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Abstract

This study tackles intrinsic uncertainties in aircraft constructions caused by complicated system characteristics
and modelling complexities, frequently compounded by a lack of accurate knowledge. It presents an applica-
tion of an uncertainty model based on random matrices and stochastic finite element analysis. In particular,
the Wishart Random Matrix model quantifies uncertainty in critical structural components—mass, stiffness,
and damping matrices—without comprehensive data. The approach, implemented through the NASTRAN
framework, uses eigenvalues from free vibration analysis instead of extracting component matrices and intro-
duces randomness using Monte Carlo Simulations to build probability distributions. Python integration with
NASTRAN improves optimisation and usability. The study shows that the Wishart random matrix model and
simplified matrix randomisation are useful for cost-efficient analysis of aerostructures. This paper expands
the application of random-matrix-based uncertainty quantification to prestressed complex structures, which is
particularly beneficial for large-scale structures such as aircraft. This methodology enhances design control in
uncertainty modelling and propagation by providing flexibility in modifying dispersion levels and aligning with
physical models.

Keywords: Uncertainty, Random Matrix, Eigenvalues, NASTRAN, Python

1. Introduction
Analysis of aircraft structures involves uncertainties arising from parameters and modelling of the
complex system. However, in practical scenarios, information on these uncertainties is rarely avail-
able. Here, we utilise uncertainty models to represent these complex structural uncertainties in ran-
dom matrices and stochastic finite element analysis.[1, 2, 3] In this paper, a practical application of
the Wishart Random Matrix model is presented to quantify the total uncertainty in the random vi-
bration frequency values of the model using diagonal eigenvalue matrix, without the use of stiffness,
mass or damping matrices and also relying on Monte Carlo Simulations. This work addresses a new
uncertainty quantification process in structural analysis utilising the NASTRAN framework instead
of extracting the component matrices, using eigenvalues of free vibration analysis from the output,
and employing randomness in the system to generate the probability distribution. Researchers may
use MATLAB for finite element modelling, but the industry typically prefers commercial packages due
to their graphical interfaces, open-sourced nature, and time efficiency. Therefore, this study utilises
Python combined with NASTRAN to enhance optimisation and facilitate ease of use for large and
complex structures. For similar Python-based work in structural dynamics see [4, 5]

Previous research has demonstrated that the Wishart random matrix model may be coupled with
the reduced model decomposition technique to analyse stochastic built-up structures cost-effectively
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when precise information about uncertainty is missing.[6] This paper scales the problem for a pre-
stressed (when dealing with nonlinear material behaviour or geometric stress-stiffness) complex
structure with multiple element types and a higher element number while discussing an analogous
beam model for empirical understanding.
Random-matrix-based uncertainty quantification is more beneficial as it can be employed in systems
with nominal information, benefiting large-scale complex structures like aircraft. Modelling system
matrices as random matrices allows adjusting dispersion levels, aligning with physical models of
structures for enhanced design freedom and control in uncertainty modelling and propagation.

2. Random matrix approach for stochastic dynamic analysis
2.1 Matrix Variate Probability Density Functions
The random matrix’s probability density function ( [7]) is written as
If A is an 𝑛×𝑚 real random matrix, then the matrix-variate probability density function of A ∈ R𝑛×𝑚,
is represented 𝑝A(A), is a mapping from the space of 𝑛 ×𝑚 real matrices to the real line, i.e.,
𝑝A(A) : R𝑛×𝑚 → R.
Below is the probability density functions of random matrices which are relevant to stochastic me-
chanics problems within this paper.
Wishart matrix : A 𝑛 × 𝑛 symmetric positive definite random matrix S is known to have a Wishart
distribution with parameters 𝑝 ≥ 𝑛 and 𝚺 ∈ R+𝑛, if its pdf is given by

𝑝S (S) =
{
2

1
2𝑛𝑝 Γ𝑛

(
1
2
𝑝

)
det {𝚺}

1
2 𝑝

}−1
|S| 1

2 (𝑝−𝑛−1)etr
{
−1

2
𝚺−1S

}
(1)

This distribution is usually denoted as S ∼𝑊𝑛 (𝑝,𝚺).
Matrix variate Gamma distribution: A 𝑛× 𝑛 symmetric positive definite random matrix W is said to
have a matrix variate Gamma distribution with parameters 𝑎 and 𝚿 ∈ R+𝑛, if its pdf is given by

𝑝W (W) = {Γ𝑛 (𝑎) det {𝚿}−𝑎}−1 det {W}𝑎−
1
2 (𝑛+1) etr {−𝚿W} ; ℜ(a) > 1

2
(n−1) (2)

This distribution is usually denoted as W ∼ 𝐺𝑛 (𝑎,𝚿). used the matrix variate Gamma distribution
citesoi00 for the random system matrices for linear dynamical systems.
In Eqs. (1) and (2), the function Γ𝑛 (𝑎) is the multivariate Gamma function, this is represented as
follows in terms of the univariate Gamma function products:

Γ𝑛 (𝑎) = 𝜋
1
4𝑛(𝑛−1)

𝑛∏
𝑘=1

Γ

[
𝑎− 1

2
(𝑘 −1)

]
; for ℜ(𝑎) > 1

2
(𝑛−1) (3)

To obtain further information on matrix variate distributions, see [8, 7] and their corresponding ref-
erences. The distributions provided by Eqs. (1) and (2) will always produce symmetric and positive
definite matrices among the four types of random matrices discussed previously. As a result, they
could be appropriate choices to represent random system matrices that emerge in probabilistic struc-
tural dynamics.

