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Abstract

Urban air mobility (UAM) is a new concept of air transportation, and discussions to make its operation safe
and efficient are ongoing. Because UAM is primarily battery-powered, flight time is limited, and it is difficult to
remain airborne when congestion occurs. Therefore, planning flights to avoid congestion is crucial in urban
air traffic management (UATM). Demand capacity balancing (DCB) is a method that predicts future air traffic
demand and coordinates flights such that the capacity is not exceeded. While DCB is centrally controlled for
existing aircraft, UAM can be managed by regional UATM (RUATM) because UATM must be scalable to deal
with a rapidly increasing number of UAMs. This study proposes a distributed DCB for UAM that functions in
multiple RUATM environments. Two algorithms, cooperative DCB with information sharing among RUATMs and
noncooperative DCB without information sharing, are prepared to investigate how information sharing affects
DCB performance. Simulations showed that cooperative DCB performs better; however, excessive information
exchange among RUATMs can negatively affect the scalability of the entire UATM system. The performance of
the noncooperative DCB was improved using the expanded capacity; however, the DCB violations increased,
revealing a trade-off relationship. The RUATM and distributed DCB concepts proposed in this paper can serve
as benchmarks and fundamental technologies for future distributed DCB development.

Keywords: Urban Air Mobility, Demand Capacity Balancing, Urban Air Traffic Management, Air Traffic Flow
Management

1. Introduction
Urban air mobility (UAM) is expected to become the new type of air transportation for passengers and
cargo. Most recently, limited passenger transportation via UAM will be implemented for the 2024 Paris
Olympics and the 2025 Osaka World Expo. In the early stages of UAM, methods and procedures of
UAM operation are expected to follow the current air traffic management (ATM) operating environment
requirements. However, as the UAM industry matures, the current ATM systems must be upgraded
as the density of UAM operations increases, automation/autonomy increases and airspace users
become more diverse. Thus, a new urban air traffic management (UATM) for UAM must be developed.
As UAM traffic density increases, congestion is expected to occur, particularly around vertiports,
which are take-off/landing places specialized for UAM. If congestion occurs around vertiports, arrival
UAM may be held. Because UAM is an electric vertical take-off and landing (eVTOL) aircraft, the
flight range and flight time are smaller than those of existing aircraft owing to battery capacity. The
time available to hold UAM airborne is significantly limited. Furthermore, if the aircraft is operated
without considering the vertiport capacity, UAM is forced to hold excessively, which may result in an
emergency landing. Demand capacity balancing (DCB) is important for UAM operations to anticipate
future congestion before each aircrafts departure and delay the departure time (hereinafter referred
to as the ground delay).
In existing ATM, this role is performed by air traffic flow management (ATFM). ATFM is in charge
of early-stage air traffic control (ATC) to protect the airspace from overloading and balance traffic
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demand with airspace capacity. An illustration of DCB is presented in Figure 1. In Japan, ATFM
is supported by a monolithic traffic management system throughout the Fukuoka Flight Information
Region [1].

Figure 1 – Role of the DCB.

By contrast, UAM traffic can be managed in a distributed system. UAM flights are expected to in-
crease in the future, and a scalable distributed system is preferred over a monolithic system with less
flexibility. In addition, because UAM flights have a shorter range than existing aircraft, distant flights
do not affect each other, and there is no requirement to manage using the same system. According to
the Japanese concept of operations for UAM [2], the airspace served by the UATM services is defined
as the UATM service area (UASA). In this study, it is assumed that each UASA has its own UATM.
This UATM is defined as the regional UATM (RUATM). Each UASA can have several vertiports, and
many flights can be considered to be completed within one UASA. However, areas that more than one
UASA can access are possible. An example is a transfer between an airport and several neighboring
cities, as shown in Figure 2. Such transport services between airports and cities are considered one
of the most significant uses of UAM. In this situation, if each RUATM does not have information on
the flights managed by other RUATMs, unexpected congestion in the vicinity of the vertiport located
near the airport could occur. RUATMs must share information and manage traffic flows cooperatively
while maintaining the scalability and flexibility of the UATM system.

