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Abstract

In response to the difficulty in obtaining high-precision aerodynamic noise data, this paper establishes a
comprehensive standardization process for predicting the transonic buffet aerodynamic noise of RAE2822
airfoil. Firstly, a prior criterion is proposed based on flow correlation and the prediction accuracy of the Power
Spectral Density (PSD) using the Random Forest (RF) algorithm. Subsequently, we determine whether the
RF algorithm can be employed to directly obtain high-precision PSD results using this criterion. Successful
PSD prediction is specifically determined when monitoring points simultaneously satisfy RMSE_corr<0.05
and RMSE_adj<0.05, the RMSE_corr represents the Root Mean Square Error (RMSE) of the auto-
correlation and the cross-correlation coefficients, and the RMSE_adj indicates the RMSE of the PSD for the
adjacent monitoring points. If not, we introduce an innovative approach by embedding the RF model into the
Compressed Sensing algorithm reconstruction process (RF_CS). This method efficiently achieves high-
precision Overall Sound Pressure Level (SPL) and PSD reconstruction based on sparse sensor positions,
demonstrating good robustness and generalization capabilities. Compared to the CS algorithm based on
Proper Orthogonal Decomposition (POD_CS), this method achieves high-precision PSD (SPL)
reconstruction, with the RMSE has been reduced by a factor of 2 to 50 using 22 (9) sensor positions and 15
(12) basis functions, and the method does not exhibit phenomena such as high-frequency distortion or
inflection point distortion.
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1. Introduction
Efficient and accurate prediction of aerodynamic noise is of paramount importance for flow control
and noise reduction design [1-5]. Researchers have developed empirical and semi-empirical
theoretical models by integrating wind tunnel experimental measurements with mathematical tools
[6,7], such as the Rossiters’ cavity aerodynamic noise prediction model [8]. Although this method is
simple, intuitive, and efficient, its application is limited due to the lack of flexibility in
accommodating arbitrary geometric shapes, flow conditions, and varied monitoring point positions.
Numerical simulations, while relatively flexible and adjustable concerning geometric shapes and
flow states, may encounter convergence issues even when meeting requirements for high-
precision numerical schemes, low dissipation, and low dispersion [4]. Experimental measurements,
on the other hand, offer an effective means of validating numerical simulations, aerodynamic noise
theory, and optimizing aerodynamic noise reduction designs [9-13]. However, conducting
experimental measurements demands a substantial number of dynamic pressure sensors, static
pressure sensors, and a far-field microphone array [14]. Additionally, an acoustic wind tunnel
necessitates specialized sound absorption treatments, leading to high acoustic measurement costs.
While traditional methods of acquiring aerodynamic noise data may pose challenges, they have
yielded a vast amount of multi-precision datasets. The introduction of Machine Learning (ML) [15-
18] methods has provided technical support for obtaining high-precision aerodynamic noise.
Tenney et al. [19] used the Deep Neural Network (DNN) to predict a complex non-axisymmetric jet
noise.
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Research shows that the DNN was able to predict directional far-field Sound Pressure Level (SPL)
within ±0.75dB, and the absolute error of Overall Sound Pressure Level (OASPL) was maintained
within 0.3dB [20]. Wu et al. [21] utilized a DNN to establish a multivariate nonlinear regression
model between state variables such as Mach number (Ma), Angle of Attack (AOA), and the
pressure coefficients or SPL. This investigation ensured that the maximum error in predicting the
pressure coefficient remained within 1%, and the relative error of the maximum SPL for the first
three-order flow-induced oscillation sound modes was controlled within 0.5%. However, it faced