2.2 Probability density functions of the system matrices
In this section, we use the maximum entropy principle to obtain the probability density functions of
the system matrices [9, 10]. Suppose that the mean values of M, C and K are given by M̄, C̄ and K̄,
respectively. The random system matrices’ matrix variate distributions should be such that

(a) M, C and K are symmetric matrices,

(b) M is positive-definite and C and K are non-negative-definite matrices, and

(c) the moments of the dynamic stiffness matrix’s inverse

D(𝜔) = −𝜔2M+ 𝑖𝜔C+K (4)
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should exist ∀𝜔. That is, if the frequency response function (FRF) matrix, H(𝜔) is given by

H(𝜔) = D−1(𝜔) =
[
−𝜔2M+ 𝑖𝜔C+K

]−1
(5)

then the following conditions must be satisfied:

E
[
∥H(𝜔)∥𝜈F

]
<∞, ∀𝜔 (6)

Here 𝜈 is the order of the inverse-moment constraint.
If the matrix variate density function of G ∈ R+𝑛 is given by 𝑝G (G) : R+𝑛 → R. We have the following
information and constraints to obtain 𝑝G (G):∫

G>0
𝑝G (G) 𝑑G = 1 (the normalization) (7)

and E [G] =
∫

G>0
G 𝑝G (G) 𝑑G = Ḡ (the mean matrix) (8)

The integrals appearing in these equations are 𝑛(𝑛 + 1)/2 dimensional, and the mean matrix Ḡ is
symmetric and positive definite.
Maximising the entropy associated with the matrix variate probability density function 𝑝G (G)

S (𝑝G) = −
∫

G>0
𝑝G (G) ln {𝑝G (G)} 𝑑G (9)

and using the constraints in Eqs. (7) and (8), it can be shown that [10] the maximum-entropy pdf of
G follows the Wishart distribution with parameters 𝑝 = (2𝜈 + 𝑛 + 1) and 𝚺 = Ḡ/(2𝜈 + 𝑛 + 1), that is G ∼
𝑊𝑛

(
2𝜈 +𝑛+1, Ḡ/(2𝜈 +𝑛+1)

)
. The The maximum-entropy approach also gives the system parameters.

The use of the Wishart distribution in structural dynamics has been studied for example in the books
[11, 7]. introduced this measure of uncertainty citesoi00 as the dispersion parameter.

E
[
∥G−E [G] ∥2

F

]
= E

[
Trace

(
[G−E [G]] [G−E [G]]T

)]
= Trace

(
E
[
G2

]
−E [G]2

)
= Trace

(
p𝚺2 +pTrace (𝚺)𝚺+p2𝚺2 − (p𝚺)2

)
= 𝑝Trace

(
𝚺2

)
+p{Trace (𝚺)}2

(10)

Therefore

𝛿2
𝐺 =

𝑝Trace
(
𝚺2) +p{Trace(𝚺)}2

𝑝2Trace(𝚺2)
=

1
𝑝

[
1+ {Trace(𝚺)}2

Trace(𝚺2)

]
=

1
𝜃 +𝑛+1

[
1+ {Trace(Ḡ)}2

Trace(Ḡ2)

] (11)

Additionally, it has been demonstrated that in [12] 𝛿2
𝐺

can be deduced using dispersion parame-
ters of the mass and stiffness matrices. The deterministic (unreduced) system matrices Ḡ(i) ≡
{M̄(i) , C̄(i) , K̄(i) } of individual sub-components are required to generate the parameters of the Wishart
random matrices, where the superscript (𝑖) represent the system matrices of the 𝑖th sub-component.
To select the parameters 𝑝 and Σ of the Wishart matrices, the criterion based on the optimal Wishart
distribution has been adopted [10]. In this case, the deterministic matrix and its inverse are most
equivalent to the means of the random matrix and its inverse. Mathematically, this implies ∥Ḡ −
E [G] ∥F and ∥Ḡ−1 −E

[
G−1] ∥F are minimum. This condition results in

𝑝 = 𝑛+1+ 𝜃 and Σ = Ḡ/𝛼 (12)
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where 𝑛 is the size of Ḡ, 𝛼 =
√︁
𝜃 (𝑛+1+ 𝜃) and 𝜃 can be obtained as follows by using Eq. (11)

𝜃 =
1
𝛿2
𝐺

[
1+ {Trace(Ḡ)}2

Trace(Ḡ2)

]
− (𝑛+1) (13)

This method is justified because a random system matrix and its inverse are symmetric; positive-
definite matrices should be treated mathematically similarly.

3. Methodology
3.1 The generalised Wishart random matrix model
The equation of motion of a damped 𝑛-degree-of-freedom linear dynamic system can be expressed
as

M ¥q(𝑡) +C ¤q(𝑡) +Kq(𝑡) = f(𝑡) (14)

where f(𝑡) ∈ R𝑛 is the forcing vector, q(𝑡) ∈ R𝑛 is the response vector and M ∈ R𝑛×𝑛, C ∈ R𝑛×𝑛 and
K ∈ R𝑛×𝑛 are the mass, damping and stiffness matrices respectively. The dispersion parameter,
proposed by Soize [9, 13], is a measure of uncertainty in the system, and it is similar to the normalised
standard deviation of a matrix. For example, the dispersion parameter associated with the stiffness
matrix is defined as

𝛿2
𝐾 =
E{∥K−K0 ∥2

F}
∥K0 ∥2

F
(15)

where ∥ · ∥F denotes the Frobenius norm of a matrix, and the symbol E{...} denotes the operation of
averaging to the corresponding probability distribution. The dispersion parameter 𝛿𝑀 associated with
the mass matrix can be defined similarly. The dispersion parameters 𝛿𝑀 and 𝛿𝐾 can be obtained
using the stochastic finite element method or experimental measurements [14]. Given the dispersion
parameters, 𝛿𝑀 and 𝛿𝐾 and the baseline mass and stiffness matrices M0 and K0, the parameters for
the random matrices M and K can be obtained in closed-form.
The dynamic matrix’s eigensolutions describe the dynamic response of a proportionately damped
stochastic system:

H = M−1/2KM−1/2. (16)

It was shown that
H ∼𝑊𝑛 (𝑝,Σ) (17)

where𝑊𝑛 (•) denotes a 𝑛 dimensional Wishart matrix. The parameters 𝑝 and Σ can be obtained from
the available data regarding the system, namely M0, K0, 𝛿𝑀 , and 𝛿𝐾 . Dynamical responses obtained
using this generalised Wishart matrix have been validated [15] against the stochastic finite element
method, full Wishart matrices and experiential results.
When Laplace transform is used on the equation of motion and assuming that all of the starting
conditions are zero, (14), we have [

𝑠2M+ 𝑠C+K
]

q̄(𝑠) = f̄ (𝑠) (18)

where the Laplace transform of the respective quantities is denoted by ¯(•). The statistical properties
of q̄(𝑠) ∈ C𝑛 when the system matrices are random matrices are obtained next. The undamped
eigenvalue problem is thus written as

