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Abstract

Flutter prediction is an important phenomenon that need to be considered in aircraft design. However, high-
fidelity predictions for transonic flutter are difficult to make due to the associated computational costs. This
paper proposed a multi-fidelity reduced-order modelling framework for flutter predictions to achieve high-fidelity
predictions with less computational costs. Here, the high-fidelity data is obtained from a Navier—Stokes-
equation-based solver, while the low-fidelity solution is taken from an Euler-equation-based flow solver. Using
the multi-fidelity neural network trained based on the multi-fidelity data, this approach can achieve online pre-
dictions of high-fidelity results. To demonstrate the multi-fidelity process, a widely used pitching and plunging
airfoil case is considered. Verification of the approach is done by comparing with results from the time-domain
aeroelastic solvers. The results show that the proposed multi-fidelity neural network modelling framework can
realize the online predictions of unsteady aerodynamic forces and flutter results across multiple Mach num-
bers. Compared with the typical Co-kriging method, the proposed method has higher accuracy and stronger
generalization capability. Finally, the method’s potential for reducing the computational effort of high-fidelity
aeroelastic analyses is demonstrated.
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1. Introduction

Flight safety is an important issue that has attracted much attention in the design of large commer-
cial transport aircraft. The push for more efficient transport aircraft leads to larger wingspans and
more flexible wing configurations, for which flutter becomes a significant design consideration [1].
Flutter occurs when there is a net gain of energy from a fluid to a structure’s modes of vibration,
causing a diverging aeroelastic response [2]. A time-domain simulation that couples a computational
fluid dynamics (CFD) solver with a computational structural dynamics (CSD) solver can generate
the complete aeroelastic response of a structure with nonlinear aerodynamics [3]. However, incor-
porating flutter prediction into early-stage design is a considerable challenge for the transonic flow
regime relevant to most civil transport aircraft designs. Existing accurate models for transonic flutter
prediction typically require extensive CFD analyses that are too expensive to conduct in early design
stages, where potentially thousands of wing designs might be considered. At the same time, it is
difficult to obtain sufficient flutter simulation data for the parameter ranges of concern. There is an
increasing need to develop unsteady aeroelastic models for flutter predictions across multiple flow
parameters.

To model the unstable aerodynamics more efficiently, aerodynamic reduced-order modeling (ROM)
methods [4],[5],[6],[7] have been extensively studied.

As reviewed by Brunton et al. [8], data science and machine learning are rapidly transforming the
scientific and industrial landscapes. Recently, with the development of machine learning and data
science, data-driven modeling has played an important role in nonlinear unsteady aerodynamic mod-
eling. Due to strong flow separation, viscous effects, and vortex shedding, unsteady aerodynamics



EFFICIENT MULTI-FIDELITY MODELING FOR FLUTTER PREDICTIONS ACROSS MULTIPLE MACH NUMBERS

show strong nonlinear behavior [9] under transonic flow. Hence, kriging models [10],[11], higher-
order spectra [12], the support vector machine (SVM) method [13], the nonlinear Volterra method
[14], and neural networks [15],[16],[17] have been introduced to enhance the nonlinear aerodynamic
prediction capabilities. Due to the self-learning, self-adaptive, and fault-tolerance characteristics of
neural networks, a series of models based on neural networks have been used to construct nonlinear
reduced-order models. Li et al. [18] established an unsteady aerodynamics model for airfoil pitch-
ing and plunging in the transonic flow across multiple Mach numbers. It was demonstrated that the
model could accurately capture the dynamic characteristics of aerodynamic and aeroelastic systems
with varying flow and structural parameters. Zahn et al. [16] proposed a ROM framework based on a
long short-term memory (LSTM) neural network for the prediction of transonic buffet aerodynamics,
which was favorable for capturing the time-delayed effects associated with unsteady aerodynamics.
Winter et al. [19] proposed a fuzzy neural system to predict unsteady aerodynamic loads and flutter
boundaries across various freestream conditions. Although a large body of literature has been de-
voted to applying machine learning techniques in the fluid mechanics field, the gaps and issues left
by data-driven surrogate models are still an open issue, compromising their reliable and widespread
use in practical applications.