challenges in achieving accurate predictions of high-frequency characteristics and the
generalization of flow states.
Building on this, researchers have focused on improving the prediction accuracy of SPL and SPL
or Power Spectral Density (PSD) by considering both the number of samples and algorithm
perspectives. Centracchio et al. [22] employed active metamodelling with the Artificial Neural
Network (ANN) to predict jet noise under near-field conditions with under-expanded flow,
incorporating an uncertainty function to estimate the reliability of the model itself. The uncertainty
map revealed that the regions of the domain where additional experiments should be carried out
are in correspondence with the Screech tone. Legendre et al. [23] also emphasized the critical
importance of data quantity for predicting the SPL of multi-propeller drones. An adequate amount
of data could yield SPL highly consistent with numerical simulations. However, the broadband
trend of the prediction diverges from the experimental results due to the lack of sufficient
computation of broadband noise.
Regarding the approach to supplementing data, Zhou et al. [24] devised a multi-fidelity ML model
based on Active Learning (AL) and Transfer Learning (TL). The AL algorithm was designed to
minimize the predictive error of the ML model at two far-field observer locations in order to
intelligently select the necessary high-precision experimental measurements. Then, the TL
algorithm iteratively enhanced the model by introducing a small number of high-fidelity data,
resulting in a reduction of the Mean Squared Error (MSE) of SPL from 41.3 to 14.1. Arina et al. [25]
observed that the Random Forest (RF) algorithm demonstrated significant advantages in predicting
the SPL, enabling high-precision predictions of low intensity lobes. In contrast, the Artificial Neural
Networks (ANN) could not achieve high-precision SPL predictions, even with a large amount of
data.
Some researchers have adopted a different approach, aiming to achieve high-precision database
expansion from an algorithmic perspective. In 2013, Huang et al. [26] first applied Compressive
Sensing (CS) algorithms to the problem of duct acoustic mode reconstruction [27]. This method
enables the reconstruction of the frequency characteristics of a linear-duct acoustic problem,
reducing the required number of sensors (Nuquist Sampling Theorem) by approximately five times.
Moreover, the study discovered that background noise interference could alter the sparsity of the
whole measurements, and when the Signal-Noise Ratio (SNR) exceeds a certain range, it may
lead to reconstruction distortion or even failure [28]. Building on this, Bu et al. [29] proposed an
improved Compressive Sensing algorithm (CSM-II) from the perspective of enhancing sparsity.
This algorithm can effectively suppress noise interference to a certain extent, enabling high-
precision reconstruction of acoustic mode spectra under low SNR conditions.
To enhance the solution speed, Huang [30] developed the machine-learning-based mode detection
method, which has been incorporated into the compressive sensing algorithm. Among these, the
neural network architecture replaces the process of solving the measurement matrix between
acoustic mode inputs and measurements. This approach efficiently obtains the amplitude of
acoustic modes. Behn et al. [31] utilized the compressed sensing-based mode analysis to
investigate the tonal and broadband sound generation and transmission in the ACAT1 fan stage.
Additionally, Bu et al. [32] applied the Compressive Sensing algorithm to fan prediction and health
management in aviation engines. This involved inferring possible incidents of changes in the fan
noise mode spectrum using only a few acoustic sensors.
Researchers have conducted extensive studies on the prediction accuracy, data quantity, and ML
algorithms for aerodynamic noise. However, there are still certain issues: (1) While the importance
of data quantity for prediction accuracy is emphasized, there is a lack of quantitative analysis
regarding the correlation between prediction accuracy and data quantity. (2) The mentioned



