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Abstract

Surrogate model of flow-field can fast provide flow-field information for various geometries in aircraft conceptual
design. Due to the limited sample size of high-fidelity data, it is hard to achieve high prediction accuracy of the
flow-field using single-fidelity surrogate models. In this paper, we develop a multi-fidelity modeling method of
flow-field, of which the large amount of low-fidelity data can offer trends of the surrogate model, and the small
size of high-fidelity data can calibrate model precision. However, flow-field data in various fidelity accumulated
in historical designs could be heterogeneous. To handle this problem, we propose a data extension strategy
using proper orthogonal decomposition (POD) and artificial neural networks (ANN) to transform the data into
the same size. During the modeling, POD extracts low-dimensional features from high-dimensional flow-field
data, while ANN maps low-fidelity data to corresponding high-fidelity data. The flow-field prediction of the NACA
4-digit airfoils is carried out to validate the proposed modeling method, and the results indicate that the modeling
cost can be obviously reduced in comparison with the modeling purely by small size of high-fidelity data.
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1. Introduction

High-fidelity (HF) flow-field data for various geometries is very important for evaluating aerodynamic
performance and aerodynamic shape optimization in the process of aircraft conceptual design. Based
on HF flow-field data, we can obtain accurate aerodynamic forces, moments, pressure distributions,
and acquire flow-field features as well, such as vortices and shock waves. Traditionally, flow-field data
can be obtained by experiments or computational fluid dynamics (CFD). Since experiments are quite
expensive and maybe infeasible for hypersonic flight states, CFD simulations are usually used to fetch
HF flow-field data. However, CFD simulations require fine meshes and solving complex turbulence
models [1-3], which is time consuming for aerodynamic performance evaluation along trajectory, on-
line health monitoring and aircraft control.

In recent decades, researchers have begun to explore new alternative methods for the rapid and
accurate evaluation of flow fields, particularly focusing on surrogate models that utilize machine
learning techniques. In comparison with traditional CFD methods, this method constructs surrogate
models by accumulating HF flow-field data, then predicts accurate flow-field data for new geometries
or new flight conditions within seconds or even milliseconds. Typical surrogate models for flow-field
prediction include deep learning models and reduced-order models (ROMs). Deep learning models
construct a direct mapping between input parameters and high-dimensional flow-field through neural
networks, such as fully connected neural network (FCNN) [4, 5] and convolutional neural network (CNN)
[6, 7]. Due to the high-dimensional feature of flow-field data, the construction of deep-learning models
often necessitates the use of complex and extensive neural networks, which presents a significant
challenge. In contrast, ROMs tend to find low-dimensional representations of high-dimensional flow-
field by dimensionality reduction algorithms, such as proper orthogonal decomposition (POD) [8] and
dynamic mode decomposition (DMD) [9]. Then the flow-field can be obtained by simple interpolation
methods in the low-dimensional space combined with flow reconstruction in the high-dimensional
space. Commonly used interpolation methods include radial basis function interpolation [10], Kriging
model [11, 12] and shallow back propagation neural network [13, 14].

Surrogate modeling relies on a large amount of accumulated data from different sources during design
in real application. Since the accumulated data varies in fidelity and data in different fidelities are very



MULTI-FIDELITY SURROGATE MODELING BASED ON DATA EXTENSION USING POD AND ANN

likely to be heterogeneous, traditional single-high-fidelity (SHF) surrogate models necessitate
numerous computationally expensive HF data to guarantee accuracy. To effectively utilize limited HF
data and the accumulated data in different fidelity, researchers have proposed multi-fidelity (MF)
surrogate models, in which low-fidelity (LF) data can offer trends of flow-field characteristics and HF
data can calibrate model precision [15].

Typical MF surrogate models are categorized into two kinds: one introduces transfer learning to build
a fine-tuned network with limited HF data, based on a pre-trained model constructed using sufficient
LF data [16, 17]; the other builds surrogate models to map LF data to HF data [18-20]. For the former
kind, the effectiveness of transfer learning is affected by the network architecture and the quality of MF
data. If the HF and LF data show significant difference, the model parameters of the pre-training model
cannot offer meaningful trend for building HF model in the fine-tuning stage. Moreover, most transfer-
learning-based MF surrogate models studied are built on homogeneous data in various fidelity, which
IS not suitable for the heterogeneous data in reality. The latter model can fully utilize flow-field
characteristics offered by LF data. But it can only fuse data in two different fidelities, and cannot deal
with data in various fidelities and in heterogeneity.