Despite previous efforts in nonlinear aerodynamic system identification resulting in successful prac-
tices, there are still challenges impeding the robustness of transonic flutter predictions. Identification
of a nonlinear system, which is required to capture large-amplitude motions, varying flow conditions,
or separated flows, still remains a challenging task [16]. High-fidelity (HF) reduced-order models re-
quire a large amount of data support to provide generalization capabilities across various freestream
conditions. In addition, relatively inexpensive approximate aeroelastic models (low-fidelity models)
exist and are routinely applied to reduce the cost of estimating flutter, albeit with lower accuracy [20].
Under this condition, it is particularly important to utilize low-fidelity (LF) simulations to reduce the
data requirements of high-fidelity reduced-order models and maintain the original simulation accu-
racy.

In recent years, multi-fidelity (MF) models have been proposed to reduce the amount of data re-
quired to obtain a reasonable model through the use of models with different fidelity levels [21],[22].
Multi-fidelity methods have a rich history of application in different areas of science and engineering
[23],[24]. Since high-fidelity models are accurate but expensive, while low-fidelity models are inex-
pensive but less accurate, multi-fidelity methods combine these two types of models to achieve an
accurate representation of high-fidelity results at a reasonable cost [25]. The general idea is to com-
bine trends from inexpensive lower-fidelity data (e.g., coarser meshes, low-fidelity computations, and
less-sophisticated models) with interpolations of high-fidelity data (e.g., finer meshes, high-fidelity
computations, better models, and experimental data) [26]. Based on a co-kriging model [27], Kaya
et al. [28] presented a multi-fidelity aerodynamic modeling approach for the aerodynamic database.
Recently, a multi-fidelity formulation proposed by Kou and Zhang [29] was developed. They adopted
a multi-kernel neural network model to construct a variable-fidelity dynamic model for unsteady aero-
dynamics. This method combined data from an Euler simulation and a full Navier—Stokes simulation,
and it predicted the high-fidelity aerodynamic loads only from three typical harmonic motions with
a high level of accuracy. Liu et al.[30] established a transonic buffeting nonlinear aeroelastic fusion
model using the limit cycle state harmonic signal. The model built a mapping from low-fidelity mo-
ments to high-fidelity moments through data fusion methods. The fusion model coupled the structural
motion equation and accurately reproduced the amplitude characteristics of limit-cycle oscillations in
the wide frequency range of the frequency-locking region. These works motivated our research on
developing multi-fidelity unsteady aerodynamic models for transonic flutter predictions.

This paper presents a multi-fidelity reduced-order modeling (MFROM) method for modeling unsteady
aerodynamics, and it investigates both the reductions in the computational expense and the ability
of the method to predict the onset of flutter. Based on the proposed neural network architecture, the
multi-fidelity model achieves online prediction of the lift and moment coefficients across multiple Mach
numbers. The flutter prediction results for the NACAB64A010 airfoil showed that the MFROM model
can balance the accuracy and efficiency of the prediction. Modeling results of the MFROM validated
the generalization capability for different Mach number, angle of attacks, and reduced frequencies.
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2. Comparison of multi-fidelity aerodynamics

To establish the multi-fidelity aerodynamics model, two types of CFD simulation results were consid-
ered. Unsteady Euler-equation-based computations and unsteady Navier—Stokes-equation-based
computations were used for the modeling process. As mentioned above, there is a significant differ-
ence in accuracy and efficiency between these numerical simulations. For simplicity of description,
these simulations will subsequently be referred to as high-fidelity simulations and low-fidelity simula-
tions. This section presented the NACA64A010 airfoil, which was used in the validation cases. This
airfoil is widely used for algorithm validation in the field of aeroelasticity.

The unsteady aerodynamic data were obtained from an unsteady Reynolds-averaged Navier—Stokes
(URANS) solver, which solved the URANS equations, and an Euler-equation-based solver, which
solved the unsteady Euler equations. The Navier—Stokes and Euler equations are shown, respec-
tively, as follows:

dQ J(F—-F) d(G-G,) J(H-H,))
a T ax T oy T a2
dQ JdF JG OJH
§+§+7y+87z_0' (2)
Where Q = [p, pu, pv, pw, E] denotes the conservation vector, [F,G, H] is the inviscid flux and [F,, G,, H, ]
represents the viscous flux. In conservation vector, p represents the density of the fluid, u is the x-
direction velocity, v is the y-direction velocity, w is the z-direction velocity, and E represents the total
internal energy per unit mass of fluid. The Spalart—Allmaras turbulence model [31] was selected
to close the Navier—Stokes equations and describe the turbulence fluctuations. The unsteady CFD
solver allowed moving bodies through the use of an arbitrary Lagrangian—Eulerian formulation, and
the dynamically deforming mesh algorithm was based on radial basis function (RBF) interpolation
[32]. To accelerate the convergence of the time-marching, local-time stepping, residual smoothing,
and multiple grids were employed. The Euler equations form a simplified version of the flow model,
which can be solved relatively efficiently under conditions where viscous effects are not strong.
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Figure 1 — Grid for low-fidelity (LF) simulations with 4435 cells
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Figure 2 — Grid for high-fidelity (HF) simulations with 18197 cells
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The hybrid computational meshes of the NACA64A010 airfoil were used to obtain the unsteady aero-
dynamic data. The y+ number was less than 1.3 in most of the regions, and the distance between
the airfoil and the circular far field was 20c. Fig. 1 shows the computational meshes of the airfoil in
detail. To better capture the viscous flow, more cells were used for the HF simulations.
Davis et al. [33] provided wind tunnel test data for the pitching motion of the NACA64A010 airfoil
at a Mach number of 0.796, which is a commonly used test case for transonic flow. The reduced
frequency k = w x b/V., of the pitching motion was 0.202, the mean incidence was 0 deg, and the
pitching amplitude was 1.01 deg. The unsteady history of the angles of attack of the airfoil can be
expressed as follows:

o(t) = aysin(or) + 0. 3)

oy represents the amplitude of the pitching motion, and o represents the balanced angle of attack.
As shown in Fig. 2, the aerodynamic forces obtained by both types of methods were in better agree-
ment with the experimental results at small angles of attack. All the results were obtained using 16
Intel i7-10700 CPU processors at 2.4 GHz.

These results validated the solver employed and also allowed the accuracy and efficiency to be
examined. Due to the consistency of the demonstrated multi-fidelity aerodynamic data, most of the
aeroelasticity problems have been solved using numerical simulations based on the Euler equations.
This is because high-fidelity methods require more than four times the computational cost of low-
fidelity methods. With approximate accuracy, it is clearly more cost-effective to use a low-fidelity
model. However, under some conditions, as the difference in accuracy between the two types of
methods increases, the difference in the flutter prediction results becomes unacceptable.
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Figure 3 — Comparison of simulation results for C; and experimental results
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Figure 4 — Comparison of simulation results for C,, and experimental results

In unsteady simulations with two degrees of freedom, the differences between the solvers are even
more unacceptable, resulting in errors in the flutter predictions. This will be analyzed in detail in
Section IV. In this case, transonic flutter prediction requires further consideration of the trade-off
between accuracy and efficiency. This is the context in which the work in this paper was carried out.
We sought to build a data-driven multi-fidelity model with strong generalization capabilities to bridge
the gap between high- and low-fidelity data. This makes it possible to obtain predictions with little

4
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Figure 5 — Comparison of pressure distribution in flow fields with multi-fidelity flow solve

loss of accuracy (compared with the HF results) at little additional cost to the computation (compared
with the LF results).

3. Multi-Fidelity Reduced-Order Modeling

A multi-fidelity model mainly constructs a relationship between LF and HF data. These models are
often used for offline predictions to reduce the sampling costs. However, unsteady aerodynamic
modeling is more demanding for the multi-fidelity model. First, the sampling space of the unsteady
aerodynamics is much more high-dimensional. Offline prediction methods are not capable of meeting
the accuracy requirements of flutter prediction. Second, the nonlinearities of transonic aerodynamics
require models with stronger generalization capabilities. These make it difficult to apply existing multi-
fidelity modeling methods to transonic flutter prediction. To avoid the above problems, this paper
proposes a multi-fidelity ROM method based on neural networks for online prediction. The method
constructs mappings between the offline LF and HF data through neural network training. This neural
network can be applied for online aerodynamic predictions and aeroelastic coupling simulations.