Figure 2 – Airport is accessible from several UASAs.

Researchers have studied the use of DCBs for UAM. Lee et al. ([3]) developed a flight scenario for the
Dallas/Fort Worth urban area and an initial DCB algorithm to perform vertiport DCB. In addition, they
investigated how several conditions that occur during UAM operations affect UAM flight schedules.
Chen et al. ([4]) proposed a novel framework that applies DCB to strategic conflict management and
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reinforcement learning for tactical separation. Souza et al. ([5]) proposed a simulation framework
for evaluating DCBs considering uncertainties such as sudden meteorological changes, navigation
errors, or unforeseen circumstances. All these studies assume a single UATM and do not define the
specific concepts required for multiple RUATMs to cooperate in DCB. Therefore, this study proposes
the first DCB framework in which multiple RUATMs share the resources of UAM operations and work
in a distributed manner.
The type and amount of information that should be shared among RUATMs when each RUATM coop-
erates in a distributed DCB are important parameters. While more shared information is expected to
make future congestion forecasts more accurate, it is not always better. When UAM becomes more
popular, the number of UAM operations is expected to be greater than that of today’s existing air-
craft, and the information regarding UAM flights is expected to be vast. The information to be shared
in RUATM should be kept as minimal as possible because the system may be unable to process a
significant amount of information if extra information is shared.
In this study, as an initial investigation of information sharing among RUATMs, a distributed DCB
algorithm is developed for UAM arriving at vertiports such as hubs that can be accessed from multiple
UASAs, as shown in Figure 2. Cooperative DCB that shares all flight information and noncooperative
DCB that does not share flight information between RUATMs are prepared. Flight plans are randomly
generated, and numerical simulations reveal the differences in performance between cooperative
DCB and noncooperative DCB. In addition, to improve the performance of noncooperative DCB, a
method is proposed to allocate expanded capacity to RUATMs. Simulations are conducted, and the
relationship between the performance of the noncooperative DCB and flight demand saturation is
described.
The remainder of this paper is structured as follows. Section 2 presents the DCB algorithm for UAM
operations. In addition, the section describes the flight plans, cooperative DCB, and noncooperative
DCB used in this study. Section 3 describes the simulation setup and presents the simulation results
for the cooperative and noncooperative DCBs. Furthermore, the methods for improving noncoopera-
tive DCB and their effectiveness are described. Finally, Section 4 presents conclusions and outlines
future research directions.

2. Demand Capacity Balancing for Arrival Vertiport
Figure 3 shows an overview of the simulation setup used in this study. The hub-like vertiport, which
acts as a hub, is located at the center of the three UASAs. The black circle and the letter ’V’ represent
the vertiport. Each UASA is managed by a different RUATM and has one or more vertiports within
the UASA. The hub vertiport can be accessed using any RUATMs. This study focuses only on UAM
flights from the vertiports of each UASA managed by the three RUATMs to the hub vertiport. In
addition, the arrival throughput at the hub vertiport is subject to DCB. This is because the capacity of
the vertiports is likely to be a bottleneck for overall UAM traffic.
Simulations are performed using two DCB algorithms: a cooperative DCB that functions similarly to
a conventional centralized DCB and the noncooperative DCB proposed in this study. Figure 4 shows
the simulation flow for cooperative DCB and noncooperative DCB. At the beginning of the simulation,
several UAM operators, such as airlines, submit their flight plans for each flight to one RUATM. The
RUATM to which the flight plan is submitted is the RUATM that manages the UASA over which the
flight will fly. The flight plans are simplified and contain the following minimum information:

• Departure RUATM

• Estimated departure time

• Estimated flight time

After the RUATMs receive flight plans, each RUATM checks the demand-capacity balance. In a
cooperative DCB, all RUATMs can share flight plans and perform DCB processing cooperatively, as
shown on the left in Figure 4. As shown on the right-hand side of Figure 4, RUATMs do not share
flight plans. Each RUATM checks the balance between demand and capacity based solely on the
flight plans it receives by each RUATM.
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Figure 3 – Distributed RUATM.