2

A HYBRID APPROACH FOR RECONSTRUCTION

studies highlight the significant advantages of the RF algorithm in predicting SPL. They also
propose using a combination of Compressive Sensing and neural networks to improve
reconstruction accuracy. However, challenges such as insufficient accuracy and the inability to
achieve generalization still exist.
Based on this, this paper proposes a comprehensive method for predicting high-precision
aerodynamic noise parameters, such as PSD, SPL, and SPL. It develops an efficient and high-
precision prediction approach for PSD and SPL using a Compressive Sensing algorithm based on
the RF model (RF_CS). Firstly, the correlation between data quantity and PSD prediction accuracy
is quantitatively established based on flow correlations. Secondly, it is determined whether each
monitoring point satisfies flow correlations. If flow correlations are satisfied, the RF algorithm can
be directly used to predict PSD results. If not, the RF_CS method is employed to accurately
reconstruct PSD and SPL results, achieving a reduction in the number of acoustic sensors and
lowering implementation costs without sacrificing data precision.

2. Model and method
2.1 Data set and results verification
Using the transonic buffeting aerodynamic noise of the RAE2822 airfoil as a test case, this paper
employs the Delayed Detached Eddy Simulation (DDES) with the Spalart-Allmaras (S-A)
turbulence model [33] to obtain the pressure distribution on the upper surface of the airfoil at
various monitoring points. A total of 26 points are sampled evenly along x/c=-0.0018~1.14, as
shown in Fig. 1. The entire computational process is divided into three steps.
(1). Mesh Generation. The computational domain of the flow field consists of a combination of a
semi-circle and a square. The semi-circle is centered at the leading edge of the airfoil, with a radius
equal to 30 times the airfoil chord length (c). The square has lengths of 60c and 30c, forming the
long and short sides, respectively. A C-type structured grid is employed, and details are illustrated
in Fig. 2. The mesh scale and the distribution of nodes in each layer meet the requirements of the
DDES method for the boundary layer grid [34].
(2). Use the results obtained by the Reynolds-Averaged Navier-Stokes (RANS) model as the initial
conditions for the DDES method. Due to the robustness and convergence of the S-A turbulence
model in simulating transonic buffet, which can accurately capture the separated flow induced by
shock wave boundary layer interaction, the S-A turbulence model is chosen for the DDES
algorithm in numerical simulation [35]. Detailed parameters and formulas can be found in the
reference [36].
The DDES model improves the expression of the shielding function compared to the DES model,
with the shielding function fd described by Eq. (1) and Eq. (2).
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In Eq. (1), Ui,j,vt represent the velocity gradient and turbulent viscosity coefficient, respectively.
The shielding function fd ensures that the LES model does not prematurely enter the wall boundary
layer region. When fd=0, the LES model is not activated, and in large separated flow regions, fd
increases, gradually transitioning the DDES model to the LES model.
. For the various flow conditions obtained in step (2), the Welch method (using the Hamming
window) is applied to the pressure signals at various monitoring points to obtain the PSD. Based
on the distribution of PSD, the SPL distribution is determined using Eq. (3).
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Where Pap 5
0 102  , ∞ is the maximum frequency.

The Computational Fluid Dynamics (CFD) method in this study covers flow conditions with Mach
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numbers (Ma) ranging from 0.71 to 0.76 and Angles Of Attack (AOA) ranging from 3.4° to 6.8°,
totaling 67 different flow states, as illustrated in Fig. 3. For each flow condition, data are obtained
from 26 monitoring points on the upper surface of the wing, as shown in the bottom right corner of
Fig. 1. Accordingly, the complete datasets for SPL and PSD are obtained through steps (1)-(3),
comprising a total of 67 sets of SPL samples and 1768 sets of PSD samples.

Figure 1 – The
computational domain and
the location of monitoring

points.

Figure 2 – The mesh detail. Figure 3 – The flow states.

To demonstrate the reliability of the numerical simulations, this paper compares and validates the
numerical simulation in terms of steady, unsteady, and aerodynamic noise. Firstly, the pressure
coefficients obtained from the RANS model in this study closely match the experimental
measurements [37], confirming the accuracy of the CFD results, as shown in Fig. 4. Secondly,
when comparing the numerical simulations of unsteady flow in this paper with the calculations of
the transonic buffet onset boundary by Tian et al. [38], the relative error is found to be within 5%,
validating the accuracy of the unsteady numerical simulations, as seen in Fig. 5. Additionally, by
comparing the SPL at different monitoring points on the cavity floor of the C201 cavity with
experimental measurements, the overall trend of the computed results aligns with the experimental
data, providing basic validation of the accuracy of the aerodynamic noise acquisition results in this
paper [39], as illustrated in Fig. 6.

Figure 4 – Comparison of
pressure coefficients between

CFD and experimental
measurements[37].

Figure 5 – Comparison of
the RAE2822 buffeting onset

boundary[38].

Figure 6 – Comparison of
the SPL of the C201

cavities[39].