K𝜙 𝑗 = 𝜔
2
𝑗M𝜙 𝑗 , 𝑗 = 1,2, . . . , 𝑛 (19)

where 𝜔2
𝑗

and 𝜙 𝑗 are, respectively, the eigenvalues and mass-normalised eigenvectors of the system.
A high-resolution model of a dynamical system can easily have several million degrees of freedom
(that is 𝑛). On the other hand, only a few hundred or thousands of modes may be necessary for
calculating the dynamic response within the frequency range considered. Suppose the number of
modes to be retained is 𝑚. In general, 𝑚 ≪ 𝑛. The selection of reduced modes depends on the
frequency of excitation. If the maximum frequency of excitation is 𝜔max, then 𝑚 should be such that at
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least 𝜔𝑚 > 𝜔max. Several excellent references exist [16] on the selection of modal order for dynamic
problems.
We form the truncated undamped modal matrices

Ω = diag [𝜔1,𝜔2, . . . ,𝜔𝑚] ∈ R𝑚×𝑚 and Φ =
[
𝜙1, 𝜙2, . . . , 𝜙𝑚

]
∈ R𝑛×𝑚 (20)

so that
Φ𝑇KΦ = Ω2 and Φ𝑇MΦ = I𝑚 (21)

where I𝑚 is a 𝑚-dimensional identity matrix. Using the Eq. (18) can be transformed into the modal
coordinates as [

𝑠2I𝑚 + 𝑠C′ +Ω2] q̄′ = f̄′ (22)

where and (•)′ denotes the quantities in the reduced modal coordinates:

C′
= Φ𝑇CΦ ∈ R𝑚×𝑚, q̄ = Φq̄′ and f̄′ = Φ𝑇 f̄ (23)

For simplicity, let us assume that the system is proportionally damped with deterministic modal damp-
ing factors 𝜁1, 𝜁2, . . . , 𝜁𝑚. Therefore, when we consider random systems, the matrix of eigenvalues Ω2

in equation (22) will be a random matrix of dimension 𝑚. Suppose this random matrix is denoted by
Ξ ∈ R𝑚×𝑚:

Ω2 ∼ Ξ (24)

From the definition of H in Eq. (5), it is clear that Ξ is a Wishart matrix, and the dispersion parameters
of Ξ and H are the same. Since Ξ is a symmetric and positive definite matrix, it can be diagonalised
by an orthogonal matrix Ψ𝑟 such that

Ψ𝑇𝑟 ΞΨ𝑟 = Ω2
𝑟 (25)

In this case, the randomness of the eigenvalues and eigenvectors of the random matrix Ξ is denoted
by the subscript 𝑟. Recalling that Ψ𝑇𝑟 Ψ𝑟 = I𝑚, from equation (22) we obtain

q̄′ =
[
𝑠2I𝑚 + 𝑠C′ +Ω2]−1 f̄′ (26)

= Ψ𝑟
[
𝑠2I𝑚 +2𝑠𝜁Ω𝑟 +Ω2

𝑟

]−1
Ψ𝑇𝑟 f̄′ (27)

where
𝜁 = diag [𝜁1, 𝜁2, . . . , 𝜁𝑚] ∈ R𝑚×𝑚 (28)

The original coordinate yielded the following response

q̄(𝑠) = Φq̄′(𝑠) = ΦΨ𝑟
[
𝑠2I𝑚 +2𝑠𝜁Ω𝑟 +Ω2

𝑟

]−1 (ΦΨ𝑟 )𝑇 f̄ (𝑠)

=

𝑚∑︁
𝑗=1

x𝑇𝑟 𝑗 f̄ (𝑠)
𝑠2 +2𝑠𝜁 𝑗𝜔𝑟 𝑗 +𝜔2

𝑟 𝑗

x𝑟 𝑗 .
(29)

Here

Ω𝑟 = diag
[
𝜔𝑟1 ,𝜔𝑟2 , . . . ,𝜔𝑟𝑚

]
(30)

and X𝑟 = ΦΨ𝑟 =
[
x𝑟1 ,x𝑟2 , . . . ,x𝑟𝑚

]
(31)

are respectively the matrices containing random eigenvalues and eigenvectors of the system. The
system’s Frequency Response Function (FRF) can be obtained by substituting 𝑠 = i𝜔 in Eq. (29).
The computational methodology relies on the undamped random eigenvalue problems. Therefore,
if a perturbation type of approach is adopted (for example [17]), then the method can be extended
to general nonproportional or non-viscously [18] damped systems with light damping. In the next
section, we summarise the Monte Carlo Simulation (MCS) based computational approach from this
analysis.
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3.2 Summary of the computational approach
A step-by-step method for implementing the new computational approach in conjunction with any
general-purpose finite element software is given below:

1. Form the deterministic mass and stiffness matrices M0 and K0 using the standard finite element
method and the modal damping factors 𝜁 𝑗 . Select the number of modes 𝑚 < 𝑛. The number of
modes to be retained, 𝑚, should be selected based on the excitation frequency.

2. Solve the deterministic undamped eigenvalue problem

K0𝜙0 𝑗 = 𝜔
2
0 𝑗

M0𝜙0 𝑗 , 𝑗 = 1,2, . . . ,𝑚 (32)

and create the matrix
Φ0 =

[
𝜙01 , 𝜙02 , . . . , 𝜙0𝑚

]
∈ R𝑛×𝑚 (33)

Calculate the ratio

𝛽𝐻 =
©­«
𝑚∑︁
𝑗=1
𝜔2

0 𝑗

ª®¬
2

/
𝑚∑︁
𝑗=1
𝜔4

0 𝑗
(34)

3. Obtain the dispersion parameters 𝛿𝑀 and 𝛿𝐾 corresponding to the mass and stiffness matrices.
This can be obtained from physical or computer experiments.

4. Obtain the dispersion parameter of the generalized Wishart matrix H in Eq (16) as [15]

𝛿𝐻 =

(
𝑝𝑀

2 + (𝑝𝐾 −2−2𝑛) 𝑝𝑀 + (−𝑛−1) 𝑝𝐾 +𝑛2 +1+2𝑛
)
𝛽𝐻

𝑝𝐾 (−𝑝𝑀 +𝑛) (−𝑝𝑀 +𝑛+3)

+ 𝑝𝑀
2 + (𝑝𝐾 −2𝑛) 𝑝𝑀 + (1−𝑛) 𝑝𝐾 −1+𝑛2

𝑝𝐾 (−𝑝𝑀 +𝑛) (−𝑝𝑀 +𝑛+3) (35)

where

𝑝𝑀 =
1
𝛿2
𝑀

{
1+ {TraceM0}2/TraceM0

2} (36)

and 𝑝𝐾 =
1
𝛿2
𝐾

{
1+ {TraceK0}2/TraceK0

2} (37)

5. Calculate the parameters

𝜃 =
(1+ 𝛽𝐻)
𝛿2
𝐻

− (𝑚 +1) and 𝑝 = [𝑚 +1+ 𝜃] (38)

where 𝑝 is approximated to the nearest integer of 𝑚 +1+ 𝜃.

