-
ties. In addition, these are to be achieved using vibration signals from a single sensor, without requir-
ing redundant instrumentation that may affect the flight performance, maneuverability, and energy
efficiency of the UAV [8]. Therefore, only the vibration signals from the vertically sensing accelerom-
eter on the second rotor (rotor B) of the Bebop 2 drone are used. An indicative schematic with
the accelerometer location in the UAV is shown in Fig. 1. The employed acceleration signals have
been obtained with the UAV operating under a “nominal” state with nominal propellers (no propeller
anomaly) and under 4 individual anomalous states pertaining to a propeller with a chipped edge lo-
cated in each of the four UAV rotors. The details on the UAV states and the pertinent notations are
summarized in Table 1.

Figure 1 — Bebop 2 drone schematic [17].

3.3 Effects of the structural propeller anomalies and unknown operating uncertainties on the
vibration signals and the UAV dynamics

The effects of anomaly pertaining to the chipped edge propeller and the unknown operating uncer-
tainties on the acceleration signals and the UAV dynamics are explored in this section. The UAV
dynamics are primarily represented via the Welch-based estimates of the Power Spectral Density
(PSD) using only the vibration signals from the single accelerometer on rotor B of the UAV (refer to
subsection 3.2).

In particular, Fig. 2 depicts indicative Welch-based PSD estimates (Hamming window length = 1 024
samples, Overlap = 95%, frequency resolution: 6 f = 0.5 Hz) corresponding to the UAV with no pro-
peller anomalies and with a chipped edge propeller on rotor A. Each PSD envelope shows the overall
effect of the unknown operating uncertainties on the UAV dynamics under the nominal and anoma-
lous state, indicated with blue and grey tint, respectively. Based on this, it is evident that the PSD
envelopes are significantly overlapped among them throughout the whole frequency bandwidth, im-
plying that the UAV dynamics under nominal and anomalous states are not clearly discriminated due
to uncertainty, thus confirming that the sub-problem of propeller anomaly detection is highly challeng-
ing as expected.

In addition, the effects of propeller anomaly location and the unknown operating uncertainties on the
UAV dynamics are illustrated n Fig. 3 through indicative Welch-based PSD envelopes corresponding
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to single chipped edge fault located in two different rotors, rotor A and rotor C. These envelopes
demonstrate that the operating uncertainties significantly impact the UAV dynamics, "masking" the
effects corresponding to different propeller anomaly locations, rendering thus the sub-problem of
propeller anomaly localization particularly challenging.
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Figure 2 — Effects of the unknown operating uncertainties on the UAV dynamics under the nominal
(no propeller anomalies) and anomalous (chipped edge propeller) state via Welch-based PSD
envelopes: [13 vibration signals per UAV state are used in each plot.]

4. The employed machine learning type methods for UAV propeller anomaly detection
and localization

4.1 Description of the Multiple Model (MM) framework

The machine learning type methods for tackling the sub-problems of UAV propeller anomaly detection
and localization operate within an Multiple Model (MM) framework [18], and rely on either nonpara-
metric or parametric data-based representations of the partial UAV dynamics. In particular, two MM
based methods that operate in an unsupervised manner are employed for UAV propeller anomaly
detection. The first method, abbreviated as U-MM-PSD, employs the Welch-based PSD estimates,
whereas the second, referred to as U-MM-AR, relies on AutoRegressive (AR) models. The super-
vised versions of these methods are employed for UAV propeller anomaly localization, which, for
distinction, are abbreviated as MM-PSD and MM-AR, respectively. The steps of the employed MM
based methods are presented individually for each sub-problem in the following sections.

4.1.1 Steps of the unsupervised Multiple Model methods for UAV propeller anomaly detec-
tion

The two unsupervised MM based methods, U-MM-PSD and U-MM-AR, for the sub-problem of UAV
propeller anomaly detection consist of two steps that are concisely described in the sequel:

Step 1. Baseline (training) phase: This includes the formulation of the MM representation of the
healthy UAV dynamics (no propeller anomaly), designated as M, that consists of a set of individual
data-based representations per method (Welch based PSD estimates and AR models) each des-
ignated as M,; (i =1,...,n) with n standing for the M, dimensionality) and estimated based on a
vibration signal obtained from UAV under nominal state.

