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Abstract

This research focuses on down-range correction during the reentry burn phase of Reusable Launch Vehicles
(RLVs) to ensure a safe landing. Utilizing a partial-closed form solution for the aero-ballistic trajectory, we
develop a guidance law in a feedback manner that controls the downrange distance during flight to a desired
value during reentry. The partial-closed form solution is extended to the case with thrust, enabling accurate
prediction of reentry trajectory. The proposed guidance law can ensure zero angle of attack at the end of the
reentry burn, improving readiness for atmospheric entry. Additionally, it demonstrates sub-optimality in pre-
serving the velocity reduction designated during the reentry burn. Validation through numerical simulations,
based on initial conditions from commercial RLV missions, confirms the accurate performance and low com-
putational load of the proposed method. This work can contribute to the development of efficient and effective
guidance algorithms for RLVs, paving the way for more reliable RLV missions.
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1. Introduction
The concept of a reusable launch vehicle (RLV) is beneficial to the operation of space flight missions
both in terms of cost-effectiveness and flexibility. With the ongoing stable operation of RLVs demon-
strated recently, the feasibility and practicality of RLVs are fairly established, which underscores the
novel Guidance, Navigation, and Control (GNC) algorithms. The typical operation of RLV after the
first-stage separation comprises kick-flip, reentry burn, aerodynamic descent, and landing burn with
optional boost-back burn for further control over the trajectory. Current research in GNC algorithms
predominantly focuses on the landing burn phase, accompanied by developments in computational
guidance[1]. However, the trajectory deviation that can be endured by the landing burn is limited due
to the brief duration of the landing burn and high dynamic pressure, even when maximized through
numerical optimization. Therefore, it is crucial for the onboard guidance system of the RLV to effec-
tively regulate trajectory deviations during earlier phases, such as the reentry burn and aerodynamic
descent, to steer the vehicle accurately towards the landing site. Given the lack of control over the tra-
jectory for a significant duration before reentry burn, the ability to correct trajectory deviations during
this phase is vital for the robust operation of RLVs.
There are few previous works that utilize thrust acceleration to correct the trajectory deviation or in-
stantaneous impact point (IIP), which is defined as the impact point of the vehicle assuming there is
no further thrust force. The ability to accurately predict the impact point may generate efficient guid-
ance laws that control an impact point. In this context, the analytical expression of the IIP, based on
Keplerian orbit equations, has been derived[2] and employed to design guidance laws[3, 4] that can
steer the IIP towards a desired location. However, due to the exclusion of the aerodynamics, primarily
the quadratic drag, the IIP may have position error in order of several kilometers after the reentry of
RLV to the atmosphere. Furthermore, trajectory deviation by the remaining duration of thrust is not
considered, which can induce unnecessary maneuvers. Obtaining an analytical solution for an aero-
ballistic trajectory is practically infeasible, even when assuming a planar Earth, thus necessitating
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a numerical approach. In other works, the aero-ballistic trajectory of flight vehicle is predicted[5, 6]
through numerical integration. To reduce the computational load, a partial-closed form solution[7] for
the motion of the mass in the quadratic drag with constant gravity is utilized. This accurate predic-
tion of aero-ballistic enables the resulting guidance law to have desirable properties such as reduced
control effort and zero guidance command at the terminal phase. However, as these methods do
not account for thrust during descent, they are not directly applicable for guidance during the reentry
burn.
Based on these observations, this research focuses on the downrange distance correction during the
RLV’s reentry burn. We propose a guidance law that controls the downrange distance to the desired
value in a feedback form. Similar to previous work [6], a partial-closed form solution of the aero-
ballistic trajectory is used to accurately predict the descent trajectory of the RLV. The extension of the
partial-closed form solution is found to naturally augment the reentry burn phase to the trajectory pre-
diction. Based on this extended trajectory prediction, the proposed guidance law can have reduced
correcting maneuver and zero angle of attack (AoA) at the end of the reentry burn, which can improve
readiness prior to entering the atmosphere. Moreover, it is found that the devised guidance law has
sub-optimality in terms of preserving the designated ∆V for the reentry burn. The performance and
characteristics of this guidance law are validated through numerical simulations using initial condi-
tions based on commercially operational RLV missions, demonstrating both the effectiveness and low
computational load of the proposed method.
This paper is organized in the following manner. In Section 2., the vehicle dynamics and rapid pre-
diction method for reentry trajectory are presented. Section 3.provides a detailed description and
analysis of the proposed guidance law. Numerical results are provided and discussed in Section 4.
, followed by the concluding remarks in Section 5..