6. Create an 𝑚× 𝑝 matrix Y such that

𝑌𝑖 𝑗 = 𝜔0𝑖𝑌𝑖 𝑗/
√
𝜃; 𝑖 = 1,2, . . . ,𝑚; 𝑗 = 1,2, . . . , 𝑝 (39)

where 𝑌𝑖 𝑗 are Gaussian random numbers with zero mean and unit standard deviation and are
independent and identically distributed (i.i.d.).

7. Simulate the 𝑚×𝑚 Wishart random matrix

Ξ = YY𝑇 or Ξ𝑖 𝑗 =
𝜔0𝑖𝜔0 𝑗

𝜃

𝑝∑︁
𝑘=1
𝑌𝑖𝑘𝑌 𝑗𝑘 ; 𝑖 = 1,2, . . . ,𝑚; 𝑗 = 1,2, . . . ,𝑚 (40)

Since Ξ is symmetric, only the upper or lower triangular part must be simulated.

6
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8. Solve the symmetric eigenvalue problem (Ω𝑟 ,Ψ𝑟 ∈ R𝑚×𝑚) for every sample

ΞΨ𝑟 = Ω2
𝑟Ψ𝑟 (41)

and obtain the random eigenvector matrix

X𝑟 = Φ0Ψ𝑟 =
[
x𝑟1 ,x𝑟2 , . . . ,x𝑟𝑚

]
∈ R𝑛×𝑚 (42)

9. Lastly, determine the frequency domain dynamic response as

q̄𝑟 (i𝜔) =
𝑚∑︁
𝑗=1

x𝑇𝑟 𝑗 f̄ (𝑠)
−𝜔2 +2i𝜔𝜁 𝑗𝜔𝑟 𝑗 +𝜔2

𝑟 𝑗

x𝑟 𝑗 (43)

Random eigensolutions can also provide time-domain response samples as

q𝑟 (𝑡) =
𝑚∑︁
𝑗=1
𝑎𝑟 𝑗 (𝑡)x𝑟 𝑗 , where 𝑎𝑟 𝑗 (𝑡) =

1
𝜔𝑟 𝑗

∫ 𝑡

0
x𝑇𝑟 𝑗 f(𝜏)𝑒

−𝜁 𝑗𝜔𝑟 𝑗
(𝑡−𝜏 ) sin

(
𝜔𝑟 𝑗 (𝑡 − 𝜏)

)
𝑑𝜏 (44)

When using this method in conjunction with general-purpose commercial finite element software, the
commercial program only has to be used once to retrieve the mean matrices M0 and K0 and solve the
accompanying deterministic eigenvalue problem. Therefore, the computational procedure proposed
here is ‘nonintrusive’.
The main computationally intensive part of a random matrix-based approach is the generation of the
random matrices (by matrix multiplication in Eq. (40)) and the solution of the eigenvalue problem.
The matrix multiplication and the matrix eigenvalue problem scales approximately cubically with the
dimension [19]. Therefore, the computational cost of the approach grows ≈ 𝑂 (𝑚3) compared to
≈ 𝑂 (𝑛3) for the full Wishart matrix-based approach. Since 𝑚 ≪ 𝑛, the reduced approach is expected
to be computationally efficient.

3.3 Uncertainty quantification by unifying random matrices and model reduction
The following three methods were previously proposed by S. Adhikari [20] for the randomisation of
system matrices:

• Method 1 - Mass and stiffness matrices are fully correlated Wishart matrices: For this case
M∼𝑊𝑛 (𝑝𝑀 ,Σ𝑀 ), K∼𝑊𝑛 (𝑝𝐾 ,Σ𝐾 ) with E [M] =M0 and E [K] =K0. This is similar to the approach
proposed by [9, 13] (the original approach requires the simulation of Gamma matrices [7],
which is computationally more expensive). This method requires the simulation of two 𝑛×𝑛 fully
correlated Wishart matrices and the solution of a 𝑛×𝑛 generalised eigenvalue problem with two
fully populated matrices. The computational cost of this approach is ≈ 2𝑂 (𝑛3).

• Method 2 - Generalized Wishart Matrix [15]: For this case Ξ ∼𝑊𝑛
(
𝑝,Ω2

0/𝜃
)

with E
[
Ξ−1] = Ω−2

0
and 𝛿Ξ = 𝛿𝐻 . This requires the simulation of one 𝑛 × 𝑛 uncorrelated Wishart matrix and the
solution of an 𝑛× 𝑛 standard eigenvalue problem. The computational cost of this approach is
≈𝑂 (𝑛3).

• Method 3 - Reduced diagonal Wishart Matrix: For this case Ξ̃ ∼𝑊𝑚
(
𝑝, Ω̃

2
0/𝜃

)
with E

[
Ξ̃
−1]

= Ω̃
−2
0

and 𝛿
Ξ̃
= 𝛿𝐻 . We used a tilde to differentiate from the previous case. This requires simulating

one 𝑚 ×𝑚 uncorrelated Wishart matrix and solving a 𝑚 ×𝑚 standard eigenvalue problem. 𝑚
can be significantly smaller than 𝑛 for large complex systems. The computational cost of this
approach is ≈𝑂 (𝑚3).

The methods are listed in decreasing order of computational cost. In this paper, we are using Method
3 for ease of computation. The samples of Wishart random matrices 𝑊𝑛 (𝑝,Σ) can be generated
using numpy in Python. It can handle fractional values of (𝑛+1+ 𝜃) to avoid the approximation to its
nearest integer.
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The process needs to be repeated for the mass, stiffness, and damping matrices to acquire the rel-
evant response statistics. Each sample’s equation of motion is then solved. It is thus evident that
this process is simple to follow. After the generation of system matrix samples, the remainder of the
analysis is the same as that of any Monte Carlo simulation (MCS) based method. At this point, the
mean matrices can be extracted using NASTRAN, which is accessed just once. Consequently, this
simulation process is "nonintrusive." To analyse stochastic structures, a combined model reduction-
based domain decomposition technique [12, 6] can simulate system random matrices efficiently. In
this paper, however, we simplify the problem and utilise the generalised stiffness or eigenvalues gen-
erated from a free vibration analysis in Nastran to create our system matrix. We use the eigenvalues
to create a diagonal matrix representing our generalised stiffness matrix. This method, however, de-
nies us information regarding the dispersion parameters of the relevant system matrices. A numerical
formulation is necessary for this; however, here, we use experimental observation and comparison of
a few relevant 𝛿𝐻 values to observe the variations. The next section explains a stepwise description
of how this randomisation is carried out.