A time bin is used to check the demand-capacity balance. The time bin is the time interval ∆t as
shown in Fig. 5, and each time bin has the flight capacity. ∆t and capacity are determined by the
processing ability of the vertiport and the flight characteristics of the vertiport and UAM, which may
change depending on future operational practices. For each time bin, if there is a demand for flight
operations above capacity, it is considered over capacity, and the flight is instructed to have a ground
delay.
Because this study does not focus on the algorithm of the DCB itself, the ground delay is performed
on a simple first-come/first-served basis, as shown in Figure 5. If the capacity of each time bin is two,
bins 1, 4, and 5 are unbalanced in the original flight plan, as shown in Figure 5. In these time bins,
the last flight is subjected to a ground delay and moved to the latest time in the next time bin. If two
or more flights exceed capacity, the next most recent flight is subject to ground delay. If the next time
bin is saturated, the flights move to the next time bin.
Figure 6 shows a method for RUATMs to check the demand-capacity balance without information ex-
change. In a noncooperative DCB, the original capacity is divided and allocated to RUATMs. Figure
6 shows the case where the original capacity is three flights, and one flight of capacity is assigned
to each RUATM. Each RUATM checks the demand-capacity balance by comparing the capacity allo-
cated to the RUATM with the flights to be managed. The subsequent ground delay process using the
time bin is similar to that of cooperative DCB.

3. Numerical Simulation
3.1 Simulation Setup
This section describes the simulation environment setup. To simulate distributed DCB, a multiagent
simulation is developed with each RUATM as agent. With reference to Ref. [3], each RUATM was
modelled as an agent performing DCB in FCFS based on the flight plan submitted by the operator. In
cooperative DCB, information about flights can be shared between agents; in noncooperative DCB,
information about flights cannot be shared. The simulation time is 3 h, and the time bin size ∆ t is
9 min. The capacity per time bin is three flights. If a noncooperative DCB is used, this capacity is
divided, and only one ration per time bin is allocated to each RUATM. The traffic scenario includes
36 flights. Therefore, the demand-capacity ratio is 60% for the entire simulation, which is based on
a previous study [3]. The traffic scenarios consist of 36 flight plans. The flight plans are randomly
generated under the following conditions: The flight time is set in the range of 1060 min, and all flights
are completed within a simulation time of 3 h. In addition, the departure RUATM is randomly selected.
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Figure 4 – Simulation flow for two DCBs.

Figure 5 – First-come first-served DCB.

3.2 Comparison of Cooperative DCB and Noncooperative DCB
Figure 7 shows a visualization of the demand in each time bin using the RUATM based on the original
flight plan submitted for a certain traffic scenario. The demand graph is stacked from the bottom in
the order RUATM A, B, and C. This order does not indicate the arrival sequence in the first-come,
first-served algorithm of DCB. The red horizontal line indicates the bin capacity. As mentioned in
Section 3.1, the number of flights each RUATM manages may differ because traffic scenarios are
randomly generated for each simulation. In this scenario, RUATM A manages 13 flights, RUATM B
manages 10 flights, and RUATM C manages 13 flights. As shown in Figure 7, one flight exceeds the
capacity in time bins 45-54 and 54-63, and two flights exceed the capacity in time bin 126-135. The
key point is how the two DCB algorithms manage the four excess flights.
The results of the ground delay processing with cooperative and noncooperative DCB for the orig-
inal flight plan are shown in Figure 8. Evidently, for both DCBs, the flights are adjusted to within
capacity in all the time bins. The DCB algorithm developed in this study was effective for this flight
scenario. However, different results were shown for cooperative and noncooperative DCB, which will
be discussed in future distributed DCB development.
There may be more time bins with only one flight demand in a cooperative DCB than in a nonco-
operative DCB, resulting in a waste of slots. For example, the cooperative DCB has time bins of
117126 min with a flight demand of one. This does not indicate inefficient results because there is no
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Figure 6 – Method of dividing capacity for RUATMs.