2. Problem Formulation
In this section, the guidance problem handled in this work is established and the rapid trajectory
prediction method utilized in this work is described.

2.1 Vehicle Dynamics

 

 

Arrival PointDesired
Arrival Point

Figure 1 – Vehicle Kinematics

This section describes the dynamics model of the reusable launch vehicle (RLV) considered in this
work. Based on the observation that the typical vertical take-off vertical landing (VTVL) type RLV
experiences a relatively steep flight path angle during reentry and following aerodynamic descent with
minimal lift force, we ignore the curvature of the earth surface and derive the dynamics assuming the
2D planar motion of the RLV as depicted in Fig. 1. (X ,Y ) are the axes of the inertial reference frame
(I-frame), and Y is in upward direction, perpendicular to the earth surface. The vehicle dynamics is
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given as
ẋ =V sinγ

ẏ =V cosγ

V̇ = aV −g(y)sinγ

γ̇ =−g(y)cosγ

V
+

aγ

V

(1)

In Equation (1), V is the magnitude of the velocity and γ is the flight path angle as described in Fig.
1. The acceleration due to the external forces aV and aγ are defined as follows:

aV =
1
m
(−q̄Sre fCD −T cosα) (2)

aγ =
1
m
(q̄Sre fCL −T sinα) (3)

Sre f is the reference area of the vehicle and q̄ is the dynamic pressure computed defined as 1
2 ρV 2. The

thrust force T is a function of time since the rocket engine is only active during the reentry burn. The
gravitational attraction is assumed to have only vertical component and is modeled as the function of
altitude.

g(y) = gre f
(y+ rre f )

2

r2
re f

(4)

In Equation 4, gre f is the reference value of the gravitational acceleration, and rre f is the reference
radius that defines gre f .

2.2 Rapid Prediction
The proposed guidance law in this work is based on the accurate prediction of the descent trajectory
that includes reentry burn and aerodynamic descent. The descent trajectory depends on the angle of
attack, α. In this work, we define the zero-effort trajectory as the trajectory that results from the zero
α throughout the descent and predict the zero-effort descent trajectory. The main concept behind
defining the zero-effort trajectory is to ensure that no additional maneuvers, other than a gravity turn,
are required for the RLV after the termination of the guidance.
To predict the zero-effort descent trajectory with the presence of quadratic drag and no thrust force,
numerical integration of the dynamics in Eq. (1) can give accurate trajectory prediction. However,
to improve the computational efficiency without loss of accuracy, which can improve the feasibility
and practicability of the proposed method for onboard implementation, we employ a partial-closed
form solution of the aero-ballistic trajectory. Assuming constant ballistic coefficient β and g for short
duration of trajectory, an analytical relationship between V and γ can be derived.

V (γ) =
V0 cosγ

cosγ

√
1+βV 2

0 cos2 γ0( f (γ0)− f (γ)
,

where β ≜
ρCDSre f

mg
, f (γ)≜

sinγ

cos2 γ
+ ln

[(
γ

2
+

π

4

)] (5)

The subscript “0” in Eq. (5) denotes the initial value of each state variable. Based on Eq. (5), the
partial-closed form solution in form of integration with γ as an independent variable was derived in
the previous work[7] as follows.