3.4 Parameter selection for Eigenvalue Analysis
There’s a need to choose the free vibration analysis parameters to define the type of matrices utilised
for the analysis. The options include:

• Linear: This default setting within Nastran applies the linear elastic stiffness matrix 𝐾𝐴𝐴𝑋, which
assumes that the material behaviour is linearly elastic and the stiffness properties remain con-
stant throughout the analysis. The eigenproblem corresponding to this stiffness matrix is given
by:

K𝐴𝐴𝑋𝜙 = 𝜔2M𝜙 (45)

• Nonlinear: This option utilizes the tangential stiffness matrix 𝐾𝑇 derived from a previously
executed nonlinear analysis. By assuming a linear mass matrix 𝑀 and taking into account har-
monic motion around quasi-static equilibrium states, the corresponding eigenproblem is pro-
vided. [21]:

K𝑇𝜙 = 𝜔2M𝜙 (46)

This approach is beneficial when dealing with nonlinear material behaviour or large deforma-
tions. Note that tangential stiffness matrices are only constructed when the nonlinear analysis
employs a Newton-Raphson iteration method. Other iteration methods, such as Constant Stiff-
ness, Linear stiffness, or the secant (Quasi-Newton) method, do not construct tangent stiffness
matrices. It was demonstrated that in the situation of small displacements and linear nature
in pre-buckling, the sum of the geometric (prestress) contribution 𝐾𝐺𝐺 and the linear stiffness
𝐾𝐴𝐴𝑋 may be approximated as the tangent stiffness. And the geometric (prestress) contribution
[21].

• Geometric stress-stiffness: This parameter adds the geometric stress-stiffness matrix 𝐾𝐺𝐺
to the stiffness matrix 𝐾. This matrix accounts for the geometric nonlinearity arising from large
displacements or rotations. The associated eigenproblem is:

(K+K𝐺𝐺)𝜙 = 𝜆I𝜙 (47)

where K is the symmetric stiffness matrix, M is the mass matrix, 𝜔 is the circular natural frequency,
𝜆 is the eigenvalue, and 𝜙 is the mode shape vector or the related amplitude eigenvector. The
eigenvalue 𝜆 equals 𝜔2, which means the squared natural frequency in radians per second is equiv-
alent to the eigenvalue. The eigenvector 𝜙 represents the mode shape vector corresponding to this
eigenvalue. Instead of extracting extensive stiffness matrix data, the analysis at this juncture uses a
diagonal eigenvalue matrix as an alternative to the stiffness matrix. This approach primarily illustrates
the variations in eigenvalues, representing the frequency ranges of different mode shapes from a free
vibration analysis.
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4. Numerical illustration
4.1 Simple beam model
We start with a simple beam model for free vibration or eigenvalue analysis to simulate the proposed
method. The nonlinear static analysis is intended to capture the model’s response under applied
loads, considering material nonlinearity and geometric complexities. The analysis is initiated with a
multi-step nonlinear static SOL 400 command. Subsequently, a new subcase is initiated, consisting
of two distinct steps. The first step involves a nonlinear static analysis under a designated load,
followed by a normal modes analysis under the same load conditions. i.e., it begins with a load
step of 5 kN and applies constraints to stabilise the model. Following this, to determine the natural
frequencies and mode shapes of the structure a normal modes analysis is conducted. This analysis
aids in understanding the dynamic behaviour of the model under free vibration conditions. The model
consists of beam elements defined by grid points, with material properties specified for aluminium
1060 within the NASTRAN material library.

1 2 3 4 5 6 7 8 9 10 11

123456 2456
Load

1 m

𝑦

𝑥
𝑧

Figure 1 – Schematic diagram of the Nastran model of the simple beam structure. A fixed constraint
(TX, TY, TZ, RX, RY & RZ fixed, i.e. 123456) at node one and pinned (TY, TZ, RY & RZ fixed, i.e.

2456 at node 11.)

The material selected for the analysis is Aluminum 1060 Annealed Wrought, characterised by a
nominal density of 2700 kg/m3, an elastic modulus of 69 GPa, and a square cross-sectional width
of 0.5 m. The material properties are defined using the MAT1 and MAT4 commands. The MAT1
command specifies an elastic modulus (E) and a Poisson’s ratio 𝜈 of 0.3 for isotropic materials, while
the MAT4 command provides density 𝜌
Boundary conditions are defined using the SPC1 command. Node 1 is fully constrained (123456),
which means TX, TY, TZ, RX, RY & RZ fixed, where T & R denote translational and rotational degree
of freedom, respectively, and node 11 has translational degrees of freedom in the Y and Z directions
and all rotational degrees of freedom constrained (2456). Loadings are specified with the FORCE
command, applying compressive force in the X direction at node 11.
Finally, the analysis is done to get the eigenvalues and eigenvectors for different loading conditions,
allowing us to see the variation of mode shapes around the buckling load.
Next, the system is considered stochastic with no probabilistic description of the parameter vari-
abilities. Hence, the system matrices are modelled as Wishart random matrices, and the response
statistics are computed.