In this paper, we propose a MF surrogate modeling method that is suitable for heterogeneous flow-
field data in various fidelities. We use an extension model to extend data into homogeneity, then
construct a prediction model using extended homogenous data to predict HF flow-field. The flow-field
prediction of airfoil validates the proposed method, and indicates that the method can significantly
improve modeling efficiency and reduce total modeling cost by 11.08% with high prediction precision.

2. Multi-fidelity Surrogate Modeling Method
In this section, we first introduce the procedure of the proposed MF surrogate modeling method, then
briefly explain the POD and ANN involved in the method.

2.1 The procedure of the developed multi-fidelity surrogate modeling method
The proposed MF surrogate modeling method comprises two main components: the extension model
and the prediction model. The extension model transforms LF data into data of the same size as the
original HF data, while the prediction model achieves HF flow-field prediction for new geometries. The
procedure of the method is presented in Figure 1.
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Figure 1 — Procedure of the proposed MF surrogate model.

Details are as follows:
First, the whole sampling plan X={X,X,} is generated by the random Latin hypercube sampling,

where X is for LF samples and X, is for HF samples. The ratio of X, and X is defined as MF ratio 7
which affect the accuracy and efficiency of MF model. Then the HF dataset U,. and LF dataset U .

respectively based on X, and X are computed. In our work, we use the data from the coarse
unstructured grid as LF data, and the data from the fine structured grid as HF data. Then two POD
models respectively for U, . and U, are built, which are expressed as

Ur=A: '(DLF+ULF 1)
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Upe = Ape - @ + Uy (2)

Where ® . and ® . are the mode matrices of the two POD models; A . and A, are the
corresponding mode coefficients matrices; U is the mean matrix, where each row of U is the mean
vector U . The definition of U is given in section 2.2. The mode coefficients for LF data consist of A,
and A ., , which are respectively based on X, and X, . These mode coefficients are low-dimensional
representations of the flow-field data, thus it is much easier to fuse data in low-dimensional space.
Then the entire mode coefficients are divided into two subsets S, and S,, of which S, ={A,.,A .} are
the mode coefficients from the sampling plan X,, and S, ={A .} are the mode coefficients from the
sampling plan X, . Since the mode coefficients matrices A, and A ., correspond to each other, we
can map A . to A, by the ANN, which is defined as the extension model A, = f_ (A,) -

By using the extension model, we can obtain the predicted mode coefficients matrix A, of the subset
S, by

AHFext = fext (ALFZ) (3)

Thus, we can obtain the predicted HF flow-field of X, through POD reconstruction

Ut = Arrer - @i + Uy . Subsequently a new HF flow-field dataset U, ={U.r, Uproq b is constituted.

In general, we can fuse various-fidelity flow-field data in heterogeneity by the same way, and finally
obtain a dataset consisting of both original and predicted HF data.

Then another POD model based on the new dataset U, is built, and the mode coefficients matrix
can be computed by solving

U = A ’ (I) + U HFnew (4)

HFnew HFnew HFnew

Finally, the prediction model fy can be constructed by the ANN, which maps X to A, , expressed
as

AHFneW = fpre (X) (5)

In the predicting stage, the mode coefficients vector a,, of a new geometry X, can be predicted by

apre = fpre(xnew) (6)

Then the HF flow-field u,, could be acquired through POD reconstruction

upre = apre : (I)HFneW + ljHFneW (7)
Details of the POD and ANN are briefly introduced in the following sections.

2.2 POD-based flow-field feature extraction
POD is a linear model decomposition method used in dimensionality reduction to reduce the complexity
of describing a system, particularly in structures and fluids.

Consider a data matrix U=[u,U,,...,u.]" € R™" with m samples where each sample is an n-

dimensional vector U, =[u,,U,,...,u.]". The main objective of POD is to find a set of POD modes that

represent the directions with maximum variance. The coefficients of these modes are low-dimensional
representations of the original high-dimensional data.