2.2 Introduction of Computational methods
Random Forest algorithm exhibits advantages in predicting both SPL and PSD, however, it does
not consistently provide high-precision PSD predictions across all spatial intervals. Based on these
findings, the study proposes a quantitative flow correlation prior criterion derived from PSD
prediction results. In cases where predictive accuracy is inadequate, an efficient and high-precision
PSD and SPL reconstruction algorithm based on CS is suggested. The study also conducts a
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comparative analysis of the reconstruction capabilities between the POD basis function and the RF
basis function, as illustrated in the upper part of Fig. 7. The specific workflow is as follows.
Step 1: Dataset Construction
Obtain PSD for various monitoring points under different flow conditions and calculate the
corresponding SPL for each flow condition.
Step 2: Flow Correlation Analysis and Random Forest Prediction of PSD
Calculate the Root Mean Square Error (RMSE) of PSD results for adjacent monitoring points
(RMSE_adj). Utilize the RF algorithm to predict PSD and analyze the precision of PSD prediction
(RMSE_PSD). Evaluate the RMSE of the auto-correlation function at this point and the cross-
correlation function between adjacent points (RMSE_corr). Establish a criterion for the precision of
RF algorithm predictions based on flow correlation. Refer to Section 2.2.3 for an introduction to the
RF model.
Step 3: Obtain the criterion for flow correlation
Perform auto-correlation and cross-correlation analyses on the PSD of each monitoring point to
determine whether the criteria of RMSE_corr < 0.05 and RMSE_adj < 0.05 for flow correlation are
met. If satisfied, it is considered that the flow phenomena at this point are highly correlated with
neighboring points, and high-precision PSD can be directly obtained using the RF algorithm.
Conversely, if the flow correlation criteria are not met, it is considered that the correlation of flow
phenomena at this point with neighboring points is not high, and a CS algorithm is needed to
reconstruct high-precision PSD results.
For points that satisfy the flow correlation criteria, the RF algorithm can be directly employed for
high-precision PSD prediction, following the modeling process outlined in Section 2.2.3. For points
that do not meet the flow correlation criteria, a CS algorithm is applied to reconstruct high-precision
PSD results for the corresponding points, as illustrated in the lower part of Fig. 7. The specific
workflow is outlined below.

Figure 7 – The sketch of workflow.
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Step 4: Obtain basis functions
Considering the advantages of the RF algorithm in predicting PSD and SPL, this study
contemplates using RF as the basis function for reconstructing high-precision PSD and SPL results,
supplemented by a comparison with the Proper Orthogonal Decomposition (POD) basis function.
Step 5: Obtain sensor positions and corresponding PSD or SPL results
Monte Carlo simulation is employed for the selection of sparse sensor positions. By traversing
combinations of sparse monitoring point positions through Monte Carlo simulation and using the
RMSE between the reconstruction results and the original PSD results as a criterion, optimal
sensor positions are determined.
Step 6: Use the L1 optimization algorithm to obtain basis coefficients
Utilize the L1 algorithm in conjunction with basis functions and the PSD or SPL results
corresponding to the selected sparse monitoring points to solve for basis coefficients.
Step 7: Linearly combine basis functions and basis coefficients to reconstruct PSD and SPL
Linearly combine basis functions and basis coefficients to reconstruct PSD and SPL. Assess the
reconstruction accuracy using the RMSE.

2.2.1 Compressed sensing method
Compressive sensing, also known as compressive sampling or sparse reconstruction, is a
technique employed when the original signal exhibits sparsity in a specific domain. If the original
signal is sparse in a certain domain, optimization algorithms [40-42] or greedy algorithms [43],
among others, can be utilized to reconstruct the signal reliably using a small number of
measurement points (sensor positions). The goal of CS algorithms is to reconstruct the original
signal ( x ) from sparsely observed values ( y ), satisfying the equation xy  , where  represents
the measurement matrix. The original signal x can be sparsely represented by projecting it onto a
particular feature space, such as Fourier basis (FFT), POD basis, and so on, which satisfies the
equation ax  . Based on this, the sparsely observed values y fulfill the equation xy  , as
illustrated in Fig. 8.

Figure 8 – The compressed sensing algorithm.

The selection of basis functions and basis coefficients is crucial in the CS algorithm. Huang [26]
pointed out that for simple problems, the FFT basis function can be chosen, while for complex
high-dimensional problems, the POD basis function, among others, should be selected.
Considering the prediction of the PSD and the SPL in aerodynamic noise in this paper, and given
the excellent predictive accuracy of the RF algorithm in this regard, this paper ingeniously
incorporates the RF algorithm into the CS algorithm to achieve high-precision reconstruction of
PSD and SPL. The POD basis function is used as a comparison. The basis coefficients MRa
(M is the number of basis functions) can be solved using optimization algorithms, as shown in Eq.
(4).