3.1 Proposed multi-fidelity reduced-order modeling (MFROM) method

The proposed multi-fidelity simulation method for aeroelasticity is shown in Fig. 6. The superscripts
L and H here represent LF and HF, respectively. The construction and application of the MFNN-ROM
can be divided into two parts: an offline phase and an online phase. In the offline phase, unsteady
aerodynamic data with the two methods are obtained by simulations of forced motions. On this basis,
the MFNN-ROM is trained through the input and output relationships shown in Fig. 6. In the online
phase, LF CFD/CSD coupling simulations are used to generate input data. Here, the predictions of
the MFNN-ROM are carried out during the process of time stepping. This is completely different from
traditional reduced-order models. Through the design of online prediction, the demand for data in the
offline phase can be reduced while ensuring the accuracy of the online simulations.

In the simulation of aeroelasticity, the available inputs for MF modeling include unsteady motions
(Inputs-1) and LF aerodynamic forces (Inputs-2). We proposed an MF neural network architecture,
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Figure 6 — Proposed MFNN-ROM for aeroelastic flutter prediction

as shown in Fig. 7, to achieve aerodynamic modeling. The model adopts a deep neural network to
implement the mapping process.

To reflect the time-delayed effects of unsteady aerodynamics, Zhang [34] proposed to use autore-
gressive models for modeling unsteady aerodynamics, through the introduction of input and output
feedback. This dynamic process is regarded as a nonlinear autoregressive exogenous (NARX) [35]
model representation in system identification, composed of a time-delayed input and output feedback.
Therefore, the input data are expressed as follows:

ClH7Cn13 = f[avh/b7ClL7CzI;J7 (4)
clcl = fla(k)...,a(k—n),h/b(k)...,h /b(k —n),CF(k)...,CF (k —n),CL(k)...,C (k— n)). (5)

As shown in Fig. 7, the proposed multi-fidelity neural network (MFNN) consists of two modules. The
blue module represents the mapping parts of the lift and moment coefficients obtained by the LF
simulation method. The gray part represents the mapping parts of the unsteady motions. The fully
connected module contains 100 neurons total with two layers for mapping. The activation functions
are RBFs:

g(r?) = exp(—5ar), (6)
r=lx—cl, (7)

where r is the difference between the input of neuron x and neural center ¢, which is expressed as
|x—c|. The deep neural network is connected as shown in Fig. 7. The numbers of neurons in the
four hidden layers are [200,200, 100, 100]. Using the training of these hyperparameters, the model can
realize complex mapping relationships between different fidelity data.

To avoid the imbalance of the data size for different losses, the dynamic weight averaging method
is selected as the optimization criterion. This method is used to balance the optimization process
between multiple losses to ensure consistency. The dynamic weight ay(¢) is calculated as the de-
scending rate by calculating the loss ratio of two adjacent time steps. Therefore, the smaller the
weight, the greater the convergence rate, and the simpler the task becomes. This method ensures
the balance between multiple losses in the parameter learning process. The loss functions are shown
as follows:

Loss(t) = Xk:wk(’)Lk(’)’ ay(t) = L2 (8)
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The error of CI! and C!! is expressed as a relative error, as follows:

L=\ [L ¥ (- Ly ey ©)
kT N,.:Z1 e Nl.; '

For an aeroelastic simulation, the accuracy of the lift and moment coefficients are equally important,
and this dynamic weight averaging method can further improve the prediction accuracy of the MF
model.

Figure 7 — Multi-fidelity (MF) neural network architecture for multi-fidelity data modeling

For each unsteady case, 100—1000 input—output pairs should be included to provide model training.
The model training and hyperparameter optimization are achieved by Particle Swarm Optimization
(PSO). PSO algorithm is an optimization algorithm proposed by Kennedy and Eberhart [36] in 1995.
The inertia weights are updated through Eq. [T2] the @, = 0.7 and o, = 0.9 are the lower and upper
bounds of the weights, and G = 100 represents the number of iterations. The particle position is
updated through the following equation until the iteration stops, allowing the global optimal solution
to be obtained:

VI = o(t) x VI +ciry x (P —X¢) + cara x (Gbestd —X¢), (10)
X=X Vi (1)
o(t)=wy— (m;— o) xd/G. (12)

For the data volume of this study, the parameter training time of the model was about 30 min, and the
time of each prediction calculation example was less than 1 s.

3.2 Aerodynamic prediction results and validation

In this section, the tests for the MFNN-ROM in predicting aerodynamic forces across multiple Mach
numbers are described. The proposed model can establish the transformation relationship between
the MF data. The capability of the model in offline prediction is similar to that of traditional MF
models. As a typical MF model, the co-kriging model was used as a comparison to demonstrate the
advantages of the proposed model.

