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abstract 

In aviation accidents, human factors account for the majority causes instead of the 

technical factors like the system failure and especially. One of the aviation human 

factors researches is the analysis of pilot tasks and their effect on the cognitive load of 

the pilots. Since the visual channel is an important channel for the pilot to obtain 

information and feedback, this study focuses on the differences between the pilots’ 

visual scan patterns in normal tasks and emergency tasks in order to reveal how pilots’ 

basic visual state changes during flight tasks. Ten airline pilots were invited to 

participate the experiment to complete flying normal and abnormal tasks in a simulated 

cockpit. The study examines the differences of scan patterns during different flight tasks 

by eye movement features-average fixation duration, saccade frequency and entropy. 

The results from the statistical analysis showed that these eye movement features were 

significantly different among tasks of different cognitive load levels. Besides, this paper 

uses a variety of classification algorithms to test the classification ability of different 

eye movement features in different tasks, including the algorithms of K-means, SVM 

(support vector machines) and LR (logistic regression). The results show that the SVM 

and LR with supervised learning have higher classification accuracies, respectively) 

compared with the unsupervised K-means when combining with three eye movement 

metrics.  
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Introduction  

In aviation accidents, human factors account for the majority causes instead of the 

technical factors like the system failure[1]. Increasingly complex human-computer 

interfaces (HCIs) and tasks are creating the challenges to the cognitive load of the pilots 

that could affect their decision and behaviors during tasks. Therefore, an important 

research direction of aviation human factors is the analysis of pilot tasks and their effect 

on the cognitive load of the pilots. 

The task process is closely related to the information obtained by the pilot, in which the 

visual channel is an important channel for the pilot to obtain information and feedback. 

Pilots’ visual scan pattern can reflect pilots’ attention allocation, cognitive states and 

their tasks being performed. Besides, pilots’ visual scan pattern can be captured 

continuously and measured objectively through tracking eye movements without 

interrupting the pilots’ activities[2]. Therefore, pilots’ visual scan pattern based on the 

eye movements is an important content of cockpit human factors research. 

Researchers focused on the pilots’ visual scanning behaviors during a flight task to 

study the pilots’ mental and physical workload, situation awareness, cognitive states 

and task performance, and then to evaluate the design of the HCIs. Sirevaag et al [3] 

studied the indices of oculomotor activity of helicopter pilots during simulated low-

level flight task, and revealed that task time resulted in longer blink duration and fewer 

and later reactive saccades. Merwe et al [4] reported that eye movement could be an 

indicator of situation awareness during a simulated flight task, where the fixation rate 

and dwell time reflected the information acquisition, and entropy reflected the new 

information acquisition activities. Yu et al [5] measured the effect of visual scanning 

patterns on situation awareness through the use of eye-tracking tools in a flight 

simulator and found that pilots with better situation awareness had lower perceived 

workload. Lu et al [6] found that the pilots had different visual scanning mode according 

to the flight mode and their experience during simulated flight task. Schriver et al [7] 

investigated expertise differences in pilot decision making by measuring a hypothesized 

attention-action link. Jin et al [8] studied how expert and novice pilots can distribute 

their visual attention to improve flight performance.  

Pilots’ visual scan pattern is influenced by the task procedures and task demands, in 

additional to an indicator of the pilot cognition state and performance. The pilots scan 



different displays and obtain the relevant information in terms of the different tasks. 

Their visual scan path was dependent on the task procedure. Pilots’ gaze sequence and 

EEG were used to identify different flight tasks in Yang et al study[9]. Doane and Sohn 

[10]found that fixation time was much more in the uncertain and high-risk task than that 

in the certain task. Li et al [11] examined the pilots’ attention distributions between 

chasing a moving target and a stationary target, and found pilots’ visual behavior is 

significantly associated with task characteristics.  