0min
a

a y  (4)

If MP  , the CS algorithm is employed to solve Eq. (4), implying the use of L1 norm minimization
to determine the basis coefficients.
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If MP  , the basis coefficients can be solved by the minimization of the L2 norm.
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a
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The PSD or SPL is obtained through the linear combination of basis functions and basis
coefficients, as described in Eq.(7).

x a (7)
Where x̂ represents the reconstruction result of PSD or SPL. When using POD basis functions,
 corresponds to the POD basis functions. Otherwise,  denotes the RF basis functions. Detailed
introductions to the POD and RF algorithms are provided in Sections 2.2.2 and 2.2.3, respectively.

2.2.2 Proper Orthogonal Decomposition
The POD method is commonly used in turbulence analysis [44, 45], image processing [46],
structural dynamics analysis [47], and various applications involving other dimensionality reduction.
Its main principle involves acquiring a set of orthogonal basis functions through matrix
transformation and orthogonal decomposition of flow field samples.
To reduce the dimensionality of matrix decomposition and lower data processing costs, the
Snapshot-POD method is frequently employed. First, the correlation matrix in Eq. (8) is defined.

C=CPT*CP (8)
Solve the eigenvalue of correlation matrix C .

CA[j]=λjA[j] (9)
Here,  jA represents the j -th order basis coefficient, j is the j -th eigenvalue, and the ratio of
the sum of the first j eigenvalues to the total eigenvalues reflects the proportion of mode energy
captured by the first j modes. The basis functions of POD (sparse dictionary set in CS algorithms)
are defined as shown in Eq. (10).

][1 j
P

j
j AC 


 (10)

2.2.3 Random forest model
The RF algorithm is a parallel ensemble ML method introduced by Breiman [48]. In comparison to
traditional neural network regression models, it employs an ensemble learning framework for
parameter learning and model prediction. Through the Bootstrap sampling method, n samples are
randomly selected with replacement from the training samples to obtain m subsets. A decision tree
is trained individually for each subset, and the average of the predicted results from m decision
trees serves as the output for the regression RF, as shown in Fig. 9.
In the process of predicting PSD, the state variables (Ma, AOA, f) are used as inputs, and PSD is
the output. The training set and testing set samples are divided into 85% and 15%, respectively.
Taking Ma=0.71, AOA=6.2° as an example, the PSD of 22 monitoring points is chosen as the
training set, while the PSD for 4 monitoring points is used as the prediction set. Firstly, the PSD
results are standardized, with the area enclosed by the PSD of each monitoring point as the
normalization basis. Subsequently, a grid random search is conducted to determine the state
variables for the RF, such as n_estimators=600, max_features=lg2, min_samples_split=2,
max_depth=None. The RMSE is used as the criterion for RF node splitting. Finally, an RF algorithm
prediction model is established, and the error between the PSD obtained by the RF algorithm and
the CFD method is compared.
In the SPL modeling process using the RF algorithm, the state variables (Ma and AOA) are used as
inputs, and the SPL is the output. The training set and testing set follow a ratio of 0.85:0.15, where
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57 SPL samples for different flow conditions are used as the training set, and data samples for SPL
from 10 flow conditions are used as the testing set. A grid random search is employed to determine
various parameters for the RF, such as n_estimators=100, max_features=lg2, min_samples_split=2,
max_depth=None. Finally, the RF algorithm is used to model and obtain the prediction error for SPL.

(a) The random forest model. (b) The important network parameters.
Figure 9 – The random forest model.

3. The prior criterion of flow correlation
Using the RF algorithm to predict PSD, it was observed that not all monitoring points could yield
high-precision PSD. However, the variability in PSD is primarily attributed to differences in flow
phenomena. Therefore, the spatial variation in point locations can impact the prediction accuracy.
In this study, the influence of spatial positions on prediction accuracy was quantitatively analyzed
from the perspective of flow correlation [35]. The Pearson cross-correlation coefficient [49] was
employed to analyze the correlation between adjacent monitoring points, as shown in Eq. (11).
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Where
yx P,P represent the auto-correlation coefficient of PSD of monitoring points.