Step 2. Inspection phase: In this step, the propeller anomaly detection is performed, and the current
unknown UAV state is determined as nominal or not. Thus, a similar model as those used in the
baseline phase, designated as M,, is estimated based on fresh vibration signal obtained from the
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Figure 3 — Effects of the unknown operating uncertainties on the UAV dynamics under two
anomalous states (propeller anomaly located on rotors A and C) via Welch-based PSD envelopes.
[13 vibration signals per UAV state are used in each plot.]

same sensor location as in the baseline phase under unknown propeller condition and thus UAV
health state. Then, the detection of the UAV propeller anomalies is based on determining whether
or not the current model M, belongs to the MM representation M,. In the positive case where no
anomalies are detected, the propellers and, in turn, the UAV are declared as nominal, whereas
in the negative case, the propeller exhibits anomalies, thus the UAV is declared as not nominal
(anomalous). The decision-making mechanism is then based on a distance metric S between the
current model M, and M,,. This is currently defined as the minimum of individual distances between
M, and all components of M, that is:

S:=mind(M,;,M,), fori=1,...,n (1)

with d(M,;,M,,) designating a statistical distance between the two individual models M, ; and M,. For
the MM-PSD method, the Euclidean distance is employed, which is defined as:

d(Mois M) =\ (o — i) (Boi — Bu) @)

with p,; and p, constituting the method’s feature vector and designating the Welch based PSD esti-
mates corresponding to M, ; and M, models, respectively. On the other hand, the MM-AR method is
based on the following Mahalanobis distance:

d(M,;,M,) = \/ (6.i-6.) "B (6.i-0.) 3)

with éo,i and 6, constituting the method’s feature and standing for the estimated AR parameter vectors
associated with M,; and M, models, respectively, while B,; designates the estimated covariance
matrix of 6, ;.

4.1.2 Steps of the supervised Multiple Model methods for UAV propeller anomaly localiza-
tion

The steps of two supervised methods, MM-PSD and MM-AR, for the sub-problem of UAV propeller

anomaly localization are concisely described in the sequel:
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Step 1. Baseline (training) phase: This includes the formulation of m MM representations of the UAV
dynamics under chipped-edge propeller anomaly with m standing for the overall UAV rotors number
(herein m = 4). Thus, each MM representation corresponds to a specific rotor indicating a propeller
anomaly location under the unknown operating uncertainties and is designated as M; (j = 1,2,...,m)
with the subscript “;” indicating the j-th propeller anomaly location (rotor). Each M; representation
consists of a set of models denoted as M,.j fori=1,2,....mandi=1,2,...,n (n designating each M;
dimensionality), estimated from the vibration response signals y{ [t] (refer to section 2.).

Step 2. Inspection phase: This step includes the localization of the chipped edge propeller. Thus, a
current model, designated as M, (the subscript “u” designates unknown propeller anomaly location),
estimated from a fresh response signal y,[t] (see section 2. ). Then, localization is achieved by
classifying the M, to one of the M; MM representations of the baseline phase. The decision-making
mechanism is based on a distance metric D; between the current model M, and each M. This is
currently defined as the minimum of individual distances between M, and all components of M, that
is:

D:=minD; fori=1,2,...,n (4)
j

with D; = rninid(Ml-j,Mu) forj=1,2,...,mand d(Mij,M,,) designating a statistical distance between the
two individual models. The employed statistical distances are the same as those described in section
4.1.1, thus are omitted for space conservation.

The vibration response PSDs that are utilized in the MM-PSD method for the representation of the
UAV dynamics are estimated via the Welch method (Matlab function: pwelch.m). For the MM-AR
method, all models are estimated via Ordinary Least Squares (OLS) [19, pp. 81-83] Matlab func-
tion: ar.m, while model order selection is based on the Bayesian Information Criterion (BIC) and the
Residual Sum of Squares normalized by the Signal Sum of Squares (RSS/SSS) [19, pp. 505-507],
and model validation on typical model residual whiteness examination [19, pp. 512-513].

5. Performance assessment
5.1 The assessment procedure

The methods’ performance assessment for the UAV propeller anomaly detection and localization is
based on an iterative “rotation” approach, akin to S-fold cross-validation [20, p. 33], which prevents bi-
ased results from specific vibration signals used in training, thus ensuring statistically reliable method
evaluations and comparisons. For the sub-problem of propeller anomaly detection, a certain number
of vibration signals corresponding to the UAV healthy state are randomly selected in each “rotation”
for the training of MM based methods, while the rest signals are used in the inspection phase. This
procedure is repeated until all available signals are included in the training phase at least once. The
same process is applied for the methods’ performance assessment in the sub-problem of propeller
anomaly localization, with the difference that, an equal number of vibration signals are now randomly
chosen from each UAV propeller anomaly location for the training phase, while the remaining are
utilized in the inspection phase.

The study utilizes 20 rotations for the methods’ performance assessment, leading to 80 inspection test
cases per UAV state (Nominal, FO001, FO010, FO100 and F1000) and thus to a total of 400 and 320
inspection test cases for the sub-problems of propeller anomaly detection and anomaly localization
respectively; see more details in Table 2.