Figure 7 – Demand of flights based on original flight plan.

excess demand in the previous bin. The number of flights in this simulation was 60% of the maximum
number that could be performed. This buffer resulted in more time bins with only one demand. If a
more congested vertiport is targeted, the number of time bins whose demand is equal to the capacity
increases. In addition, if UAM operations require the demand in each time bin to be as uniform as
possible, further improvements to the DCB algorithm may be required.
Table 1 lists the total ground delay time, maximum ground delay time, mean ground delay time,
and number of ground-delayed flights for the two DCBs with one scenario. The total and mean
ground delay times were calculated from the ground delays of 36 flights included in the scenario.
The mean ground delay time was calculated only for ground-delayed flights. For all four indicators,
the results of the noncooperative DCB exhibited larger values, that is, less efficient results. In this
scenario, there was a significant difference in the total ground delay, particularly for RUATM A. The
reason for the considerable total ground delay time of RUATM A in the noncooperative DCB was the
concentration of the original flight demand from RUATM A in the two time bins of 45-63 min in Figure
7. In the noncooperative DCB, the capacity for each RUATM was one per bin; therefore, if flights are
concentrated at a specific period, it is likely that there will be no available capacity in the next bin for
ground delay processing, resulting in a significant total ground delay time. An increase in the total
ground delay indicates a deterioration in the overall efficiency of the DCB system. It can be observed
that the overall efficiency was higher for the cooperative DCB. The difference in the total ground
delay time between each RUATM was more significant for the nonoperative DCB, which means that
the noncooperative DCB exhibited less fairness between the RUATMs. The fairness among RUATMs
is an important factor in the efficiency of DCB. In this study, the flights located at the end of the time
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Figure 8 – Demand of flights ground delayed by cooperative DCB and non-cooperative DCB.

bin were subjected to ground delay. However, in actual operation, it may be preferable to process
flight plans on a first-come, first-served basis of submission, as used in previous research [3].
The maximum ground delay time is likely to be large, owing to the characteristics of the DCB algo-
rithm. In the DCB algorithm shown in Figure 5, if an imbalance between demand and capacity occurs
in a time bin, the last flight in that time bin is moved to the end of the next time bin. If the demand
again exceeds the capacity in the time bin after the move, the flight that moved from the previous time
bin is moved to the next time bin. Thus, the ground delay for a particular flight may be extremely high.
Changing the algorithm to move the flight subject to ground delay to the beginning of the next bin
instead of the end would be expected to reduce the maximum ground delay time but instead increase
the number of ground-delayed flights. This should be determined according to the requirements of
the UAM operation.

Table 1 – Comparison of performance of two DCBs.

cooperative DCB non-cooperative DCB
RUATM A RUATM B RUATM C RUATM A RUATM B RUATM C

Total ground delay [min] 31.4 0 26.6 154.0 9.2 48.3
Maximum ground delay [min] 21.8 0 13.7 36.6 9.2 22.7

Mean ground delay [min] 15.7 0 13.3 30.8 9.2 16.1
Number of ground delayed flights 2 0 2 5 1 3

The cooperative DCB consisted of eight time bins with a flight demand of three, whereas only four
time bins were observed in the noncooperative DCB. Noncooperative DCB cannot fully utilize the
three capacities owing to the lack of information on the other RUATMs. Therefore, in the next section,
additional capacity is distributed to each RUATM compared to the actual capacity in anticipation of
capacity vacancies.

3.3 Improvements of Noncooperative DCB
The noncooperative DCB in Section 3.2, which allocated each RUATM a capacity of one, was
changed to allocate each RUATM a capacity of two. The results of the DCB simulations are shown
in Figure 9 and Table 2. It is evident from Table 2 that the ground delay times and the number of
flights subject to ground delay were significantly lower than those for the noncooperative DCB shown
in Table 1. Furthermore, the values were even lower than those for the cooperative DCB; hence,
the efficiency has improved. However, the demand exceeded the capacity in the 54-63 min and
126-135 min time bins, as shown in Figure 9. This is called a DCB violation. The occurrence of
a DCB violation indicates that air traffic congestion is expected, and there is a potential risk of in-
creasing the frequency of tactical separation provisions in the air, which is the second layer in conflict
management[3]. To investigate the relationship between the expanded allocated capacity and DCB
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performance in detail, several simulations were conducted by varying the ratio between the actual
and allocated capacities.