Taking Ma=0.71, AOA=6.2° as an example, the analysis involves examining the auto-correlation
and cross-correlation coefficients of various monitoring points and quantitatively evaluating the
influence of spatial spacing on prediction accuracy. The Eq. (12) is used as a metric to measure
the errors in auto-correlation and cross-correlation coefficients.
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Where corrauto_ represents the auto-correlation coefficient, and corrcross _ represents the
cross-correlation coefficient.
For the flow condition at Ma=0.71, AOA=6.2°, five monitoring points (P8-P18) are randomly
selected. The RMSE of auto-correlation coefficients and cross-correlation coefficients at each point
(RMSE_corr), the RMSE between the PSD results for adjacent monitoring points (RMSE_adj), and
the RMSE between the PSD prediction results and CFD results (RMSE_PSD) are calculated. As
shown in Fig. 10, it is observed that RMSE_PSD is highly correlated with RMSE_corr, but it
depends more on the similarity between the PSD of adjacent monitoring points. With the increase
in RMSE_corr, RMSE_PSD also increases, but it consistently remains within the same order of
magnitude as RMSE_adj. For example, at P17, RMSE_corr=8.25e-4, RMSE_adj=3.87e-2, and
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RMSE_PSD=3.87e-2. However, when RMSE_corr=4.93e-2 and RMSE_adj=6.68e-2, the predicted
error RMSE_PSD=6.54e-2 at point P8.
The auto-correlation function, cross-correlation function, and their predicted results for this point
are illustrated in Fig. 11. As observed from the figure, the prediction results of PSD exhibit
significant deviations at f=13Hz. Subsequently, there is a rightward shift in the peak frequencies,
causing substantial discrepancies in the range of f=100-200Hz, failing to meet the precision
requirements for PSD prediction in this study. Based on this observation, a priori criteria for
successful prediction PSD is proposed, considering both flow correlation, as RMSE_corr and
RMSE_adj. Specifically, when the monitoring point satisfies both RMSE_corr<0.05 and
RMSE_adj<0.05 simultaneously, ensuring RMSE_PSD<0.05, it is considered a successful
prediction.

Figure 10 – The RMSE_corr and
RMSE_adj of monitoring points at

Ma=0.71, AOA=6.2°.

Figure 11 – The correlation characteristic and the
prediction results at point 8.

Taking the flow condition with Ma=0.71, AOA=6.2° as an example, an analysis is conducted on all
monitoring points on the upper surface of the wing and their PSD prediction results to examine the
applicability of the prior criterion. The results of RMSE_adj and RMSE_corr for this flow condition
are presented in Fig. 12. The pink region represents the area where the flow correlation criterion is
satisfied, indicating that the RF algorithm can be directly used for prediction. As illustrated in Fig.
13, the predicted result at point P18 using the RF algorithm exhibits high agreement with CFD
results, with RMSE_PSD=3.82e-2. Conversely, the gray region in Fig. 12 signifies the area where
the flow correlation criterion is not satisfied, and the RF algorithm cannot be directly applied for
prediction. The predicted result at point P9, as shown in Fig. 13, reveals that only the first three
peak frequencies are essentially consistent, and the high-frequency prediction accuracy is
significantly insufficient, with a RMSE_PSD=7.09e-2, exceeding 0.05. This validates the rationality
of the flow correlation criterion proposed in this study.

Figure 12 – The RMSE_corr and
RMSE_adj of monitoring points at Ma=0.71,

Figure 13 – The test of the criterion in flow
correlation.
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AOA=6.2°.

In summary, the flow correlation criteria, with RMSE_corr < 0.05 and RMSE_adj < 0.05, serve as
pre-determinants to assess whether a monitoring point can use the RF algorithm for direct, high-
precision PSD predictions. When the flow correlation prior criteria are satisfied, the RF algorithm is
directly employed for modeling. Conversely, for situations not meeting these criteria, this study
proposes the use of the CS method to reconstruct higher-precision PSD. The selection of basis
functions in the CS algorithm is crucial for reconstruction effectiveness. Leveraging the advantages
of the RF algorithm in predicting PSD and SPL, this paper integrates the RF model into the CS
algorithm reconstruction process, providing comparisons with POD basis function reconstruction,
as detailed in Section 4.

