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Abstract

Statistical analysis of civil aircraft accidents shows that the highest accident rate occurs during the approach
and landing phase. The main feature of these accidents is abnormal energy state, which leads to critical
situations such as stall and hard landing. Therefore, accurately predicting the energy state of an aircraft during
the approach and landing phase is of great significance to ensure the safe landing of the aircraft. This paper
proposes a deep learning method for predicting the energy state of an aircraft during approach and landing
based on time series data. First, through an extensive review of existing literature, three characteristic
parameters, namely altitude, speed, and glide angle, are selected as indicators to characterize the energy
state. On this basis, a semi-physical simulation platform for a certain type of aircraft is developed. Approach
and landing experiments with different throttle sizes and flap deflections are carried out under different wind
speeds and wind directions. Then, based on the experimental data, a deep learning prediction model based
on long short-term memory (LSTM) is established to predict the energy state indicators during the approach
and landing phase. Finally, the established LSTM model is rigorously trained and tested under different
strategies, and a comparative analysis is performed. The results show that the proposed LSTM model has
high accuracy and strong generalization ability for predicting the energy state of the aircraft during the approach
and landing phase. The research results provide a theoretical basis for designing energy warning systems and
formulating flight control laws during approach and landing phases.
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1. Introduction

Recent accident data on civil aviation highlights that the approach and landing phase with gradually
decreasing energy is the phase most prone to accidents, as shown in Figure 1 [1-3]. One of the key
causes of forced landing accidents is improper aircraft energy management; abnormal energy
approach and landing is the main cause of further accidents such as stalls, hard landings, and
runway departure accidents [4-6]. Most modern fly-by-wire aircraft exhibit neutral speed stability,
making it challenging for pilots to directly discern speed changes using the joystick. This difficulty
often leads to a transition to an abnormal energy state, as described in [7]. The key parameters for
identifying abnormal energy conditions during the approach and landing phases have been identified
as velocity, glide angle, altitude, and descent rate.

Given the complexity and barriers of analog approaches to accurately locate and predict abnormal
energy states, data mining and deep learning techniques have emerged as promising alternatives.
In the field of data mining, anomaly detection involves identifying patterns in data that deviate from
predefined norms or expectations [8,9]. Aviation safety analysts are particularly interested in two
different types of flight anomalies: transient anomalies and flight-level anomalies. Transient
anomalies are characterized by a short period of abnormal events in a flight record [10,11], while
flight-level anomalies are characterized by persistent abnormal data patterns that span an entire
flight or a specified flight phase [12,13].

This study proposes an LSTM-based method to predict the energy state of aircraft during the
approach and landing stages. This method involves analyzing the changes in flight parameters that
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represent the energy state of the aircraft and building a prediction model based on LSTM theory. To
build this model, this study first identified the relevant flight parameters through a comprehensive
literature review. These parameters were then collected by semi-physical simulation tests using an
aircraft flight simulator under the guidance of the flight manual. The simulator replicated real flight
conditions at different throttle settings, wind speeds, and wind directions. Finally, the LSTM model
was built and trained using the collected flight parameters to predict the energy state during the
approach and landing phases. The model facilitates the perception, control, and correction of
abnormal energy states, thereby improving flight safety.
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Figure 1 - Accident distribution per flight phase 2002-2022.

2. Basis of Aircraft System Reliability Modeling

At present, there are many research results on the indicators that characterize the energy state of
the aircraft during the approach and landing phases, as shown in Table 1. Based on these research
results, three key flight parameters, including speed, altitude, and glide angle, were selected to
characterize the energy state of the aircraft. In this study, speed refers to the aircraft's indicated
airspeed, and altitude refers to the radio altitude.

Table 1 - Summary of research results representing aircraft energy state.