Similar to the form of the kriging model, the co-kriging model can be written in the following form:

@) =fx)B+r xR (y-F'p), (13)

r(x) = (p-of-rf (x),p% o -rf (x,X") + o -rf (x,X"))". (14)

The correlation matrix of the co-kriging model considers the cross-correlation between the LF cases
X% and the HF cases X*:

R — ( of - R/(X" X") p-of Ry (X" X") ) (15)

~\p-o?-R (X" X" p* o} R (X X")+ 0} Ry(X",XM)
After optimization of the hyperparameters, the co-kriging model can also be used for unsteady aero-
dynamic prediction [37].
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For validation, the same MF data were used to construct both MF models. The training cases involved
harmonic pitching motions at Mach numbers of 0.7 and 0.75. Test cases were obtained by Latin
hypercube sampling (LHS). The test cases included different reduced frequencies, balanced angles
of attack, and Mach numbers to fully test the generalization capability of the model. The distribution
of the cases in the parameter space is shown in Fig. 8.

Figure 8 — Distribution of the cases for training and predicting

Table 1 — Parameters of training and predicting cases

| Training cases Predicting cases

k | 015 0.15 0.15 0.15| 0.11 0.14 0.18 0.20
o 1 1 2 2 1.00 140 2.05 1.80
Ma | 0.7 075 0.7 0.75]0.741 0.702 0.720 0.731

The modeling comparisons for the four test cases are shown in Fig. 9 and 10. The relative errors cal-
culated by Eq. [9 of the prediction cases are shown in Table 2] In the predictions of the lift coefficients,
the performances of these two methods were quite close. The predictions of these models agreed
very well with the HF results, with a maximum relative error of not more than 2%. The difference
was that, in the prediction of moment coefficients, the co-kriging model was limited in accuracy. The
co-kriging model exhibited under-correction and over-correction because the trends were no longer
consistent between the HF and LF data. By contrast, the prediction accuracy of the MFNN-ROM
remained reliable. The relative errors of the prediction results of the neural network model remained
below 7%. Compared with classical MF models, the MFNN-ROM had the ability to model unsteady
aerodynamics across multiple Mach numbers, with improvements in accuracy. Aeroelastic simula-
tions require modeling capabilities for both lift and moment coefficients. In this case, the MFNN-ROM
was clearly a better choice.

Table 2 — Parameters of training and predicting cases

| G Cp average

Euler 5.42% 4.30% 5.29% 5.58% | 13.78% 7.57% 9.19% 9.92% 7.63%
Co-kriging | 1.74% 0.72% 0.48% 0.60% | 27.87% 9.85% 6.92% 8.31% | 7.06%(-7.4%)
MFNN-ROM | 1.73% 1.09% 0.54% 0.31% | 6.36% 5.87% 3.62% 2.59% | 2.76%(-63.8%)
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Figure 9 — Prediction results of lift coefficients across multiple Mach numbers
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Figure 10 — Prediction results of moment coefficients across multiple Mach numbers
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4. Flutter Predictions and Discussion

The above unsteady aerodynamic cases verified the effectiveness of the proposed MF aerodynamic
modeling method. Next, based on two-degree-of-freedom aeroelastic simulations, the model’s gen-
eralization capabilities will be further validated and discussed.

4.1 Training of MFNN-ROM
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Figure 11 — Random signals of unsteady motions

As shown in Fig. [6] the training data of the MFNN-ROM needed to be obtained through the simulation
of unsteady forced motions. To fully cover the frequencies and angles of attack during unsteady
pitching and plunging motion, motions controlled by random signals were selected for model training.
The time histories of the angles of attack and plunging displacements are shown in Fig. The
reduced frequency of the unsteady motions covered the range of 0-0.2. DT = 0.1 in the calculation
process. Each set of training data contained 1000 sample points. The training cases were calculated
at Mach numbers of 0.7 and 0.75 with o values of 1 and 2 deg. During the training of these four sets
of data, the MFNN-ROM needed to have a generalization capability across multiple Mach numbers,
angles of attack, and dimensionless velocities to make flutter predictions.