4.2 Scaling the technique to complex model
Here, we utilise a finite element model of a reinforced composite panel of aeronautical interest dis-
cussed in the previous work done by Pedro et al.[21] where experimental observations are made
for the vibration correlation of this prestressed laminated reinforced panel. The FE model of the
structure has 53188 nodes and 40823 elements. A visual depiction of the finite element model is
displayed in (Fig 2) as visualised from a NASTRAN bulk data file. The AS4 unidirectional prepreg
employed during the manufacturing of the reinforced composite panel has the following material prop-
erties: 𝐸1 = 119 GPa, 𝐸2 = 9.8 GPa, 𝐸3 = 4.67 GPa, 𝜈12 = 0.316, 𝜈13 = 0.026, 𝜈23 = 0.33,𝐺12 = 4.7GPa,
𝐺13 = 𝐺23 = 1.76 GPa, and 𝜌 = 1580 𝑘𝑔/𝑚3.The manufacturer is Delft Aerospace Structures and Ma-
terials Laboratory[21].
Figure 3a illustrates the geometrical characteristics and boundary constraints used to generate the
mathematical model. The two-stringer reinforced panel is 690mm long and 𝑏=270mm wide. Figure
3b depicts the dimensions of the cross-section. The stringer height and thickness are ℎ=39.3mm
and 𝑡=7.3mm, respectively, with ℎ1=9.52mm and ℎ2=3.66mm. Boundary conditions are applied to
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Figure 2 – FE model of the of the reinforced composite panel.

(a) Dimensions and boundary conditions (b) Detail of the panel’s cross-section.

Figure 3 – Main geometrical features, loading and boundary conditions for the simulation of the
reinforced composite panel.

displacement components on planes perpendicular to the y-axis, as seen in 3a. Two 50mm rigid
bands are modelled at panel ends to simulate the effects of resin blocks. At 𝑦 = 0, the cross-section
is free to translate, yet pressure is applied to the whole plane[21].
The structure will be subjected to a prestressed nonlinear modal analysis to obtain the natural mode
shapes [21], and the eigenvalue outputs are generated for 100 modes. This is done to compare the
validity of the beam model and to verify the subsequent results from randomisation. The NASTRAN
input file sets up a detailed structural analysis for a reinforced panel, encompassing nonlinear static
and modal analyses. In the input file, the material properties are specified using NASTRAN’s param-
eter settings, which include settings for large strain effects and shear transformations. The structural
analysis, thus, considers nonlinearities and uses the RIKS method for the static step, suitable for
post-buckling or large deformation problems. For the dynamic step, a complex eigenvalue extraction
method METHOD = 100 is used to determine the natural frequencies and mode shapes.
Coordinate systems are defined using CORD2R entries, representing various stringer locations and
base properties. These coordinate systems define local axes or reference frames for specific struc-
tural components, defining element orientations and material directions.
Boundary conditions are applied using SPC sets, with node constraints specified to restrict necessary
translational and rotational degrees of freedom (TX, TY, TZ, RX, RY, RZ). Loadings are defined using
FORCE and LOAD sets.
The analysis is set up to obtain the eigenvalues and eigenvectors within the .f06 file. Alternatively,
output can also be obtained in .op2 or .op4 files. In this case, PyNastran can be used to read these
files. This is done for multiple loading conditions to get the required data.
At this juncture, one may extract the relevant system matrices using DMAP (Direct Matrix Abstraction
Program) commands within the bulk data file input. However, for a complex structure like this one,
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the file size would be huge to process, so as a simpler method, we use eigenvalues, as they can be
easily retrieved from the output files. The idea is to make the process computationally efficient and
easy to perform.

5. Results
The vibration correlation of the natural mode shapes from the simulation of the beam model and the
reinforced panel is reviewed after the finite element analysis to verify the analogous characteristics
of both models. Previous studies have carried out deterministic and experimental analyses to show
the variation of the natural frequencies [21]. Here, we create a random profile for the eigenvalues
(eigenvalue 𝜆 is equal to 𝜔2, the squared natural frequency in radians per second) for different modes
using our Wishart random matrix model. The process begins with creating a fully populated Wishart
random matrix from the diagonal eigenvalue matrix (𝜆I). NASTRAN was employed for the preliminary
analysis to obtain the eigenvalues that need to be randomised. The eigenvalues are stored as a
diagonal matrix and follow the numerical steps mentioned in 3.2 to generate the Wishart matrices,
following which Monte-Carlo simulation is performed to generate an ensemble of multiple Wishart
matrices. To handle extensive data, a sparse matrix format is used for large Wishart matrices to
reduce memory usage.

(a) Beam Model (b) Panel Model

Figure 4 – Coefficient of variation of randomised eigenvalues for different values of dispersion
parameter 𝛿𝐻 across the first 10 Eigenvalue index from 100,000 MCS

5.1 Dispersion Parameter
Adjustments to the dispersion parameter 𝛿𝐻 and the size of the Wishart matrix are required to as-
certain the extent of variation and establish the appropriate tolerance for uncertainty. The size of the
Wishart matrix is typically determined by the input matrix, which may consist of the stiffness matrix
or, in our scenario, the diagonal eigenvalue matrix. Since we opted for eigenvalues and consider-
ing that free vibration analysis may theoretically yield infinite eigenvalues—albeit with diminishing
significance for higher ones—we can select the necessary number to construct the Wishart matrix.
However, suppose the stiffness matrix, dictated by the structure and contingent upon the number
of elements in the finite element model, is employed, the size of the Wishart matrix remains con-
stant. In this study, we used the first 100 modes of the complex panel model and 38 modes from
the simple beam model (due to design limitations, geometric restrictions and coarse meshing, it did
not yield more eigenvalues for this particular analysis, which was done deliberately to understand the
variations in less defined models).
The dispersion parameters are analysed for both models to check for the Coefficient of Variation
(CoV) across the first ten eigenvalue indices. This can be compared with experimental observation to
decide the required 𝛿𝐻 value to be utilised for the prediction. However, in the absence of experimental
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(a) Beam Model (b) Panel Model

Figure 5 – Probability Density Function plot of different 𝛿𝐻 for Eigenvalue 1 across different loading
values for a single loading value

data to validate the range of dispersion as well as the lack of information without explicitly investigating
the individual dispersion parameters of the mass and stiffness matrix of the finite element models, we
resort to a careful consideration based on the convergence and low value of per cent coefficient of
variation(CoV%), preferably below one. So, we analyse a particular loading condition to check for the
variation for 100,000 Monte-Carlo Samples(MCS) of Wishart randomised eigenvalue matrices and
the results are presented in figure 4. Higher values above unit per cent CoV are improbable in this
case, however, we analyse them to see the behaviour of the dispersion parameter. As we can see
from the figure, the higher CoVs become unpredictable even for higher Monte Carlo simulations. Also,
we can see that the unpredictability increases for higher eigenmodes. Finally, we choose 𝛿𝐻 = 0.02 for
the simple beam model, which converges to a 𝐶𝑜𝑉 = 0.67 and for the complex panel model, 𝛿𝐻 = 0.05
which converges to 𝐶𝑜𝑉 = 0.84.