tk+1 = tk +
2 [Vk sinγk −Vk+1 sinγk+1]

gk
(
2+µA

k

) ,

xk+1 = xk +
V 2

k sin2γk −V 2
k+1 sin2γk+1

2gk
(
1+µA

k

) ,

yk+1 = yk +
V 2

k sin2
γk −V 2

k+1 sin2
γk+1

gk
(
2+µA

k

) ,

where µ
A
k = βk

(
V 2

k sinγk +V 2
k+1 sinγk+1

)
(6)
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Since the integration formula in Eq. (6) leverages several analytical relations between state variables,
the integration step ∆γ can relatively be large without sacrificing prediction accuracy, which accom-
plishes rapid prediction of trajectory. In this work, the computational efficiency of Eq. (6) relative to
the Euler integration of Eq. (1) was approximately three-fold, measured by the CPU time needed to
reach the same level of accuracy.
However, in the prediction of complete descent from reentry burn to the touch down to the earth’s
surface, the thrust force should be considered during reentry burn. The reentry burn usually occurs
before the vehicle reaches the significant dynamic pressure to reduce the aerodynamic load and heat
flux of the RLVs. Therefore, aerodynamic forces can be ignored during the reentry burn due to the
negligible dynamic pressure. In this work, we derive another partial-closed form solution for the case
with constant thrust acceleration without drag. The velocity dynamics can be rewritten as,

V̇ =−gsinγ −gKT , where KT ≜
T

mg
(7)

It is important to note that the vehicle mass m changes as the propellant is depleted during engine
ignition, which makes KT a time-varying variable, not a constant. This disparity in dynamics is later
compensated by a non-iterative corrector. The analytical relationship between V and γ assuming
constant KT can be found as follows

V (γ) =
V0F (γ)

F (γ0)
, where F(γ)≜

(
cos γ

2 − sin γ

2

)−KT
(
cos γ

2 + sin γ

2

)−KT

cosγ
(8)

Then, after a process of derivation of partial-closed form similar to [7], it is found out that identical
formula in Eq. (6) can be used with only µA

k being replaced by µT
k defined as below

µ
T
k = KT (sinγk + sinγk+1) (9)

Lastly, to compensate for the time-varying m, the integration is repeated with m′
k = mk − ṁ(tk+1 − tk)

after initial integration with mk for each integration step k. Then, the state variables of next step k+1
are decided as the average value of first and second iteration.

Reentry Burn
(Constant  Thrust, )

Aerodynamic Descent
(Aero-ballistic,  )

Arrival Point

Vehicle

Figure 2 – Trajectory prediction by partial-closed form solution

As a result, we can predict the complete zero-effort descent trajectory through two separate partial-
closed form solutions as in Fig. 2. Since the duration of reentry burn is usually pre-programmed
to obtain enough kinetic energy reduction, the reentry burn phase is predicted by Eqs. (6) and (9)
from current states with prescribed duration of time. Aerodynamic descent trajectory is predicted by
Eq. (6) from final states of reentry burn till touchdown to the prescribed terminal altitude, usually
the earth’s surface. Hereafter, the downrange distance during the descent trajectory, X f in Fig. 2, is
expressed as the function of a certain set of parameters Θ, which consists of current states of the
vehicle and remaining duration of the reentry burn, tb.

X f = fr(Θ), where Θ ≜ [y,V,γ,m, tb]
T (10)
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3. Proposed Method
In this section, the proposed algorithm is described in detail from the guidance objective to the anal-
ysis on the guidance law characteristics.

3.1 Guidance Objective
In this work, the downrange distance achieved by the RLV is controlled to steer the RLV to the
desired arrival point (AP) such as the landing site or safety zone for ground impact. We define xd as
the desired downrange position of the AP for the RLV. Then, the zero-effort-miss (ZEM), Z is defined
as follows.

Z(t) = [xd − x(t)]− fr (Θ(t)) (11)

The proposed guidance law aims to nullify ZEM during the duration of the reentry burn.

3.2 Guidance Derivation
3.2.1 Dynamics of ZEM
Z(t) is the constant throughout the flight assuming that trajectory prediction is completely accurate,
as long as the AoA is zero. To obtain the control authority over the ZEM, we compute the Z’s time
derivative.

dZ
dt

=−V sinγ − d fr(Θ)

dt
−∆

[
d fr

dt

]
=−∆

[
d fr(Θ)

dt

]
. (12)

In Equation (12), d fr(Θ)
dt is the time-derivative of X f with zero AoA and identical to the −ẋ. ∆

[
d fr(Θ)

dt

]
is

the perturbation in time-derivative of X f when non-zero AoA exists. The ∆

[
d fr(Θ)

dt

]
can be expanded

in following form using chain-rule for Θ.