Pilots’ visual scan patterns are composed of fixations, saccade and other basic visual 

information, which reflect pilots’ basic states and visual requirements from the task. We 

hypothesize that the combination of multiple eye movement metrics can provide a 

reliable means to identify complex tasks. This study focuses on the differences between 

the pilots’ visual scan patterns in normal tasks and emergency tasks in order to reveal 

how pilots’ basic visual state changes during flight tasks. 

 

Experiment 

Subjects 

Nineteen male airline pilots with 30-50 years were invited to participate the experiment. 

They were paired into 10 flight crews in which one pilot served as the Pilot Flying (PF) 

and the other pilot as the Pilot Monitoring (PM). They were informed of the purpose 

and procedures of the experiments and signed an informed consent form prior to 

participation. 

Apparatus 

The experimental apparatus included a A320 full-flight simulator and an eye tracker. 

The simulator was a qualified simulator (level D) conforming to the guidelines 

presented in the Federal Aviation Administration Advisory Circular (AC120-40B) – 

Airplane Simulator Qualification, which has also been used for pilot training for 

commercial airlines. The eye tracker, Tobii glasses 3 (Tobii Technology, Stockholm, 

Sweden) at a sampling rate of 100Hz, is used to track the pilot’s eye behavior and record 

eye movement data. 



Task procedure 

The pilots are asked to complete flying different tasks in a simulated cockpit. These 

tasks include normal and abnormal tasks, which could impose different cognitive load 

on the pilots. 

During the normal task, the pilots should perform an altitude-keeping task, while during 

the abnormal task, a system failure with engine on fire, occurred during the cruise phase, 

and the pilots should deal with the failure.  

Before the experiment, all pilots were trained with a flight profile to help themselves 

familiar with the experiment procedure and the eye tracker.  

Data process  

The metrics of eye movements 

The study examines the differences of scan patterns during different flight tasks by eye 

movement metrics-average fixation duration, saccade frequency and entropy. Eight 

areas of interest (AOIs) are developed according to the functions and information 

displayed on the flight deck: primary flight display (PFD), multi control panel (MCP), 

electronic centralized aircraft monitoring (ECAM), flight control panel (FCP), control 

display unit (CDU), standby (STANDBY), out of the windows (OTW) and others.  



 

Figure 1. An example of fixation position and fixation transition sequence in one minute 

 

Figure 2. Areas of interests of the flight deck 

The fixations and saccades are identified according to the Velocity-Threshold 

Identification algorithm in the eye tracker software. The average fixation duration per 

area of interest can show the pilot’s scan pattern and gaze allocation, which may have 

great differences among individuals with the change of cognitive load. The average 

fixation duration in an AOI was calculated as 
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where start_ti was the start time of the ist fixation and end_ti was the end time. N was 

the fixation number in the AOI. 

The saccade frequency can measure the ability and requirement of information 

searching, which was calculated as the saccade number each minute. 

Entropy, a concept from information theory, represents the randomness of the scan 

pattern of the pilot. Entropy is computed by the transition matrix as follows: 
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where 𝑝𝑖  is the proportion of sequence x in state i and 𝑝(𝑖, 𝑗)  represents the 

probability of the transition from state i to state j, which means the probability of 

transition from one AOI to another in this study. The larger the Entropy value, the more 

complex the scan pattern and the harder it is to predict. 

The metrics of the eye movements from different tasks are analyzed with paired-T test 

to examine the statistically difference.  

The classification models 

After the statistical analysis, three algorithms f K-means clustering, SVM (support 

vector machines) and LR (logistic regression) are applied to establish a classification 

model of the cognitive load:  

1) K-means clustering 

K-Means Clustering is an Unsupervised Machine Learning algorithm, which groups N 

data points into K clusters depending on their distance from the center of the clusters.  

The algorithm works as follows: 

[1]. k points is randomly selected as initial cluster centroids 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘} . 

[2]. each item in the dataset is categorized to its closest mean; 

[3]. the mean’s coordinates is updated, which are the averages of the items categorized 
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[4]. we repeat the process for a given number of iterations and at the end. 