(a) Simple Beam - 𝛿𝐻 = 0.02 (b) Panel - 𝛿𝐻 = 0.05

Figure 6 – Randomized Eigenvalues across Loading; within three standard deviations of the PDF,
first ten modes

To comprehend the practical meaning of changes in the dispersion parameter, we display a graph
depicting the variation in probability density for two different 𝛿𝐻 values for each model under different
loading conditions. This graph is presented in figure 5. As discussed earlier, the CoV% converges
to the same value across the different loading conditions. Here, the significant change occurs with
the standard deviation. The deviation is much leaner closer to the critical buckling load and is the
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lowest at the critical buckling load, suggesting the least variation. Overall, this observation signifies
that as the dispersion parameter is allowed to increase, the bandwidth of frequencies for a particular
mode increases, leading to more uncertainty, which may be useful in situations that demand a wide
margin of safety. With a low dispersion parameter value, this uncertainty is much more localised.
However, the lowest permissible value of 𝛿𝐻 should be analysed based on an experimental result
or an expected theoretical outcome. As this method can be utilised for other analyses, one has to
critically examine the underlying physics to choose the required dispersion based on the spread,
which can be done through a few experimental and theoretical validation processes.

5.2 Plotting the randomized eigenvalues
The shaded plot provides a visual representation of the variability or uncertainty around the eigen-
value loci at each point along the loading for the vibration correlation results for the simple beam and
panel model. The shaded plots are plotted for the dispersion parameter, 𝛿𝐻 = 0.02 for the simple
beam and 𝛿𝐻 = 0.05 for the panel model as discussed in the previous section 5.1. In this case, the
shaded area is created around the main line plot (the eigenvalues) within three standard deviations
of the probability distribution of each eigenvalue. The lower boundary is calculated by subtracting the
standard deviation from the main line, and the upper boundary is calculated by adding the standard
deviation to the main line.
As the CoV remains the same, the standard deviation is higher for higher modes, and thus, the
spread may not be visible for lower modes when more modes are displayed on a single plot, as we
have shown the first ten modes for both the models in figure 6. Hence, an additional plot for clarity is
shown for the first four modes in figure 7.

(a) Simple Beam - 𝛿𝐻 = 0.02 (b) Panel - 𝛿𝐻 = 0.05

Figure 7 – Randomized Eigenvalues across Loading; within three standard deviations of the PDF,
first four modes

5.3 Discussions
An approximation is made in choosing the relevant dispersion parameter based on the convergence
of the CoV%, which requires a mathematical validation as a new system parameter is utilised, i.e.,
the eigenvalues, instead of the characteristic stiffness or mass matrix, which has a defined dispersion
parameter derived using the Frobenius norm of the matrix. In the shaded plots of the eigenvalue
loci, there are few instances of very close occurrences of these loci, which can be seen to cross
or veer suddenly away from each other, called mode veering, for a detailed discussion about this
phenomenon we may refer [22, 23, 24, 25, 26, 27]. Although, within the deterministic results the
modes do not overlap, the shaded plot has an overlap observed, which needs further investigation.
Figure 8 shows a closer look at these instances. As this needs a more rigorous investigation, a
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detailed explanation of the order of modes of the randomised values cannot be explicitly stated within
the domains of this study.

(a) Simple Beam - 𝛿𝐻 = 0.02 (b) Panel - 𝛿𝐻 = 0.05

Figure 8 – A closer look into the close occurrences of eigenvalue loci within the shaded plot of
randomised eigenvalues for simple beam and panel model

In low-frequency vibration scenarios, the probability distributions of individual eigenvalues provide
significant physical insights when the matrix size and uncertainties are limited. However, in random
systems with variable parameters, phenomena such as the veering effect and statistical overlap of
eigenvalues become prominent [28]. The veering effect describes the crossing or mixing of eigenval-
ues as system parameters change. At the same time, statistical overlap occurs when the eigenvalues
start to merge, particularly for higher eigenvalues of large matrices or systems with significant uncer-
tainties [29]. It was shown that even for moderately uncertain systems with 𝛿2

𝑘
= 0.25, substantial

statistical overlap can occur with as few as 30 eigenvalues [30]. When modes exhibit veering and
substantial statistical overlap is present, the physical relevance of the probability distribution of individ-
ual ordered eigenvalues becomes questionable. Traditional perturbation-based methods may appear
less valid in these scenarios, especially when the standard deviation of the eigenvalues exceeds the
mean spacing between them [17, 31]. In such situations, an alternative approach that considers the
density of a collection of eigenvalues proves more meaningful [32, 33, 34]. This density-based ap-
proach becomes particularly relevant for aerospace structures like helicopters and spacecraft, which
frequently experience high-frequency vibrations that can excite numerous higher modes.
The code we developed for this numerical method uses a sparse matrix format to reduce memory
and computing time; however, the process remains computationally demanding when considering
systems of higher scales, such as an entire aircraft. Hence, further optimisation is essential to accom-
modate larger matrix sizes. This can be achieved using parallel computing significantly enhancing
performance and scalability. Essential strategies that may be employed include domain decomposi-
tion, which allows the issue to be split up and tackled in parallel, and effective load balancing, which
distributes the computing burden equally. Additionally, leveraging high-performance computing (HPC)
frameworks and libraries optimised for sparse matrix operations, such as PETSc [35]or Trilinos [36],
can provide substantial improvements. Implementing these strategies may not only accelerate the
computation but also enable handling more complex models and higher resolution simulations, thus
extending the applicability of the sparse matrix approach to large-scale engineering problems like
aircraft structural analysis, which can be a scope for further study.

6. Conclusions
In this paper, using the Wishart random matrix model, a simplified eigenvalue randomisation tech-
nique is presented as a viable and cost-effective means of analysing prestressed vibration correlation
studies in structures of aeronautical importance without precise knowledge of the uncertainty. The
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dynamic stiffness matrix changes with the force term in a prestressed condition. To represent this
change, we use the diagonal eigenvalue matrix from a natural frequency analysis with geometric
prestress, which is randomised using Wishart matrices. The variation is studied, and the results are
stated.

1. In prestressed structures, the dynamic stiffness matrix differs from non-stressed structures,
introducing additional considerations for the analysis.

2. The absence of a requirement for explicit information regarding joint uncertainty remains advan-
tageous, as quantifying joint uncertainties in prestressed structures can be particularly intricate.