∆

[
d fr(Θ)

dt

]
=

∂ fr

∂V
∆V̇ +

∂ fr

∂γ
∆γ̇ =

∂ fr

∂V

(
−T (1− cosα)

m

)
+

∂ fr

∂γ

(
−T sinα

mV

)
≈ ∂ fr

∂γ

(
−T sinα

mV

)
= Fγ sinα

(13)

Since the effect of aerodynamic forces is negligible during reentry burn, aerodynamic forces are
omitted in Eq. (13). Also, assuming that the amount of downrange correction is not large enough to
generate substantial AoA, the term (1− cosα) is approximated to 0. Equation (13) implies that the
appropriate generation of AoA can steer the RLV to the desired AP by controlling the time derivative
of Z.

3.2.2 Guidance Command
The guidance problem handled in this work is the finite-time convergence problem since the guidance
objective Z should be nullified before the termination of the reentry burn. It is worth noting that the
remaining trajectory deviation can further be corrected throughout the aerodynamic descent by the
guidance algorithms in [6, 8]. However, the control authority of thrust over the trajectory is significantly
higher than that of aerodynamic forces, emphasizing the importance of nullifying ZEM during the
reentry burn. Therefore, we employ the finite-time convergent error dynamics in related work[9] for
the derivation of guidance command.

Ż +
KZ
tgo

= 0, where K ∈ R++. (14)

K in Eq. (14) is positive scalar and serves as guidance gain. If the desired dynamics in Eq. (14) are
achieved, the Z converges in the following pattern.

Z(t) = Z(t0)
(

tb
tb,0

)K
(15)

Here, tb,0 is the total duration of the reentry burn. From Equation (15), it is evident that a positive
guidance gain K ensures convergence of Z to zero as tb → 0.

5
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We can derive the guidance command by utilizing feedback linearization to accomplish the desired
dynamics in Eq. (14). Since the time-derivative of Z depends on the AoA as in Eq. (13), the guidance
command is given as AoA command during reentry burn.

Ż +
KZ
tb

= Fγ sinα +
KZ
tb

= 0, ∴ αc = sin−1
(
− KZ

Fγtb

)
(16)

The sensitivity coefficient ∂ fr
∂γ

can be numerically computed by an additional trajectory prediction with
slight perturbation in initial γ.

∂ fr

∂γ
≈ fr(Θ

′)− fr(Θ)

∆γ
, where Θ

′ = [y,V,γ +∆γ,m, tb]
T (17)

3.3 Guidance Characteristics
In this section, the analysis of the optimality and property of the proposed guidance is provided.

3.3.1 Optimality Analysis
For analysis, we approximate the guidance command in Eq. (16) as follows based on small angle
approximation.

αc = sin
(
− KZ

Fγtb

)
≈− KZ

Fγtb
(18)

According to previous work [9], the cost function minimized by the guidance command in Eq. (18) is
found as follows.

min J =
∫ t f

t0

1
tK−1
go

F2
γ α

2dt =
∫ t f

t0

1
tK−1
go

(
∂ fr

∂γ

2 T
mV 2

)
T
m

α
2dt

=
∫ t f

t0
W (t)

T
2m

α
2dt, where t f = t0 + tb,0

(19)

From Equation (19), the cost function J has a form of minimizing the integral of the weighted quadratic
function of α.
The main purpose of the reentry burn is deceleration by the retro-propulsion prior to the atmospheric
entry. In the stage of trajectory design, the ∆V to be decreased during reentry burn is usually decided
assuming no AoA. This prescribed ∆V should be kept as much as possible even with the deployment
of closed-loop guidance. In this perspective, the physical meaning of Eq. (19) can be found from the
velocity dynamics in Eq. (1). The change in velocity dynamics from no AoA to the non-zero AoA can
be expressed in the following form.

∆V̇ = V̇ −V̇α=0 =
T
m
(1− cosα)≈ T

2m
α

2 (20)

Then, total change in velocity decrease due to the AoA during reentry burn is

∆Vloss =
∫ t f

t0
∆V̇ dt ≈

∫ t f

t0

T
2m

α
2dt (21)

By comparing the Eq. (19) and Eq. (21), we can observe that the cost function of the proposed
guidance algorithm can be interpreted as the minimization of ∆Vloss with a weighting function W (t).
Due to the approximations during the derivation of Eq. (19) and the existence of W (t), the difference
between Eq. (19) and ∆Vloss may vary. However, we can still conclude that the proposed guidance
can regulate the amount of the ∆Vloss.

