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Abstract 

Statistical analysis of civil aircraft accidents shows that the highest accident rate occurs during the approach 
and landing phase. The main feature of these accidents is abnormal energy state, which leads to critical 
situations such as stall and hard landing. Therefore, accurately predicting the energy state of an aircraft during 
the approach and landing phase is of great significance to ensure the safe landing of the aircraft. This paper 
proposes a deep learning method for predicting the energy state of an aircraft during approach and landing 
based on time series data. First, through an extensive review of existing literature, three characteristic 
parameters, namely altitude, speed, and glide angle, are selected as indicators to characterize the energy 
state. On this basis, a semi-physical simulation platform for a certain type of aircraft is developed. Approach 
and landing experiments with different throttle sizes and flap deflections are carried out under different wind 
speeds and wind directions. Then, based on the experimental data, a deep learning prediction model based 
on long short-term memory (LSTM) is established to predict the energy state indicators during the approach 
and landing phase. Finally, the established LSTM model is rigorously trained and tested under different 
strategies, and a comparative analysis is performed. The results show that the proposed LSTM model has 
high accuracy and strong generalization ability for predicting the energy state of the aircraft during the approach 
and landing phase. The research results provide a theoretical basis for designing energy warning systems and 
formulating flight control laws during approach and landing phases. 

Keywords: Approach and landing; Energy state; LSTM; State prediction; Flight safety 
 

1. Introduction 
Recent accident data on civil aviation highlights that the approach and landing phase with gradually 
decreasing energy is the phase most prone to accidents, as shown in Figure 1 [1-3]. One of the key 
causes of forced landing accidents is improper aircraft energy management; abnormal energy 
approach and landing is the main cause of further accidents such as stalls, hard landings, and 
runway departure accidents [4-6]. Most modern fly-by-wire aircraft exhibit neutral speed stability, 
making it challenging for pilots to directly discern speed changes using the joystick. This difficulty 
often leads to a transition to an abnormal energy state, as described in [7]. The key parameters for 
identifying abnormal energy conditions during the approach and landing phases have been identified 
as velocity, glide angle, altitude, and descent rate. 
Given the complexity and barriers of analog approaches to accurately locate and predict abnormal 
energy states, data mining and deep learning techniques have emerged as promising alternatives. 
In the field of data mining, anomaly detection involves identifying patterns in data that deviate from 
predefined norms or expectations [8,9]. Aviation safety analysts are particularly interested in two 
different types of flight anomalies: transient anomalies and flight-level anomalies. Transient 
anomalies are characterized by a short period of abnormal events in a flight record [10,11], while 
flight-level anomalies are characterized by persistent abnormal data patterns that span an entire 
flight or a specified flight phase [12,13]. 
This study proposes an LSTM-based method to predict the energy state of aircraft during the 
approach and landing stages. This method involves analyzing the changes in flight parameters that 
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represent the energy state of the aircraft and building a prediction model based on LSTM theory. To 
build this model, this study first identified the relevant flight parameters through a comprehensive 
literature review. These parameters were then collected by semi-physical simulation tests using an 
aircraft flight simulator under the guidance of the flight manual. The simulator replicated real flight 
conditions at different throttle settings, wind speeds, and wind directions. Finally, the LSTM model 
was built and trained using the collected flight parameters to predict the energy state during the 
approach and landing phases. The model facilitates the perception, control, and correction of 
abnormal energy states, thereby improving flight safety. 

 
Figure 1 - Accident distribution per flight phase 2002-2022. 

2. Basis of Aircraft System Reliability Modeling 
At present, there are many research results on the indicators that characterize the energy state of 
the aircraft during the approach and landing phases, as shown in Table 1. Based on these research 
results, three key flight parameters, including speed, altitude, and glide angle, were selected to 
characterize the energy state of the aircraft. In this study, speed refers to the aircraft's indicated 
airspeed, and altitude refers to the radio altitude. 