Figure 9 – Results for the noncooperative DCB where each RUATM is allocated two capacities.

Table 2 – Performance of the noncooperative DCB where each RUATM is allocated two capacities.

noncooperative DCB
RUATM A RUATM B RUATM C

Total ground delay [min] 21.8 0 13.0
Maximum ground delay [min] 21.8 0 13.0

Mean ground delay [min] 21.8 0 13.0
Number of ground delayed flights 1 0 1

In the following simulations, the capacity allocated to each RUATM was fixed at two, and the actual
capacity was varied to change the ratio between the actual and allocated capacities. The bin size
was varied to increase the actual capacity without changing the vertiport throughput. The simulation
up to this point was 3 ops / 9 min, the rate was maintained, and two settings of 4 ops / 12 min and 5
ops / 15 min were added. The original flight demand with 4 ops / 12 min and 5 ops / 15 min time bins
and the results for a noncooperative DCB with two capacities for each RUATM are shown in Figures
10 and 11. The results were based on the same flight plan as the flight demand shown in Figure 7.
Figures 10 and 11 show the bin size and the actual capacity change. The noncooperative DCB result
of the time bin of 5 ops / 15 min in Figure 11 shows no demand exceeded the capacity. It can be
assumed that the DCB violation rate improves if the difference between the actual capacity and the
capacity allocated to RUATM is reduced. To investigate this, 10 flight scenarios were prepared, and
10 noncooperative DCB simulations were performed for each setting: 3 ops / 9 min, 4 ops / 12 min,
and 5 ops / 15 min.
Figure 12 summarizes the ground delay results for a noncooperative DCB in three time-bin settings,
where each RUATM is allocated two capacities. Each graph shows the mean of 10 trials for the total
ground delay, maximum ground delay, mean ground delay, and number of flights subject to ground
delay. The four graphs in Figure 12 show that the smaller the bin size, that is, the larger the difference
between the actual capacity and the capacity allocated to the RUATM, the lower the ground delay time
and number of ground-delayed flights. Previous studies [3] have shown that increasing the bin size
reduces the mean ground delay time even if the vertiport throughput remains the same. Therefore,
allocating a larger capacity than the actual capacity significantly impacts the ground delay compared
to changing the bin size.
Figure 13 shows the mean number of DCB violations. It counts the number of flights exceeding
capacity in the same time bin. DCB violations decreased with increasing bin size, and there were
no more than two DCB violations when using 5 ops/15 min time bins. These results indicate that
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Figure 10 – Results for the noncooperative DCB in 4 ops / 12 min time bins where each RUATM is
allocated two capacities.

Figure 11 – Results for noncooperative DCB in 5 ops / 15 min time bins where each RUATM is
allocated two capacities.

the performance of noncooperative DCB can be improved by allocating a more expanded capacity to
RUATMs than the actual capacity. In addition, the results show a trade-off between the performance
of a noncooperative DCB and the number of DCB violations. If the actual capacity is divided and
allocated to RUATMs, DCB violations do not occur; however, capacity can be wasted. For traffic
scenarios with higher demand, capacity wastage may be more pronounced, and operating all flights
in the simulation time may not be possible. In traffic scenarios with higher demand, allocating more
capacity than the actual capacity to reduce capacity wastage may increase DCB violations, resulting
in tactical separation during UAM flights. The number of DCB violations that can be tolerated is
beyond the scope of this study; however, the simulation results provide a basis for developing more
sophisticated distributed DCB algorithms.