3.3.2 Guidance Gain Selection
It is beneficial for the guidance law to result in zero AoA at the terminal phase for the transition to
atmospheric entry. For the analysis conducted in this section, the rotational or actuator dynamics are

6
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assumed to be fast enough to be ignored. In the ideal case where the dynamics in Eq. (14) is exactly
accomplished, the guidance command can be expressed as follows combining Eqs. (15) and (22).

αc =
KZ0

Fγtb,0

(
tb

tb,0

)K−1
(22)

Thus, K larger than 1 can result in zero AoA command as tb → 0. However, there may exist distur-
bances and omitted dynamics in Eq. (14), which makes k > 1 just a necessary condition.
Therefore, we consider dynamics with uncertainties represented as d.

Ż = F ′
γ α +d(Z), where d(Z) = a1Z +a2Z2

F ′
γ ,ai ∈ R, i = 1,2

(23)

The uncertain control effectiveness F ′
γ is assumed to have same sign as Fγ and non-zero. a1 approx-

imately represents dynamics error proportional to ZEM, while a2 mainly represents the potentially
omitted higher-order dynamics. Also, the magnitudes of the coefficients F ′

γ and ai are assumed to be
bounded, since the dynamics error or disturbances should be finite in the real-world scenario.

|F ′
γ | ≥ Fγ , |ai| ≤ āi, i = 1,2 (24)

Then, we propose following Lemma to find a sufficient condition for the αc(tb = 0) = 0.

Lemma 1 If K′ > 1 exists such that Ż ≤−K′

tb
Z for t ∈ [t0, t f ], α converges to 0 at tb = 0.

For the proof of Lemma 1, first we assume Z0 > 0 without loss of generality. When the condition
regarding K′ in Lemma 1 is satisfied, the following upper bound can be found for the Z(t).

Z(t)≤ Z0

(
tb

tb,0

)K′

, ∀t ∈ [t0, t f ] (25)

From Eq. (22), we can observe that α becomes 0 at t = t f when Z is bounded as in Eq. (25), which
completes the proof. Utilizing Lemma 1, we seek the existence of K′ for uncertain dynamics in Eq.
(23).

Ż =−(ηK −a1tb −a2Ztb)
Z
tb
, where η ≜

F ′
γ

Fγ

> 0 (26)

The lower bound of the coefficient for −Z/tb in RHS of Eq. (26) can be found as follows

ηK −a1tb −a2Ztb ≥ ηK − ā1tb,0 − ā2tb,0Z,

η = minη =
Fγ

Fγ

(27)

In Equation (27), if we select the guidance gain that satisfies the Condition 1 in Eq. (28) at initial time,
the time derivative of Z becomes negative for t ∈ [t0, t f ] and the upper bound can be found as follows.

if K >
1
η
(1+ ā1tb,0 + ā2tb,0Z0) : Condition 1

→ Ż =−Z
tb
(1+ ā1tb,0 + ā2tb,0Z0 −a1tb −a2tbZ)<−Z

tb

(28)

This implies setting the large enough K can guarantee the existence of the K′ in Lemma 1.

K +a1tb +a2Ztb ≥ K′ > 1 (29)

Therefore, Condition 1 is the sufficient condition for αc(tb = 0) = 0. It is worth noting that finding the
exact values of η , ā1 and ā2 might not be straightforward. Nevertheless, the analysis result in this
work indicates that an appropriately selected gain K can converge α to 0.

7
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4. Numerical Results
In this section, the numerical simulation results are provided to verify the performance and charac-
teristics of the proposed guidance law. The RLV specifications and trajectory parameters are approx-
imately attained from one of the LEO missions of SpaceX’s Falcon 9 rocket. The initial conditions
and vehicle parameters used in this work are presented in Table. 1. Also, the aerodynamics data are
attained from the related work[10], where the detailed aerodynamic coefficients are provided for the
reentering rocket booster. Initial downrange position x is set to give the desired initial ZEM.