5.2 UAV propeller anomaly detection results and comparisons

Step 1. Baseline phase: n =9 response signals are employed per rotation for the construction of the
MM representation M, representing the nominal UAV dynamics under unknown operating uncertain-
ties. Thus, the MM representation consists of n = 9 Welch based PSD estimates for the U-MM-PSD
and n =9 conventional AR(164) models for the U-MM-AR method. The details on the estimation of
the vibration response PSD and the AR models are presented in Table 3.

Step 2. Inspection phase: The vibration response signal y,[t] from each of the 400 test cases of the
inspection phase (see Table 2) is considered to be obtained under unknown UAV propeller conditions
and a single model M,,, either Welch-based PSD or AR model is estimated and then employed in the
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Table 2 — Details on the methods S-fold assessment procedure for both propeller anomaly detection
and localization sub-problems.

Propeller Anomaly
No. of Rotations Nominal State  F1000 F0100 F0010 FOO001
Rotor A RotorB  RotorC Rotor D
Baseline (training) phase

1 9 9P 9b 9b 9b
20 180 180 180 180 180
Inspection phase
1 4 4 4 4 4
20 80 80 80 80 80

¢ Only used in propeller anomaly detection; 400 inspection signals
b Only used in propeller anomaly localization; 320 inspection signals

Table 3 — Details on the MM based methods for both propeller anomaly detection and localization
sub-problems.

Method Models Feature vector Distance type
dimensionality

U-MM-AR / MM-AR AR(164) 164 Mahalanobis

U-MM-PSD / MM-PSD  Welch based PSD 1024 Euclidean

Baseline (training) phase
Multiple Model (MM) dimensionality:
U-MM-AR / U-MM-PSD: M, dimensionality n =9 (see section 4.1.1)
MM-AR / MM-PSD: M; dimensionality » = 9 for j-th anomaly location (j = 1,...,4) (section 4.1.2)
Inspection phase
U-MM-AR / U-MM-PSD: Anomaly detection based on step 2 in section 4.1.1.
MM-AR / MM-PSD: Anomaly localization based on step 2 in section 4.1.2.
AR model: Estimation via OLS [19, p. 204], Matlab function: ar.m,
selected model AR(164); BIC: —1.62; SPP: 37; Condition Number: 8.24 x 10>
Welch based PSD: Estimation via Matlab function: pwelch.m;
Hanning window length = 1 024 samples; Overlap = 0.95%; frequency resolution: § f = 0.49 Hz

pertinent MM based method for propeller anomaly detection (see details in Table 3 and also refer to
section 4.1.1). The anomaly detection results for the U-MM-PSD method are presented in Fig. 4 in
terms of scatter plots of the method’s distance metric S and Receiver Operating Characteristic (ROC)
curves for all test cases. Specifically, the § distance metric values corresponding to the nominal
state of the UAV are clearly discriminated from those associated with the propeller anomalies FO001,
F0010, and F0100 and slightly overlapped with those from F1000, indicating almost perfect anomaly
detection performance through the U-MM-PSD method. This effectiveness is also confirmed by the
corresponding ROC curves, which indicate a 100% correct detection rate (True Positive Rate, TPR)
and 0% false alarms (False Positive Rate, FPR) for the propeller anomalies FO001, FO100, and F1000
and 88.75% correct detection rate for FO010.

Similarly, Figure 5 displays the distance metric S and Receiver Operating Characteristic (ROC) curves
from the U-MM-AR method, which exhibits slightly lower detection performance as it reaches a lower
57% correct detection rate for the propeller anomaly F1000, compared to the 88.75% achieved by
the U-MM-PSD method. However, the U-MM-AR method performance in detecting the propeller
anomalies FO001, FO010, and F0100 is also excellent reaching 100% correct detection and 0% false
alarms.

A critical comparison with two variants based on the One-Class Support Vector Machine (OCSVM)
classifier [21] that has been widely used [11] is also conducted following the same assessment pro-
cedure as described in section 5.1. The OCSVM classifier (Matlab function: ocsvm.m; Standardize-
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Figure 4 — Propeller anomaly detection performance assessment of the U-MM-PSD method in terms
of scatter plots of the distance metric S (a) and ROC curves (b). [80 inspection test cases per
anomalous state (400 in total)].