4. Conclusion
In this study, the RUATM concept and a distributed DCB algorithm were proposed to manage the
regional operations of future UAM. Because multiple RUATMs may employ common resources, DCB
simulations focused on a single-arrival vertiport that multiple RUATMs can access. Because the
presence or absence of information exchange between RUATMs is a demand factor, simulations
were performed for two configurations: cooperative DCB, in which RUATMs share flight information,
and noncooperative DCB, in which RUATMs do not share flight information. The noncooperative
DCB uses a method in which the overall capacity is divided and allocated to RUATMs. The simula-
tion results showed that the developed distributed DCB maintained the given flight demand within its
capacity. Sharing flight information between RUATMs increased the efficiency of the DCB, whereas
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Figure 12 – Mean ground delay times and number of flights subject to ground delay from 10 trials in
three time bin settings.

Figure 13 – Mean number of DCB violations from 10 trials in three time bin settings.

without information sharing, a large number of capacities were unused, reducing efficiency. To im-
prove the efficiency of noncooperative DCB, a method was proposed to allocate more capacity to
RUATMs than the actual capacity. Furthermore, additional simulations were performed. Ten sim-
ulations were performed, and the mean values of several indicators were compared. The results
showed that distributing additional capacity significantly improved efficiency; however, it increased
the incidence of DCB violations.
In future studies, the DCB algorithm will be improved. In this study, ground delays were processed on
a first-come, first-served basis based on the departure time of flights to ensure fairness in determining
which flights were ground delayed. Based on flight plan submission time, the DCB algorithm will be
improved to a first-come, first-served basis. The simulations in this study were conducted under
two extreme DCB simulation settings: one with all information sharing and one with no information
sharing. Future research will develop a DCB algorithm that allows partial information sharing and
clarify the impact of the amount of information sharing on the efficiency of DCB.

10



DEMAND CAPACITY BALANCING FOR URBAN AIR MOBILITY USING MULTI-AGENT SIMULATION

5. Acknowledgements
I thank Professor Takehiro Higuchi of Yokohama National University and Dr. Daichi Toratani of the
Electronic Navigation Research Institute for their constructive suggestions and comments.

6. Contact Author Email Address
sato: sato-g@mpat.go.jp

7. Copyright Statement
The authors confirm that they and their company or organization hold the copyright of all the original material
included in this paper. The authors also confirm that they have obtained permission from the copyright holder
of any third-party material contained in this paper to publish it as a part of their paper. The authors confirm that
they give permission, or have obtained permission from the copyright holder of this paper, for the publication
and distribution of this paper as part of the ICAS proceedings or as individual offprints from the proceedings.

References

[1] Ministry of Land, Infrastructure, Transport and Tourism. Japan Civil Aviation Bureau (JCAB) selected
NTT DATA for new ATFM/ASM system. https://www.mlit.go.jp/en/koku/koku_fr13_000003.
html. 2015

[2] Ministry of Land, Infrastructure, Transport and Tourism. Concept of operations for advanced air mobility.
2023.

[3] Lee H, Moolchandani K and Arneson H. 2022 IEEE/AIAA 41st Digital Avionics Systems Conference
(DASC), Demand capacity balancing at vertiports for initial strategic conflict management of urban air
mobility Operations. Portsmouth, VA, USA, pp. 1-10, 2022.

[4] Chen S, Evans A, Brittain M and Wei P. Integrated conflict management for UAM with strategic demand
capacity balancing and learning-based tactical deconfliction. arXiv preprint arXiv:2305.10556, 2023.

[5] Souza W and Murça M. 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), Simulation
of strategic conflict management performance for advanced air mobility operations. Barcelona, Spain, pp.
1-9, 2023.

11

https://www.mlit.go.jp/en/koku/koku_fr13_000003.html
https://www.mlit.go.jp/en/koku/koku_fr13_000003.html

	Introduction
	Demand Capacity Balancing for Arrival Vertiport
	Numerical Simulation
	Simulation Setup
	Comparison of Cooperative DCB and Noncooperative DCB
	Improvements of Noncooperative DCB

	Conclusion
	Acknowledgements
	Contact Author Email Address
	Copyright Statement