Table 1 – Simulation parameters

Parameter Value Parameter Value
m0 47.466 Ton y0 66.742 km
Sre f 10.75 m2 γ0 -25.14 deg
T 247.5 kN V0 2211 m/s
Isp 282 sec ∆γ -0.2 deg
tb,0 20 sec
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Figure 3 – Accuracy comparison

First, Figure 3 shows the numerical efficiency comparison between the proposed rapid prediction and
Euler integration of (1) with initial conditions in Table. 1. The rapid prediction method used in this
work shows 3 times faster prediction speed for same accuracy level achieved by Euler integration.
This demonstrates the proposed prediction method can increase the applicability of the proposed
guidance law.

4.1 Case Study - ZEM
Numerical simulation is conducted with initial conditions in Table. 1 by varying the initial ZEM from
-10 km to 10 km with 5 km interval to review the guidance performance under various initial condition.
The guidance gain K is set to 1, and the results are presented in Fig. 4.
For all initial ZEMs, the proposed guidance law successfully nullified the ZEM within the duration of
the reentry burn. The ZEM profile in Fig. 4b shows that desired error dynamics are well accomplished
by displaying a pattern of Z(t) = Z0

tb
tb,0

. Accordingly, the angle of attack history of each case also has
a smooth and decreasing pattern. It is worth noting that the terminal angle of attack is nonzero for all
cases, which indicates the effect of omitted dynamics during derivation. Furthermore, when the initial
ZEM is 0km, which indicates that no further course correction is required, the guidance law issued
a zero angle of attack command and resulted in an identical trajectory to the ideal zero-effort case.
This underscores the importance of including the reentry burn phase in the prediction. The extended
partial-closed form solution can incorporate the reentry burn phase, thereby reducing unnecessary
maneuvers. Lastly, the average computational time to predict descent trajectory was about 4.8 ms as
in Fig. 4d, which shows promising performance in terms of onboard applications.
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Figure 4 – Simulation results with various initial ZEMs.

4.2 Case Study - Guidance Gain
To investigate the guidance performance and convergence property, numerical simulation is con-
ducted with varying guidance gain and the results can be seen in Fig. 5. First, for all cases with
K from 1 to 3, the proposed guidance law successfully controlled RLV’s downrange distance to the
desired position. As investigated in Section 3., the proposed guidance possesses sub-optimality in
preserving the ∆V during reentry burn, and the degree of the optimality depends on the weighting
function in Fig. 5f. As the guidance gain increases from 1, W (t) shows skewed profile, degrading the
optimality. This difference reveals itself in Figs. 5d and 5e, where the velocity difference and maxi-
mum dynamic pressure increase with increasing K. The reason velocity difference decreases during
the reentry burn is mainly due to the flight path angle difference, which decreases velocity increase
from gravitational attraction.
To verify the convergence analysis in the previous section, the case with K = 1.1 is also conducted.
Interestingly, both cases with K = 1 and 1.1 have non-zero α at the end of the guidance. This implies
that K = 1.1 is not enough to meet the sufficient condition suggested in Eq. (28). Nevertheless, for
the cases with K = 2 and 3, the angle of attack converged to 0. This result partially verifies Condition
1 as the sufficient condition, which argues that a large enough gain K can guarantee α(t f ) = 0.

5. Conclusion
In this work, a simple feedback guidance law for reusable launch vehicles is proposed for down-
range distance control for reusable launch vehicles (RLVs). The proposed law is based on the rapid
trajectory prediction method that encompasses reentry burn and aerodynamic descent and utilizes
finite-time convergent error dynamics. The theoretical analysis indicates the sub-optimality of the
proposed method in preserving the desired ∆V during the reentry burn. Also, the proposed guid-
ance law can have disturbance rejecting property and can guarantee the vehicle’s angle of attack to
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Figure 5 – Simulation results with various Ks.

become 0, which is beneficial to the preparation of the atmospheric reentry. The effectiveness and
properties of the proposed method are verified by the numerical simulations with realistic parameters.
The computational efficiency of the proposed rapid trajectory is also verified, which underscores the
applicability of the proposed algorithm. In conclusion, the guidance law presented in this work can
reduce the trajectory deviation of the RLV prior to reentry, ultimately supporting reliable operations of
the RLVs.
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