Data=true; KernelScale="auto") is trained with the Welch PSD estimates and the parameter vector of
the AR models, thus leading to two OCSVM variants, a non-parametric (OCSVM-PSD) and a para-
metric one (OCSVM-AR), for a fair comparison with the respective MM based methods. Figure 6
summarizes the Area Under the Curve (AUC) values as obtained from the MM based methods and
the OCSVM variants for all inspection test cases. It is clear, that the MM based methods achieve
almost excellent performance, as pointed out in 5.2, whereas the performance of the corresponding
OCSVM variants is good but inferior. In particular, the performance of the OCSVM-PSD is high, with
the corresponding AUC values reaching 100% correct detection rate, yet failing to detect the propeller
anomaly F0010. Conversely, the highest AUC value of the OCSVM-AR variant peaks at 78% correct
detection rate, with significantly inferior performance compared to the PSD variant and its MM based
counterparts.

5.3 UAV propeller anomaly localization results based on the MM Framework and compar-
isons

Baseline phase: n = 4 response signals are employed for the construction of each MM representation
M; (Welch based PSD estimates and conventional AR(164) for MM-PSD and MM-AR, respectively)
representing the dynamics of the UAV under unknown uncertainty and a single early-stage propeller
anomaly located at the j-th rotor as described in section 4. Thus, each j-th MM representation
consists of n =4 Welch-based PSD estimates and AR(164) models for the MM-PSD and MM-AR
methods, respectively. The details on the estimation of the vibration response PSD and the AR
models are summarized in Table 3.

Inspection phase: The vibration response signal y,[t] from each of the 320 inspection test cases of
the inspection phase (see Table 2) is considered to be obtained under unknown propeller anomaly
location and it is driven through the two MM based methods.

To facilitate a direct comparison for the MM based methods, the widely used machine learning tech-
nique, k-Nearest Neighbors (k-NN), has been employed [22]. The k-NN method (Matlab function:
fitcknn.m; search method: Exhaustive; no. of nearest neighbours: K = 2; BreakTies: Nearest;
Weight: Equal) is trained using Welch PSD estimates and the parameter vector of the AR models,
resulting in two variants: a non-parametric (k-NN-PSD) and a parametric (k-NN-AR). Both MM and
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Figure 5 — Propeller anomaly detection performance assessment of the U-MM-AR method in terms
of scatter plots of the distance metric S (a) and ROC curves (b). [80 inspection test cases per
anomalous state (400 in total)].
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Figure 6 — Comparison of the unsupervised MM based methods (U-MM-AR,U-MM-PSD) for
anomaly detection with their respective OCSVM counterparts (OCSVM-AR, OCSVM-PSD) in terms
of AUC values [80 inspection test cases per anomalous state (FO001;F0010;F0100;F1000), 400 in
total per method].

k-NN based methods employ the same S-fold assessment process detailed in section 5.1. It is im-
portant to note that for the k-NN-PSD and k-NN-AR methods, Euclidean and Mahalanobis distance
metrics have been utilized, respectively, allowing for a meaningful comparison with the MM based
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methods.

The results for the MM based and the k-NN based methods are presented through the corresponding
confusion matrices displayed in Fig. 7. Each column of the confusion matrix in the upper left 4
x 4 submatrix corresponds to the actual location of propeller anomaly, with each row representing
the predicted anomaly location. The j,j-th cell indicates the number of times the actual /-th anomaly
location was predicted as the j-th anomaly location, presented as a ratio with respect to the total
number of actual inspection test cases. Correct “localizations” appear along the diagonal, while
incorrect ones are in the off-diagonal elements. The rightmost column indicates the percentages of
correctly (in green) and incorrectly (in red) localized test cases with respect to the total inspection test
cases for each location. Conversely, the last row showcases the percentages of correctly (in green)
and incorrectly (in red) localized test cases relative to the total test cases (80 of each location).
Lastly, the lowest and rightmost cell specifies the overall correct localization rate (in green) and false
localization rate (in red) across all four locations. Notably, as observed in the previously mentioned
cell of the matrices, the MM-PSD method slightly overpowers the MM-AR, achieving an overall correct
localization rate of 98.12% compared to the 96.57% achieved by the latter. The k-NN-PSD method
performs well, with an overall correct localization rate of 93.67%. On the other hand the k-NN-AR
method shows less effectiveness in localizing the propeller anomaly for this task, achieving a lower
overall correct localization rate of 87.75%.

(a) MM-AR based method (b) MM-PSD based method
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5% | 75% | 0% | 12% | 3.43% 75% | 0% 0% 0% | 1.88%
(¢) k-NN-AR based method (d) k-NN-PSD based method
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Figure 7 — UAV propeller anomaly localization results via confusion matrices: (a) the MM-AR based
method, (b) the MM-PSD based method, (c) the k-NN-AR based method and (d) the k-NN-PSD
based method(correct localizations indicated by green — mislocalizations by red; 320 inspection test
cases).