Energy state indicators in the
approach and landing phase
veloaly t?sr\:,lajssr:;’e%ﬁ:uzath Flight Safety Foundation (FSF)
Velocity criterion for identifying low
kinetic energy, slip deviation criterion
for identifying low potential energy

Sources of literature

From the airworthiness regulatory
requirements

Aircraft mode and energy-state prediction,
assessment, and alerting
Velocity deviation, glide path Robust autopilot design for landing a large
deviation civil aircraft in crosswind

Nominal profile deviation and data

analysis, and data comes from the CCAR Approach and landing procedure of

high-fidelity simulation model and large transport civil aircraft

aircraft operation data
Kinetic energy, potential energy, total  Energy-based metrics for safety analysis
energy, and their rate of change of general aviation operations

The warning boundary of abnormal energy can be summarized as follows:
-5 kts<V-V,4+<20 kts
-1 dot<y-y,<1 dot
Vsiny>-1,000 ft/min
In the criteria above, 1 dot = 0.35°; yo= 3°; Vis the velocity that indicates the indicated airspeed; Vs
refers to the Reference Landing Speed, with its general value being 1.3 Vs and with Vs, being the

Velocity and altitude
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stall speed in the aircraft landing configuration. Energy states exceeding the range above are
considered to be abnormal energy states in the approach and landing phases.

3. Simulation and Prediction Models of Approach and Landing
3.1 Simulation Experiment Based on Flight Simulator

In this study, the experimental platform uses human-computer interaction to simulate flight approach
and landing. The experimental plan is as follows: (1) According to the flight manual, set up multiple
groups of flight experiments based on throttle size, flap deflection, wind speed, wind direction,
turbulence, etc.; (2) Initialize the approach and landing state of the aircraft, and then simulate the
approach and landing phases of the aircraft through human-computer interaction methods such as
pulling/pressing the joystick and sliding the platform throttle; (3) Record the aircraft flight parameters
in the simulator at all times. The human-computer interaction platform is shown in Figure 2.

Figure 2 - Parameter panel and operating console of the semi-physical simulation platform.

In order to obtain approach and landing samples in a real flight environment, the simulation
experiment is divided into three groups: no wind, wind and turbulence. According to Table 2, the
wind speed can be set as 2m/s, 4 m/s, 6 m/s, 8 m/s, 10 m/s respectively, and the wind direction is
set as downwind (0°), upwind (180°), and crosswind (90°). The throttle is set as 50%, 60%, 70%,
and 80%. Flaps are set as 10° and 35°. In this type of flight simulator, each 0.01s of simulation time
is a sampling point. The data collected in this experiment is used for subsequent training and testing
of the LSTM prediction model.

Table 2 - Speed limit values of different wind directions.

Wind direction Wind speed
. 25 knots (13m/s, 46km/h, indicated
Crosswind X
airspeed)
Upwi 40 knots (20m/s, 74km/h, indicated
pwind X
airspeed)
. 20 knots (10m/s, 37km/h, indicated
Downwind X
airspeed)

3.2 Prediction Model Based on LSTM

Figure 3 shows the architecture of the LSTM model used in this study to predict the speed, altitude,
and glide angle during the approach and landing phases of an aircraft. Each colored circle represents
a node in the LSTM layer. The number of layers and nodes in each layer are carefully adjusted
through rigorous training experiments. These models take the values of flight parameters at a specific
time interval, denoted as x(t), to predict the corresponding altitude, speed, or glide angle at a future
time, denoted as y(t). In the LSTM context, x(f) and y(f) are called feature quantities and label
quantities, respectively. The step time Ar of the model can be flexibly set, and the prediction time
step k can also be varied as needed. This approach can make accurate predictions based on a wide
range of flight parameters and time intervals. In this paper, the final trained model architecture
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consists of an LSTM layer with 20 nodes.
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Figure 3 - LSTM model for energy state prediction of approach and landing.