4. The reconstruction of frequency domain (PSD)
The analysis of flow correlation criteria reveals that, under the specified flow conditions (Ma=0.71,
AOA=6.2°), only a few monitoring points can directly obtain high-precision PSD using the RF
algorithm. The remaining points require additional monitoring points or alternative methods to
achieve high-precision PSD, as illustrated in Fig. 12. Taking points P9 and P13 as examples, the
PSD reconstruction accuracy using the CS algorithm was tested in this study. The POD_CS
method, employing the first 20 POD modes selected based on the mode energy percentage, and
the RF_CS method, using the first 15 RF basis functions, were both employed for PSD
reconstruction, as shown by the blue dashed line and red lines in Fig. 14 and Fig. 15, respectively.
Observations indicate that both POD_CS and RF_CS methods can effectively reconstruct high-
precision PSD, improving the predictions of the RF algorithm (depicted by the deep green dashed
lines in the figures), bringing the PSD predictions closer to the ground truth. However, the PSD
results reconstructed using POD basis functions are prone to high-frequency distortion, especially
above f=165Hz, as shown in the upper right corner of Fig. 14. Specifically, the POD_CS method
reduces the RF prediction error at point P9 from 0.063 to 0.0204, while the RF_CS method further
reduces the RF prediction error to 0.0030. This demonstrates the efficiency of the RF model as a
basis for obtaining high-precision PSD results.
Using the RF algorithm for modeling and prediction at point P13 yields a prediction accuracy of
0.13. Introducing the CS algorithm aligns the prediction results closely with the CFD results, as
shown in the upper right corner of Fig. 15. Specifically, the POD_CS method reduces the PSD
prediction error to 0.0088, and the RF_CS method further reduces the PSD prediction error to
0.0013. This fully validates the feasibility of the CS algorithm in obtaining high-precision PSD
results, highlighting the RF_CS method in this study can reconstruct higher-precision PSD with
fewer sensor positions and basis functions, making it more advantageous.

Figure 14 – The comparison of PSD at
point P9 ( Ma=0.71, AOA=6.2°, x/c=0.31).

Figure 15 – The comparison of PSD at point
P13 ( Ma=0.71, AOA=6.2°, x/c=0.51).

Using Ma=0.76 and AOA=3.6° as an example, we further tested the generalization of the algorithm.
The same sensor positions were selected (indicated by blue squares in Fig. 16 and Fig.17), and
the same reconstruction method was used to obtain PSD. It is observed that both the POD_CS
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and RF_CS methods significantly improve the RF prediction results, reducing the prediction error
by about three orders of magnitude from 0.1314. Although the reconstruction accuracy of the two
basis functions is similar, the RF_CS method still achieves a smaller RMSE result
(RMSE_PSD=3.9719e-4), reducing the error by approximately half compared to the results using
the POD_CS method, as shown in the upper right corner of Fig. 16.
Maintaining the same sensor positions, the PSD reconstruction results for different monitoring
points under the same state were tested, as shown in Fig. 17. It was found that with 22 sensor
positions, high-precision PSD reconstruction results could be obtained using both the POD_CS
and RF_CS methods. This indicates that with an adequate number of sensors, high-precision
reconstruction of PSD results can be achieved without changing the sensor positions, and the
RF_CS method exhibits higher prediction accuracy with RMSE_PSD=4.35e-4. Overall, this
algorithm demonstrates generalization capabilities concerning flow states and spatial point
positions, allowing for the acquisition of variable-state PSD results with an appropriate number of
sensors at unchanged positions.

Figure 16 – The comparison of PSD
results using different methods at point P1

( Ma=0.76, AOA=3.6°, x/c=-0.0018).

Figure 17 – The comparison of PSD using
different methods at point P21 ( Ma=0.76,

AOA=3.6°, x/c=0.95).