To ensure the POD modes capture the directions with maximum variance of the data, zero-centered
technique is used

U =u, —0 (8)
where U, is the original kth sample, u, is the standardized kth sample and Uzzim:lui /m. Then the

covariance matrix C e R™™" of the standardized data U" =[u;,u;,...,u;]" e R™" is computed by
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1o v e
C:E[U -(U)'] 9)

The covariance matrix summarizes the relationships between different features and their variances. To
extract these features, we perform the eigen decomposition and obtain the eigenvectors and
eigenvalues of C

C-V=D-V (10)

where, V=[v,,V,...,v.]" eR™™ represents the matrix of eigenvectors and D =diag([d,,d,...,d_]) e R™"

represents the diagonal matrix composed of all the eigenvalues. Each POD mode ¢, corresponds to
an eigenvector and the corresponding eigenvalue is

(U)" -y,
o = T (11)

Modes with the largest eigenvalues capture the most important features. Sort the modes by
eigenvalues in descending order and select the top r modes ® =[¢,,0,,...,9,]' €R™" to retain key
features. The number of modes r can be chosen using the relative information content (RIC) criterion

Zir:ldi

E=Cr 12)

“ Zinlldi

The RIC indicates the percentage of total variance captured by the selected POD modes. For reduced-
order modeling, RIC value of 99.9% or higher are commonly set. The mode coefficient matrix

A=[a,a,,...a,]" e R™" for the chosen POD modes can be computed by

A=U".®" (13)

Mode coefficient a, represents the coordinates of each sample in the POD latent space.
Therefore, the approximate reconstruction of the original ith data U, is expressed as

Gizai-<l)i+ﬁ (14)

In this paper, the pressure field is modeled, thus the data matrix is expressed as U, =[u,;,u,,,...,u, T .
2.3 ANN-based flow-field prediction

The Artificial Neural Network (ANN) is a computational model inspired by biological neural networks in
the human brain. The backpropagation neural network (BPNN) is one of the most widely used
feedforward artificial neural networks, known for its strong nonlinear mapping capability and highly
adaptive learning ability, making it suitable for HF flow-field prediction and MF model establishment.

A typical BPNN consists of an input layer, one or multiple hidden layers, and an output layer. The kth
hidden layer has ns, neurons. Figure 2 shows the structure of a BPNN with two hidden layers. The

neural network maps n-dimensional input vector X =[x,X,,...,X,]' to m-dimensional output vector

y=[Yi Yo Ynl-

The training process of BPNN mainly includes three steps: weight initialization, forward propagation
and backward propagation of errors.

Details are as follow:

(1) Weight Initialization: Initialize the weights matrix o, Of each neuron using a specific strategy.

(2) Forward propagation: Process input data x layer by layer through the network towards the output
layer. If there is a difference between the predicted output § and the actual output y, the error is

calculated by a loss function, typically mean squared error (MSE)
18 .
MSE = EZ(yi -9 (15)
i=1

(3) Backward propagation of errors: Propagate the error back through the network, updating the
4
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weights matrix o of each neuron using a learning algorithm to continuously adjust the output

updated
closer to the desired value.

For our proposed MF model, the specific meaning of input x and output y depends on the types of
models. For the extension model, x represents the mode coefficients of LF data a,.,, and y represents
the mode coefficients of HF data a,- . For the prediction model, x represents the geometric parameters,

and y represents the modal coefficients of the extended HF data a

HFnew *

Input Layer Hidden Layer Output Layer
Figure 2 — Structure of BPNN.

3. Subsonic flow-field prediction of the NACA 4-digit airfoils
The developed MF modeling method is validated and assessed by predicting subsonic flow-fields of
the NACA 4-digit airfoils. The flow-field data by the Reynold-averaged Navier-Stokes (RANS) solver
with fine grid is used as HF data, while the flow-field data by the Euler solver with sparse grid is used
as LF data. Then the flow-field model is built under the design condition of M-=0.55, a = 3° and

Re=5.8x10°. Data acquirement and model construction are both performed on a PC with the Intel Core
i7-10750H and NVIDIA RTX 2070.

3.1 Sampling and grids for building the multi-fidelity surrogate model

The NACA 4-digit airfoils are parametrized by the CST method based on a NACAQ012 airfoil with six
parameters respectively on the upper and lower surface. Thus, each airfoil is described by 12
parameters. The extension of these 12 parameters is specified within +30% of the parameters of the
NACAO0012 airfoil. Five hundred samples are generated by the Random Latin hypercube sampling
within the extension, of which 400 samples are used for training and the remaining 100 samples are
used for testing. The entire design space of the airfoils is illustrated in Figure 3. The whole 400 samples
in training set are taken as X and X, is randomly chosen based on the MF ratio 7.