6. Discussion

The results achieved by the MM based methods demonstrate their efficacy in vibration-based detec-
tion and localization of early-stage UAV propeller anomalies. The unsupervised MM based methods
achieved high anomaly detection rates under unknown operating uncertainty using a minimal number
of vibration signals for their training and a single sensor, with the U-MM-PSD method, in particular,
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reaching higher true positive rates and minimal false alarms compared to the U-MM-AR for all pro-
peller anomalies. The supervised versions of the above methods witnessed similar performance in
localizing the early-stage UAV propeller anomalies, with the MM-PSD method reaching the highest
correct localization score. It should be noted that the performance of the typical OCSVM and k-NN
methods has been very good, yet inferior to the MM based ones, revealing thus the superiority of the
latter over typical machine learning models for anomaly detection and localization. The good perfor-
mance of the OCSVM and k-NN methods may be attributed to the fact that their training has been
based on dynamics-informed features, such as the Welch PSD estimates and AR model parameter
vector.

The above methods may lead to real-time, accurate health monitoring for a single UAV, while with
proper training, their application may be extended to multiple UAVs that operate in collaborative envi-
ronments, providing shared situational awareness among all UAVs in the fleet. The above methods
are automated and executed on-line, allowing UAVs within a collaborative fleet to autonomously as-
sess their operational status and communicate this information across the system. This autonomous
communication is crucial for maintaining fleet integrity and operational continuity, especially in com-
plex flight formations or coordinated tasks where the failure of a single UAV could compromise the
entire operation.

7. Concluding remarks

In this study, the vibration-based detection and localization of UAV propellers with early-stage anoma-
lies with no obvious effects on the in-flight vibration signal characteristics under unknown uncertainty
have been investigated and addressed. In particular, two machine learning methods within a Mul-
tiple Model framework that rely on data-driven stochastic non-parametric and parametric models,
estimated from vibration signals of a single sensor, for the UAV dynamics representation have been
employed. The anomaly detection sub-problem, has been tackled via two unsupervised methods, the
U-MM-PSD and U-MM-AR, that employ the Welch-based Power Spectral Density estimates and Au-
toRegressive parameter vectors as sensitive to propeller anomaly features, respectively. On the other
hand, the UAV propeller anomaly localization sub-problem has been achieved via their supervised
counterparts, MM-PSD and MM-AR, which rely on the aforementioned respective features. Based
on all the above, as well as the pertinent state-of-the-art, the main concluding remarks of the study
are:

(i) A key advantage of the postulated MM based methods is that UAV propeller anomaly detection
and localization are achieved using dynamics-informed features, the Welch based PSD esti-
mates and the AR parametervectors, which unlike the static, scalar, quantities, exploit maximum
information of the UAV dynamics enhancing thus their sensitivity to UAV propeller anomalies.
Another advantage of the postulated methods is that their training requires a limited number
of in-flight acceleration signals using only a single sensor, while a minimal number of hyperpa-
rameters (Welch window length, AR model order selection and MM dimensionality) needs to be
determined, thus pinpointing their simplicity.

(ii) The U-MM-PSD method achieves almost excellent performance in detection of the considered
propeller anomalies, achieving a correct detection rate of 100% for FO001, FO100, F1000 and
87.75% for the FO010 anomalies scenarios, outperforming the U-MM-AR method which also
reaches 100% correct detection for FO001, FO100, and F0010, but lagging behind with a cor-
rect detection rate of 57% for the F1000 propeller anomaly. The comparison with the OCSVM
variants has indicated that the performance of the OCSVM-PSD is very good, reaching 100%
correct detection rate for propeller anomalies FO001, FO100 and F1000, yet failing completely
to detect FO010. On the other hand, the OCSVM-AR variant shows significantly inferior perfor-
mance, reaching the highest correct detection rate 78% for FO010.

(iii) Similarly, the MM-PSD method slightly surpasses the MM-AR, achieving an overall correct local-
ization rate of 98.12% compared to 96.57%. The comparison with the k-NN variants indicated
that both k-NN-PSD and k-NN-AR are performing well yet still lagging behind, achieving an
overall correct localization rate of 93.67% and 87.75%, respectively.

13



In-flight vibration signal based detection & localization for UAV propeller anomalies under uncertainty

(iv) A more general remark is that the employed MM methods may offer valuable information bout
the overall UAV state under unknown operating conditions and uncertainty. In addition, their
simplicity renders them a highly promising option for real-time applications concerning UAVs
that may also constitute part of a broader UAV Condition Based Maintenance strategy.
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