4.2 Online flutter predictions by MFNN-ROM

Based on the MFNN-ROM, flutter simulations were conducted for flow conditions with Mach numbers
ranging from 0.6 to 0.75 and dimensionless velocities ranging from 0.2 to 1.0. The comparisons of the
simulation results for different Mach numbers and angles of attack at different v* are shown in Fig. 12-
15. Due to the differences in the solver accuracies, there were significant differences between the two
coupled simulation results. At Mach numbers 0.65 and 0.7, the RANS calculation results indicated
that the current dimensionless velocity was in the critical state of flutter. This was not consistent with
the Euler simulation results. The proposed MFNN model accurately realized the data correction of the
coupling process through online prediction. The above prediction results showed that the proposed
model achieved accurate predictions, whether it was a convergence process, a critical process, or a
divergence process. It is worth noting that the prediction results at Mach numbers from 0.6 to 0.7
could be extrapolated for other Mach numbers. This was also because the Euler results possessed
a certain degree of accuracy that reflected the Mach number effect on the unsteady aerodynamic
forces. Based on the online prediction, the MFNN-ROM method can achieve better generalization
performance than offline data-driven modeling.

The results show that the transition of the coupled system from the divergence state to the critical
state can be achieved even with model corrections halfway through the Euler simulation. Due to its
ability to generalize to the initial states, the proposed model has a greater application potential than
offline models.

It can be found that the flutter boundaries solved by the Euler method differed significantly from those
of the RANS method. The average error between the HF and LF predictions reached 0.119. By
contrast, the average error in the prediction results of the MF model was 0.025. To obtain predictions

10
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for the flutter boundaries, simulations of the dimensionless velocities corresponding to each flow state
are required. Dimensionless velocities were taken at 0.05 intervals. Therefore, a total of 204 states
(17 x 4 x 3) needed to be calculated. A comparison of the simulation times required by the three
different methods is given in Table 3| The online prediction time of the MFNN-ROM was essentially
the same as that of the LF method, with the main computational cost increase in the offline phase
of data generation and training. The MF method still offered significant efficiency advantages over
the HF simulations. Compared with LF methods, the MF method achieved a significant increase in
accuracy with only a small increase in the total cost.

2
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Figure 14 — Flutter predictions at Ma = 0.70, ap = 1.5 deg, and v* =0.60

5. Conclusion
In the present work, an efficient ROM method based on an MF modeling framework for transonic
flutter prediction was proposed. Using a data-driven approach, the proposed model bridges the

11
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Figure 15 — Flutter predictions at Ma = 0.75, o = 2.0 deg, and v* = 0.60
Table 3 — Comparison of computation times for flutter boundary predictions
| Calculation cases | Total time
Euler 204 LF cases about 816 h (204 x 4)
RANS 204 HF cases about 3264 h (204 x 16)

MFNN-ROM | 4 HF cases + 208 LF cases | about 896.5 h (offline phase 80.5 h + online phase 816 h)

gap between the accuracy and efficiency of LF and HF simulations. Through offline training and
online prediction, the proposed MFNN-ROM enables aerodynamic and aeroelastic predictions across
multiple Mach numbers. The proposed method was validated by modeling of the transonic aeroelastic
simulation of the NACAB64A010 airfoil. The results showed that the proposed method provides an
online correction approach to improve the accuracy and generalization of the coupled simulation.
Compared with the traditional ROM methods for predictions of nonlinear aeroelasticity, the proposed
method has the following three characteristics.

1. The inputs to the MFNN model include both outputs of the LF solver, which allows the construction
of the neural network model to take into account the differences in the inputs. With the proposed
neural network architecture, the aerodynamic prediction accuracy of this method was better than that
of the co-kriging method.

2. The aeroelastic MFNN-ROM does not completely replace the CFD/CSD time-domain simulation
but rather achieves aerodynamic correction of the LF simulation by a data-driven model through
online prediction. This significantly reduces the data requirements in the offline phase and improves
the generalization of the data-driven simulation.

3. The prediction results for the transonic flutter show that the MF method could significantly improve
the prediction accuracy by more than four times at no more than a 10% additional computational cost.
This improvement will be more significant in wind tunnel tests.

This work provides a viable solution for MF online aerodynamic modeling correction and coupling
simulations. Future work will consider the use of this approach for flight simulations to carry out flight
control with digital twins.
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