Table 1 - Summary of research results representing aircraft energy state. 
Energy state indicators in the 
approach and landing phase Sources of literature 

Velocity deviation, glide path 
deviation, descent rate  Flight Safety Foundation (FSF) 

Velocity criterion for identifying low 
kinetic energy, slip deviation criterion 

for identifying low potential energy 

From the airworthiness regulatory 
requirements 

Velocity and altitude Aircraft mode and energy-state prediction, 
assessment, and alerting 

Velocity deviation, glide path 
deviation 

Robust autopilot design for landing a large 
civil aircraft in crosswind 

Nominal profile deviation and data 
analysis, and data comes from the 
high-fidelity simulation model and 

aircraft operation data 

CCAR Approach and landing procedure of 
large transport civil aircraft 

Kinetic energy, potential energy, total 
energy, and their rate of change 

Energy-based metrics for safety analysis 
of general aviation operations 

The warning boundary of abnormal energy can be summarized as follows: 

�
-5 kts<V-Vref<20 kts

-1 dot<γ-γ0<1 dot
Vsinγ>-1,000 ft/min

 

In the criteria above, 1 dot ≈ 0.35°; γ0 = 3°; V is the velocity that indicates the indicated airspeed; Vref 
refers to the Reference Landing Speed, with its general value being 1.3 Vso and with Vso being the 
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stall speed in the aircraft landing configuration. Energy states exceeding the range above are 
considered to be abnormal energy states in the approach and landing phases. 

3. Simulation and Prediction Models of Approach and Landing 
3.1 Simulation Experiment Based on Flight Simulator 
In this study, the experimental platform uses human-computer interaction to simulate flight approach 
and landing. The experimental plan is as follows: (1) According to the flight manual, set up multiple 
groups of flight experiments based on throttle size, flap deflection, wind speed, wind direction, 
turbulence, etc.; (2) Initialize the approach and landing state of the aircraft, and then simulate the 
approach and landing phases of the aircraft through human-computer interaction methods such as 
pulling/pressing the joystick and sliding the platform throttle; (3) Record the aircraft flight parameters 
in the simulator at all times. The human-computer interaction platform is shown in Figure 2. 

 
Figure 2 - Parameter panel and operating console of the semi-physical simulation platform. 

In order to obtain approach and landing samples in a real flight environment, the simulation 
experiment is divided into three groups: no wind, wind and turbulence. According to Table 2, the 
wind speed can be set as 2m/s, 4 m/s, 6 m/s, 8 m/s, 10 m/s respectively, and the wind direction is 
set as downwind (0°), upwind (180°), and crosswind (90°). The throttle is set as 50%, 60%, 70%, 
and 80%. Flaps are set as 10° and 35°. In this type of flight simulator, each 0.01s of simulation time 
is a sampling point. The data collected in this experiment is used for subsequent training and testing 
of the LSTM prediction model. 

Table 2 - Speed limit values of different wind directions. 
Wind direction Wind speed 

Crosswind 25 knots (13m/s, 46km/h, indicated 
airspeed) 

Upwind 40 knots (20m/s, 74km/h, indicated 
airspeed) 

Downwind 20 knots (10m/s, 37km/h, indicated 
airspeed) 

3.2 Prediction Model Based on LSTM 
Figure 3 shows the architecture of the LSTM model used in this study to predict the speed, altitude, 
and glide angle during the approach and landing phases of an aircraft. Each colored circle represents 
a node in the LSTM layer. The number of layers and nodes in each layer are carefully adjusted 
through rigorous training experiments. These models take the values of flight parameters at a specific 
time interval, denoted as x(t), to predict the corresponding altitude, speed, or glide angle at a future 
time, denoted as y(t). In the LSTM context, x(t) and y(t) are called feature quantities and label 
quantities, respectively. The step time ∆τ of the model can be flexibly set, and the prediction time 
step k can also be varied as needed. This approach can make accurate predictions based on a wide 
range of flight parameters and time intervals. In this paper, the final trained model architecture 
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consists of an LSTM layer with 20 nodes. 

 
Figure 3 - LSTM model for energy state prediction of approach and landing. 