As shown in Figure 4, before training and testing the designed LSTM model, the samples need to
be preprocessed and normalized. Preprocessing includes conventional processing such as data
cleaning, padding, and smoothing. In addition, in order to solve the dimensional differences in the
data, accelerate model convergence, improve prediction accuracy, and enhance the generalization
ability of the model, this study normalized the feature quantity (as the input of the model) and the
label quantity (representing the output of the model) before introducing them into the LSTM
architecture. All datasets were specially scaled to limit their values to [0,1]. In addition, this paper
uses the Adam gradient descent method to train LSTM. Adam can adaptively adjust the learning
rate, prevent overfitting to a certain extent, and make the convergence effect better.

[Samples from semi-physical simulators]

[ Preprocessing and normalization ]

The detials of the designed LSTM ‘ @

model 80% Samples| 20% Samples m—

hidden node number in each LSTM .
< L feedinto
Layer:20

Max Epochs:1000 —_—
Initial Learn Rate:5e-3
Learn Rate Drop Factor:0.1

[ feed into
Learn Rate Drop Period: 800 [

Train the designed LSTM model

~ -

A well-trained LSTM model ]4_

Shuffle: every epoch

L

De-normalization

L

[ Evaluate the Model ]
Figure 4 - The details of the LSTM model.

4. Experiments of LSTM on the Flight Data

4.1 Strategies for Training and Testing LSTM

A total of 80 approach and landing experiments were conducted in this study, including three working
conditions: no wind, wind, and turbulence. The time series data of flight parameters in each flight
experiment were recorded in a file. The sampling frequency of each flight was 100 Hz, and 80 record
files were formed in the flight simulator. The process from the initial approach state to the aircraft
touching the ground was about 150 seconds, that is, through an approach and landing flight
experiment, there were about 15,000 rows of data in each record file. The most basic condition for
the approach and landing stage is no wind. Therefore, taking the no wind condition as a typical case,
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according to the principle that the generalization ability of the prediction model is from medium to
strong, six strategies for training and testing the designed LSTM are proposed.

(1) Randomly select a single wind-free file without perturbing the time sequence of data in the file;
divide the data in the file into 8:2 as a training set and test set, respectively.

(2) Randomly select a single wind-free file; randomly mix up the time sequence of data in the file;
divide the data in the file into 8:2 as a training set and test set, respectively.

(3) Randomly select a single wind-free file; sparse the data in the file as follows: 1 in every 10 raw
data is kept as a sample; randomly disorder the time sequence of these samples; divide the
samples into 8:2 as a training set and test set, respectively.

(4) Select all the wind-free files; sparse the data in each file as follows: 1 in every 100 raw data is
kept as a sample; randomly shuffle the time sequence of all the samples in the files; divide the
samples into 8:2 as a training set and test set, respectively.

(5) Randomly select eight files including the wind and wind-free conditions for training and select
one wind file and one wind-free file for testing; sparse the data in each file as follows: 1 in every
100 raw data is kept as a sample; randomly disarrange the time sequence of the samples in
the training set, and do not disarrange the time sequence of samples in the test set.

(6) Randomly select 56 files including the wind, wind-free, and turbulent conditions for training, and
select 14 files including the wind, wind-free, and turbulent conditions for testing; sparse the
data in each file as follows: one in every 100 raw data is kept as a sample; randomly disorder
the time sequence of the samples in the training set, and do not disorder the time sequence of
samples in the test set.

4.2 Result Analysis

This study evaluates the performance of LSTM based on the indicators of R-square (R?), Mean
Absolute Error (MAE), and Mean Bias Error (MBE). R? is the coefficient of determination, and its
value range is 0 to 1. The closer it is to 1, the more accurate the model is. MAE indicates the error
level of the model; the lower the MAE, the more accurate the LTMS. MBE indicates the deviation
direction of the model. A positive MBE indicates that the LSTM model overestimates the true value;
a negative value indicates that the model underestimates the true value; and a value close to 0
indicates that the model deviation is the average value. This paper only gives the training and testing
results of LSTM for predicting velocity indicators under 6 strategies (shown in Figures 5-7 and Table
3).

Table 3 - Velocity prediction of LSTM under different strategies.