Figure 3 — Airfoil design space (dashed line represents baseline airfoil).

In our work, the heterogeneity of data on different fidelities is reflected on the number of grid cells and
the type of grids. Two sets of baseline grids with different levels of sparsity are used, which are
respectively shown in Figure 4 and Figure 5. Grids of the remaining airfoils are generated by the RBFs-
based mesh deformation technology [21].
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Figure 4—Fine grid (Structured, 82044 cells). Figure 5—Corse grid (Hybrld, 7161 cells).

3.2 Setups for CFD simulations
The CFD simulations are performed using the commercial software Fluent. Table 1 compares the lift
and drag coefficients in different fidelities of the baseline NACA0012 airfoil, and the computational cost
required to generate samples for each fidelity level as well.

Table 1 — Comparison of MF data.

Fidelity Grid size Grid type Physics model cl cd Cost/s
High 82,044 Structured RANS 0.400 0.009 274.26
Low 7,161 Hybrid Inviscid 0.541 0.008 79.20

The trends of the lift and drag coefficients of the high- and low-fidelity samples in the test set are
respectively shown in Figure 6 and Figure 7. Although there is a significant difference between the lift
and drag coefficients of HF and LF samples, they generally maintain the same trends of variation.
Additionally, because the LF data are obtained using the Euler solver, the friction drag is not considered,
thus the LF drag coefficient is much smaller than that from using the RANS solver. Figure 8 compares
the HF pressure field with the LF pressure field of the first test sample. It can be seen that the isobars
of the HF flow-field are smoother than those of the LF sample due to finer grid.
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Figure 6 — Lift coefficient comparison. Figure 7 — Drag coefficient comparison.
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a) HF pressure field. b) LF pressure field.
Figure 8 — Comparison between HF pressure field and LF pressure field.

3.3 Error evaluation methods and model settings
The accuracy of the proposed MF surrogate modeling method is qualified by measuring its mean

prediction error E and maximum prediction error E,__ on the test set of samples. The definition of E
and E,_, are given as follows

E@ _ Zi:1|ei(k)| (16)
n
£, = max(e) an
k=1
E=YE© (18)
m q=1
= D ES (19)
m q=1

where superscript q refers to the qth sample in test set; n is the number of vertex in a grid; " is the

relative error between the predicted pressure and the original pressure at each vertice; m is the number
of test samples.

The parameters of the MF surrogate modeling are set as follow. The first fifteen (r =15) modes are
chosen for dimensionality reduction and data reconstruction. The extension model has two hidden
layers, which have equal number of neurons ns, =ns,=16. While the prediction model has two layers,
of which ns; =10 and ns, =16, respectively. In addition, to evaluate the proposed MF modeling method,
we compare its performance with the SHF model. To avoid the influence of the POD models and the
neural network architectures on model accuracy, the number of the POD modes are the same for the

two models, and the ANN architecture also stays the same. To minimize the impact of random factors
in the neural networks, both the MF and SHF models are independently trained ten times.

3.4 Discussions and results

3.4.1 Effect of MF ratio 7

In current analysis, the number of LF samples is fixed at 400, we only change the number of HF
samples to change the MF ratio. The mean relative errors and maximum relative errors of the extension
model and prediction model on the test set are respectively presented in Figure 9 and Figure 10. It can
be seen that the errors both of the prediction model and the extension model tend to stabilize when ¢
is larger than 0.6, that is, when the number of HF samples exceeds 240.

When z is smaller, the model error is significantly larger. This is because the error of the extension
model is larger when there are fewer HF samples. When 7 increases, the accuracy of the extension
model improves. The original HF samples can correct some of the errors introduced by the extension

7
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model.
Additionally, the extension model exhibits significantly larger error on the test set in comparison with
the prediction model. This is because the HF samples obtained through the extension model have

some errors relative to the original HF samples. However, the original HF samples in the sample set
plays an important role in error correction during the modeling.