As shown in Figure 4, before training and testing the designed LSTM model, the samples need to 
be preprocessed and normalized. Preprocessing includes conventional processing such as data 
cleaning, padding, and smoothing. In addition, in order to solve the dimensional differences in the 
data, accelerate model convergence, improve prediction accuracy, and enhance the generalization 
ability of the model, this study normalized the feature quantity (as the input of the model) and the 
label quantity (representing the output of the model) before introducing them into the LSTM 
architecture. All datasets were specially scaled to limit their values to [0,1]. In addition, this paper 
uses the Adam gradient descent method to train LSTM. Adam can adaptively adjust the learning 
rate, prevent overfitting to a certain extent, and make the convergence effect better. 

 
Figure 4 - The details of the LSTM model. 

4. Experiments of LSTM on the Flight Data 
4.1 Strategies for Training and Testing LSTM 
A total of 80 approach and landing experiments were conducted in this study, including three working 
conditions: no wind, wind, and turbulence. The time series data of flight parameters in each flight 
experiment were recorded in a file. The sampling frequency of each flight was 100 Hz, and 80 record 
files were formed in the flight simulator. The process from the initial approach state to the aircraft 
touching the ground was about 150 seconds, that is, through an approach and landing flight 
experiment, there were about 15,000 rows of data in each record file. The most basic condition for 
the approach and landing stage is no wind. Therefore, taking the no wind condition as a typical case, 
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according to the principle that the generalization ability of the prediction model is from medium to 
strong, six strategies for training and testing the designed LSTM are proposed. 
(1) Randomly select a single wind-free file without perturbing the time sequence of data in the file; 

divide the data in the file into 8:2 as a training set and test set, respectively. 
(2) Randomly select a single wind-free file; randomly mix up the time sequence of data in the file; 

divide the data in the file into 8:2 as a training set and test set, respectively. 
(3) Randomly select a single wind-free file; sparse the data in the file as follows: 1 in every 10 raw 

data is kept as a sample; randomly disorder the time sequence of these samples; divide the 
samples into 8:2 as a training set and test set, respectively. 

(4) Select all the wind-free files; sparse the data in each file as follows: 1 in every 100 raw data is 
kept as a sample; randomly shuffle the time sequence of all the samples in the files; divide the 
samples into 8:2 as a training set and test set, respectively. 

(5) Randomly select eight files including the wind and wind-free conditions for training and select 
one wind file and one wind-free file for testing; sparse the data in each file as follows: 1 in every 
100 raw data is kept as a sample; randomly disarrange the time sequence of the samples in 
the training set, and do not disarrange the time sequence of samples in the test set. 

(6) Randomly select 56 files including the wind, wind-free, and turbulent conditions for training, and 
select 14 files including the wind, wind-free, and turbulent conditions for testing; sparse the 
data in each file as follows: one in every 100 raw data is kept as a sample; randomly disorder 
the time sequence of the samples in the training set, and do not disorder the time sequence of 
samples in the test set. 

4.2 Result Analysis 
This study evaluates the performance of LSTM based on the indicators of R-square (R2), Mean 
Absolute Error (MAE), and Mean Bias Error (MBE). R2 is the coefficient of determination, and its 
value range is 0 to 1. The closer it is to 1, the more accurate the model is. MAE indicates the error 
level of the model; the lower the MAE, the more accurate the LTMS. MBE indicates the deviation 
direction of the model. A positive MBE indicates that the LSTM model overestimates the true value; 
a negative value indicates that the model underestimates the true value; and a value close to 0 
indicates that the model deviation is the average value. This paper only gives the training and testing 
results of LSTM for predicting velocity indicators under 6 strategies (shown in Figures 5-7 and Table 
3). 

Table 3 - Velocity prediction of LSTM under different strategies. 