Strategy  Strategy Parameter Indices of Model LSTM Method VAR Method
Quality Training Set Test Set Training Set Test Set
n=20 k=1 At= R2 0.999960 0.038281 0.919961 0.025812
1 ’0 01 ’ MAE 0.033427 18.30630 0.145758 20.67242
' MBE -0.011397 18.30630 -0.282941 21.28936
n=20 k=1 At= R2 0.999950 0.999950 0.899952 0.889947
2 ’0 01 ’ MAE 0.091720 0.092625 0.275299 0.296551
' MBE 0.018886 0.015178 0.129375 0.121329
R2 0.999400 0.999290 0.909424 0.899261
3 n=20k=1,At=0.1 MAE 0.288590 0.291230 0.702818 0.728703
MBE -0.006848 0.003985 0.306001 0.405864
R? 0.994890 0.994030 0.894941 0.883791
4 n=20k=3, At=1 MAE 0.763620 0.771280 4.723623 4.326705
MBE 0.128520 0.109820 0.810808 0.824212
R? 0.993760 0.992720 0.914259 0.912721
5 n=20k=3 At=1 MAE 0.840780 0.737380 1.958741 1.984753
MBE 0.141060 0.134040 0.329649 0.362082
R? 0.986040 0.989760 0.956179 0.939248
6 n=20k=3 At=1 MAE 1.373400 1.803200 1.904735 2.611392
MBE 0.126260 -0.083124 0.318684 0.264489

In these figures, the horizontal axis represents the serial number of the sample. The vertical axis
5



present the training and test results more clearly.
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represents the value of the flight parameter to be predicted. Since each figure contains a large amount
of sample data, showing the true values and predicted results of all sample points will make the image
visually confusing and difficult to read, especially for the training and test results under the time series
disorder strategy. This lack of clarity will hinder the reader's ability to evaluate the consistency
between the model training results and the true values of the samples. Therefore, after the model is
trained and tested with samples, the sample points in the figure are sparsely processed in order to
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Figure 5 - Prediction results in (a) training and (b) the test set under Strategy 1. Prediction results in
(c) training and (d) test set under Strategy 2.
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Figure 7 - Prediction results in (a) training and (b) test set under Strategy 3, those in (c) training and
(d) test set under Strategy 4, and those in (e) training and (f) test set under Strategy 5.

5. Conclusions

The approach and landing phases are generally recognized as the phases with the highest incidence
of civil aviation accidents. Abnormal energy states are an important cause of these accidents.
Therefore, accurately predicting the energy state indicators at each stage is of great significance for
guiding pilots to land safely and accurately.

(1) A semi-physical simulation platform with integrated human-computer interaction has been
developed for specific aircraft models, which overcomes the shortcomings of traditional pure
digital simulation methods that are difficult to consider the impact of pilots on flight quality. The
platform can also conduct approach and landing simulation experiments close to the real flight
environment under three environmental conditions: calm, windy, and turbulent. Comprehensive
and sufficient flight parameters can be obtained in a short time, and deep learning models with
strong generalization ability can be trained.

(2) The established LSTM-based deep learning model has a high prediction accuracy for energy
7
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state indicators. The R2 value of the altitude prediction model is greater than 0.99, the R2 value
of the speed prediction model is greater than 0.98, and the R2 value of the glide angle prediction
model is greater than 0.98. The model has strong generalization ability, and the established
LSTM model can better predict the speed, altitude and glide angle of the aircraft under different
wind and turbulence conditions in the next 3 seconds. This prediction strength is invaluable for
early detection of abnormal energy states and for designing tailored control laws to manage and
correct such states.

(3) In order to improve the prediction accuracy of LSTM, a training strategy for disordering the sample

time series is proposed. The training results show that if a deep learning network for flight
parameter prediction during the aircraft approach and landing phase is to be built, the time series
of training samples should be disordered. Failure to do so may lead to the "overfitting
phenomenon", which is characterized by high accuracy on the training set but poor performance
on the test set. This finding is not only crucial for optimizing LSTM models, but also has important
implications for developing other types of deep neural networks.
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