2) SVM 

SVM is a supervised machine learning algorithm for classification and regression. It 

classifies data by constructing an optimal hyperplane that maximizes the distance 

between each class. The expression of the hyperplane is 

𝝎𝑇𝒙 + 𝑏 = 0                                (3) 

where 𝝎 is the normal vector, 𝒙 is the training sample, and 𝑏 is the displacement 

term. Since SVM solves the convex optimization problem, the objective function is  
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Through the Karush-Kuhn-Tucker condition and Lagrange multiplier method, its dual 

problem is 
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The selection of the sample will affect the classification accuracy in the supervised 

machine learning algorithm. the optimal visual scan patterns from the experienced 

pilots are selected in the presented study to train the model.  

3) LR 

LR uses a logistic function to model a binary values (0 or 1) classification. The logistic 

function is 
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The hypothesis function of LR is： 

( )
1

1
T x

h x
e

 −
=

+
                         (7) 



where 𝒙 is training data and 𝜽 is a coefficient that must be learned from the training 

data. This is done using maximum-likelihood estimation, as follows: 
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The gradient descent algorithm is used to reach the optimal parameter 𝜽。 

 

Results  

The results of test 

The results from the statistical analysis showed that these eye movement features were 

significantly different between tasks of different cognitive load levels. In the normal 

tasks where the cognitive load of the pilot is higher, the average fixation duration is 

significantly longer (P = 0.049, Figure 3), and the saccade frequency is significantly 

lower (P = 0.041 , Figure 4), which suggest that the pilots pay more attention to obtain 

the information and deal with the failure. The entropy is significantly less (P = 0.015, 

Figure 5) during the abnormal task. Obviously, when dealing the failure, the scan 

patterns of the pilots are more regular since they pay more attention to relevant displays 

such as ECAM, while in the normal task, they should scan different displays to monitor 

the condition of systems. Therefore, the scanning patterns with these features could 

have the potential to classify the different cognitive load. 

 

Figure 3. the average fixation duration of the pilots during the normal and abnormal tasks 
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Figure 4. the saccade frequency of the pilots during the normal and abnormal tasks 

 

Figure 5. the entropy of the eye movement of the pilots during the normal and abnormal tasks 

 

Classification model 

When using the single feature of eye movement for the cognitive load classification, 

the results show that whichever algorithm is used, classification accuracy with the 

entropy is better than those with fixation duration and saccade (Figure 6-8), which 

means that the entropy of the eye movement could describe the scanning pattern better 

than the fixation duration and saccade.  

Furthermore, we conduct the classification models based on the combination of 

multiple eye movement metrics (average fixation duration, saccade frequency and 

entropy). The classification results reveal that the combination of multiple eye 

movement metrics can do better than a single eye movement metric in the SVM and 

LR models. Comparing three classification algorithms, the SVM and LR with 

supervised learning have higher classification accuracies (83.07% and 83.85%, 

respectively) compared with the unsupervised K-means (79.72%).  
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Figure 6. the classification accuracy of visual scanning patterns using the K-Means algorithms 

 
Figure 7. the classification accuracy of visual scanning patterns using the SVM 
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Figure 8. the classification accuracy of visual scanning patterns using the LR 

 

Conclusions 

In conclusion, the present study explores the visual scanning pattern during the normal 

and abnormal tasks in the simulator. The eye movement metrics comprise the fixation 

duration, saccade frequency and entropy, which can represent the visual workload and 

the regularity of attention distribution. The results reveals that the pilots had different 

scanning patterns according to the flight tasks, which could indicate their different 

cognitive load. We expect that pilots’ visual scanning behaviors during tasks will help 

the training and the design of the human-machine interaction. Considering the existed 

research, the future work is expected to take a further insight into the relationship of 

eye movement data and brain activities. The eye tracker is a more acceptable tool with 

less interference compared with an EEG cap, although the brain activities are the direct 

indicators of the cognitive states. Multiple physiological signals should be considered 

to establish better classification models with high accuracy and better reliability. 
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