Strategy Strategy Parameter Indices of Model 
Quality 

LSTM Method VAR Method 
Training Set  Test Set  Training Set Test Set 

1 n = 20, k = 1, ∆t = 
0.01 

R2 0.999960 0.038281 0.919961 0.025812 
MAE 0.033427 18.30630 0.145758 20.67242 
MBE −0.011397 18.30630 −0.282941 21.28936 

2 n = 20, k = 1, ∆t = 
0.01 

R2 0.999950 0.999950 0.899952 0.889947 
MAE 0.091720 0.092625 0.275299 0.296551 
MBE 0.018886 0.015178 0.129375 0.121329 

3 n = 20, k = 1, ∆t = 0.1 
R2 0.999400 0.999290 0.909424 0.899261 

MAE 0.288590 0.291230 0.702818 0.728703 
MBE −0.006848 0.003985 0.306001 0.405864 

4 n = 20, k = 3, ∆t = 1 
R2 0.994890 0.994030 0.894941 0.883791 

MAE 0.763620 0.771280 4.723623 4.326705 
MBE 0.128520 0.109820 0.810808 0.824212 

5 n = 20, k = 3, ∆t = 1 
R2 0.993760 0.992720 0.914259 0.912721 

MAE 0.840780 0.737380 1.958741 1.984753 
MBE 0.141060 0.134040 0.329649 0.362082 

6 n = 20, k = 3, ∆t = 1 
R2 0.986040 0.989760 0.956179 0.939248 

MAE 1.373400 1.803200 1.904735 2.611392 
MBE 0.126260 −0.083124 0.318684 0.264489 

In these figures, the horizontal axis represents the serial number of the sample. The vertical axis 
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represents the value of the flight parameter to be predicted. Since each figure contains a large amount 
of sample data, showing the true values and predicted results of all sample points will make the image 
visually confusing and difficult to read, especially for the training and test results under the time series 
disorder strategy. This lack of clarity will hinder the reader's ability to evaluate the consistency 
between the model training results and the true values of the samples. Therefore, after the model is 
trained and tested with samples, the sample points in the figure are sparsely processed in order to 
present the training and test results more clearly. 

 
Figure 5 - Prediction results in (a) training and (b) the test set under Strategy 1. Prediction results in 

(c) training and (d) test set under Strategy 2. 

 
Figure 6 - Prediction results in (a) training and (b) test set under Strategy 6. 
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Figure 7 - Prediction results in (a) training and (b) test set under Strategy 3, those in (c) training and 

(d) test set under Strategy 4, and those in (e) training and (f) test set under Strategy 5. 

5. Conclusions 
The approach and landing phases are generally recognized as the phases with the highest incidence 
of civil aviation accidents. Abnormal energy states are an important cause of these accidents. 
Therefore, accurately predicting the energy state indicators at each stage is of great significance for 
guiding pilots to land safely and accurately. 
(1) A semi-physical simulation platform with integrated human-computer interaction has been 

developed for specific aircraft models, which overcomes the shortcomings of traditional pure 
digital simulation methods that are difficult to consider the impact of pilots on flight quality. The 
platform can also conduct approach and landing simulation experiments close to the real flight 
environment under three environmental conditions: calm, windy, and turbulent. Comprehensive 
and sufficient flight parameters can be obtained in a short time, and deep learning models with 
strong generalization ability can be trained. 

(2) The established LSTM-based deep learning model has a high prediction accuracy for energy 
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state indicators. The R2 value of the altitude prediction model is greater than 0.99, the R2 value 
of the speed prediction model is greater than 0.98, and the R2 value of the glide angle prediction 
model is greater than 0.98. The model has strong generalization ability, and the established 
LSTM model can better predict the speed, altitude and glide angle of the aircraft under different 
wind and turbulence conditions in the next 3 seconds. This prediction strength is invaluable for 
early detection of abnormal energy states and for designing tailored control laws to manage and 
correct such states. 

(3) In order to improve the prediction accuracy of LSTM, a training strategy for disordering the sample 
time series is proposed. The training results show that if a deep learning network for flight 
parameter prediction during the aircraft approach and landing phase is to be built, the time series 
of training samples should be disordered. Failure to do so may lead to the "overfitting 
phenomenon", which is characterized by high accuracy on the training set but poor performance 
on the test set. This finding is not only crucial for optimizing LSTM models, but also has important 
implications for developing other types of deep neural networks. 
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