14 -
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—A— PredictionModel

Mean Relative Error/%

Multi-fidelity Ratio

Figure 9 — Mean relative error E of the extension model and prediction model on the test set.
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Figure 10 — Maximum relative error E_, of the extension model and prediction model on the test set.

3.4.2 Efficiency comparison with SHF model

To further evaluate the performance of the proposed method, the MF surrogate model is compared
with the SHF model constructed purely by the HF samples. The mean relative error and maximum
relative error on the test set are respectively compared in Figure 11. It can be seen that, when the
number of HF samples is less than 360, with the same number of HF samples, the prediction error of
the MF model is smaller than the SHF model. This indicates that introducing LF samples into the MF
modelling, can effectively improve model accuracy. When the number of HF samples is 240, the
accuracy of the MF model (Emean=0.0260%, Emax=0.397%) is almost the same as that of the SHF model
(Emean=0.0253%, Emax=0.388%) established with 400 HF samples. This indicates that under the same
prediction accuracy, the MF model can reduce the number of HF samples by about 40%.
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Figure 11 — Curve of relative error for both models as a function of quantity of HF samples.

The total costs of building the MF and SHF models are further compared in Table 2. The cost of the
model construction is the average training time for repeatedly training the model ten times. The cost of
model construction is the average training time for training ten models repeatedly. From data
acquisition to model training, the total cost of the proposed MF model is reduced by 11.08% in
comparison with the SHF model. It is worth noting that the time consumptions for solving the high- and
low-fidelity subsonic flow-field around airfoils are relatively close. Especially, when the proposed
method is applied to predict surface pressure field of 3-D complicated geometries, the MF model will
show better performance.

Table 2 — Efficiency comparison of the MF and SHF model.

Model Data acquisition/min Model construction/s Total cost/min  Cost reduction/%
SHF HF: 400x4.57=1828.00 30.70 1828.34 /
HF: 240x4.57=1096.8 Model 1: 24.77
MF 1625.73 11.08
LF: 400%x1.32=528.0 Model 2: 30.80

*Model 1 refers to the extension model and model 2 refers to the prediction model

3.4.3 Pressure field prediction by the MF model

To evaluate the accuracy of flow-field prediction by the proposed MF modeling method, the predicted
pressure field on test dataset are shown in this section. Based on the analyses in the previous section,
a MF ratio of 0.6 is set for establishing the MF model to predict the airfoils’ pressure fields. Figure 12
shows the distributions respectively of the mean relative errors and the maximum relative errors for the
100 test samples. Due to the randomness of the neural networks, most of the errors vibrates, and some
errors of the test samples are significantly larger. However, the average relative error of all samples
remains below 0.08%, and the maximum relative error remains below 1.25%. This indicates that the
proposed MF model can predict the flow-field with good accuracy.

The predicted pressure field and absolute error contours of four test samples with the largest relative
error are shown in Figure 13. The absolute errors are primarily located near the leading edge and the
upper surface. This is because the POD model itself shows errors in the nonlinear regions with large
pressure gradients on the upper surface of the airfoil. Therefore, to further improve the accuracy of the
MF model, a reduced-order model with higher precision can be adopted.
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Figure 12 — Error distribution of proposed MF model on test set.
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no.95 respectively).

4. Conclusion
In this study, we have developed and validated a MF surrogate model that using POD and ANN to
enhance the efficiency and accuracy of aerodynamic data prediction. The construction of the extension
model allows for the effective augmentation with limited HF data by enriching it with abundant LF data,
thereby reducing the computational cost typically associated with aerodynamic analyses.
Our results demonstrate that the proposed MF model can significantly outperform traditional SHF
surrogate models, particularly in scenarios where the available HF data are sparse but there is an
abundance of LF data. The proposed MF model can reduce the number of HF samples by about 40%
without sacrificing prediction accuracy, thus significantly reducing the reliance on the quantity of HF
samples. The analysis on the time consumption shows that the reduction of HF samples saving a total
cost of 11.08%. This enhancement in efficiency is valuable for the fast prediction of surface flow-fields
on large three-dimensional aircraft. This also demonstrates the practicality of the proposed MF model
in real engineering applications.
Future work will focus on refining the integration techniques between the POD and ANN, exploring the
application of the model to more complex aerodynamic scenarios, and enhancing the model's
adaptability to handle even larger discrepancies in fidelity levels.
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