3. Computational efficiency is maintained in prestressed systems through diagonal eigenvalue
matrix to create random matrices and employing sparse matrix format.

4. Parallel computations in the Monte Carlo Simulation (MCS) framework persist, allowing for effi-
cient analysis of prestressed structures.

5. The generalised nature of the approach extends seamlessly to prestressed structures, accom-
modating different dynamic stiffness matrices and handling uncertainties in multi-component
systems.

6. Additional considerations in uncertainty modelling may arise due to the influence of prestress,
and the framework can be adapted to address these specifics in the analysis.

7. Mode veering phenomena showed few statistical overlaps within the boundaries of consecutive
mode loci and may need further investigation.

A few drawbacks of the proposed approach that demand further examination, particularly in the
context of prestressed structures and complex systems with a large number of elements and degrees
of freedom, are:

• It is crucial to determine the matrix variate joint probability density function for M,C, and K,
particularly in light of the complex behaviour of large-scale structures and the complications
brought about by prestress. Although using eigenvalues can make this process easier, it may
also create more uncertainty if not modelled without proper considerations with the selection
of parameters, which might be beneficial or detrimental, depending on the analysis’s require-
ments.

• Handling the intricate interactions among numerous elements and degrees of freedom intro-
duces complexities that need careful consideration in the modelling and analysis.

• Despite the use of sparse matrix format to reduce memory and computing time, the numerical
method remains computationally demanding for larger systems such as entire aircraft, neces-
sitating further optimisation through parallel computing and the implementation of HPC frame-
works to handle complex models and high-resolution simulations, indicating a potential area for
further research.
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9. Appendices
9.1 Nastran Commands Mentioned in the paper
The following is a list of NASTRAN commands used in this paper, listed in order of usage.

Table 1 – List of NASTRAN commands used in the paper

Command Description

SOL 400 Specifies solution sequence and options for structural analysis using
MSC Nastran solver

MAT1 Defines material properties for linear isotropic materials
MAT4 Defines material properties for linear orthotropic materials
SPC1 Specifies single-point constraints (SPCs) to restrain degrees of freedom
FORCE Specifies concentrated force or moment loads
RIKS Sets up a Riks analysis for studying nonlinear behaviour
METHOD = 100 Specifies numerical method for analysis
CORD2R Defines a rectangular Cartesian coordinate system
SPC Specifies constraints to restrict motion of degrees of freedom
LOAD Specifies applied loads, forces, moments, or temperatures
.f06 Output file format for storing analysis results, readable text format
.op2 Output file format for storing binary results data
.op4 Output file format for storing binary results data

9.2 Coefficient of Variation data of Randomized Eigenvalues
The tables below show the Coefficient of variation (CoV) of randomised eigenvalues for different
dispersion parameter values 𝛿𝐻 across the first 10 Eigenvalue index from 100,000 MCS for 100kN
loading.

Table 2 – Comparison of CoV values for simple beam and panel models

(a) CoV values for simple beam model

𝛿𝐻

Eigenmode 0.02 0.035 0.05 0.075 0.10

1 0.67 1.17 1.67 2.51 3.36
2 0.67 1.17 1.66 2.46 3.22
3 0.67 1.16 1.66 2.45 3.2
4 0.67 1.17 1.67 2.5 3.35
5 0.67 1.16 1.67 2.5 3.35
6 0.67 1.16 1.66 2.49 3.31
7 0.67 1.17 1.67 2.49 3.32
8 0.67 1.16 1.66 2.45 3.2
9 0.66 1.15 1.59 2.27 2.89

10 0.66 1.15 1.59 2.26 2.88

(b) CoV values for panel model

𝛿𝐻

Eigenmode 0.05 0.10 0.15 0.25

1 0.84 1.69 2.55 4.38
2 0.84 1.68 2.54 4.32
3 0.84 1.69 2.54 4.31
4 0.84 1.68 2.55 4.33
5 0.84 1.67 2.51 4.11
6 0.83 1.59 2.24 3.48
7 0.81 1.47 2.03 3.15
8 0.82 1.53 2.17 3.37
9 0.84 1.67 2.5 4.07

10 0.78 1.47 2.16 3.56
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9.3 Probability Distribution Values for comparing dispersion parameter

Table 3 – Probability Density Function data for Eigenvalue 1 across different loading values for a
single loading value for beam model

(a) 𝛿𝐻 = 0.02

Load (kN) CoV(%) Max PDF

50 0.6633 5.03×10−9

100 0.6786 6.04×10−9

150 0.6829 7.82×10−9

200 0.7031 1.10×10−8

250 0.7127 2.05×10−8

300 0.7463 2.96×10−7

303.39 0.7391 7.45×10−3

350 0.7673 1.57×10−9

400 0.7973 2.09×10−9

450 0.8287 3.31×10−9

500 0.8531 1.03×10−8

(b) 𝛿𝐻 = 0.05

Load (kN) CoV (%) Max PDF

50 1.6364 2.04×10−9

100 1.6524 2.48×10−9

150 1.7041 3.14×10−9

200 1.7693 4.38×10−9

250 1.8150 8.03×10−9

300 1.8474 1.19×10−7

303.39 1.8470 2.98×10−3

350 1.8952 6.36×10−10

400 1.9749 8.43×10−10

450 2.0479 1.34×10−9

500 2.1245 4.12×10−9

Table 4 – Probability Density Function data for Eigenvalue 1 across different loading values for a
single loading value for panel model

(a) 𝛿𝐻 = 0.05

Load (kN) CoV(%) Max PDF

100 0.8417 1.01×10−5

200 0.8446 1.12×10−5

300 0.8604 1.25×10−5

400 0.8358 1.10×10−8

500 0.8594 1.49×10−5

600 0.8490 1.74×10−5

700 0.8643 2.25×10−5

739 0.8561 3.24×10−5

800 0.8559 9.48×10−5

900 0.8761 4.51×10−5

(b) 𝛿𝐻 = 0.10

Load (kN) CoV (%) Max PDF

100 1.6703 5.07×10−6

200 1.6851 5.61×10−6

300 1.6997 6.32×10−6

400 1.7156 7.27×10−6

500 1.7112 8.77×10−6

600 1.7421 1.10×10−5

700 1.7035 1.64×10−5

739 1.7341 4.68×10−5

800 1.7179 3.45×10−5

900 1.7432 2.27×10−5
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