Maintaining the same number of sensor positions and using the same method to obtain PSD
results for Ma=0.71, AOA=6.2°, and Ma=0.76, AOA=3.6° flow conditions, the RMSE for each
monitoring point is depicted in Fig. 18 and Fig. 19. The blue boxes represent the RMSE for
POD_CS reconstruction, while the red boxes represent the RMSE for RF_CS reconstruction. It is
evident that, for each Ma and AOA, the RF_CS method achieves higher reconstruction accuracy.
For Ma=0.71, AOA=6.2°, the average RMSE for RF_CS reconstruction at each monitoring point is
maintained at 0.0039 (RMSE_PSD=0.0039). For Ma=0.73, α=3.6°, the average RMSE for RF_CS
reconstruction at each monitoring point is 0.000783 (RMSE_PSD=0.000783). In both cases,
RF_CS reconstruction achieves an average RMSE one order of magnitude lower than that of
POD_CS reconstruction, fully demonstrating the superiority of incorporating the RF algorithm as
the basis function.
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Figure 18 – The comparison of RMSE_PSD results using POD_CS and RF_CS method at
Ma=0.71, AOA=6.2°.

Figure 19 – The comparison of RMSE_PSD results using POD_CS and RF_CS method at
Ma=0.76, AOA=3.6°.

5. The reconstruction of spatial domain (SPL)
In the process of conducting experimental measurements for aerodynamic noise, a substantial
number of static pressure and dynamic pressure sensors are required for near-field measurements.
If sound source localization is involved, a far-field microphone array must also be arranged,
resulting in high experimental measurement costs. To effectively control acoustic costs, the RF_CS
method can be employed for spatial reconstruction of the acoustic field. This not only reduces the
number of required sensors but also serves as a reference for optimizing the arrangement of
sensor positions in experimental measurements. Spatial reconstruction is similar to frequency-
space reconstruction, and the error measurement indicator still utilizes the Eq. (13).

 



26

1

1_
P

pre SPLSPL
N

SPLRMSE (13)

Where preSPL and SPLdenote the SPL obtained by reconstructed and calculated, respectively.

For the flow condition with Ma=0.71, AOA=6°, the reconstructed SPL using different methods is
depicted in Fig. 20. The solid black line represents the CFD results, the blue dashed line
represents the POD_CS results, and the red dashed line represents the RF_CS results. A
comparison of the reconstruction accuracy of POD_CS and RF_CS method reveals that POD_CS
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exhibits significant errors at large turning points in SPL, such as near P5 and P23-P26, leading to
substantial reconstruction errors for POD_CS.
In the SPL reconstruction process, the RF_CS method remains more advantageous for two main
reasons. Firstly, using POD basis functions for reconstruction requires a higher number of basis
functions and sensor positions. For instance, POD_CS reconstruction necessitates 21 POD basis
functions and 12 sensor positions, as indicated by the green pentagon in Fig. 20. In contrast,
RF_CS reconstruction only requires 18 basis functions and 9 sensor positions, represented by the
blue square in Fig. 20. Secondly, the RF_CS method achieves higher accuracy, with the
RMSE_SPL=0.0014 reconstructed by the POD_CS method, while the RMSE_SPL=3.2900e-04
reconstructed using the RF_CS method. Comparing SPL prediction results under different flow
conditions, the RMSE_SPL=0.0079 reconstructed with the RF_CS method is considerably lower
than the RMSE_SPL=0.0262 reconstructed with the POD_CS method at Ma=0.72, AOA=5.2°,
thereby validating the superior precision of the RF_CS method in reconstruction.

Figure 20 – The SPL of reconstruction
using POD_CS and RF_CS method at

Ma=0.71, AOA=6°.

Figure 21– The SPL of reconstruction
using POD_CS and RF_CS method at

Ma=0.72, AOA=5.2.

Using the POD_CS and RF_CS methods to reconstruct the SPL distribution for the remaining flow
states, we can obtain the corresponding RMSE_SPL for each flow state. The RMSE for Ma=0.72,
Ma=0.74, and Ma=0.76 at various AOA is shown in Fig. 22, with the flow conditions illustrated in
Fig. 3. It is observed that, under the same Ma, as the AOA increases, the flow phenomena become
more complex, leading to a slight decrease in reconstruction accuracy. Overall, the RMSE for
POD_CS reconstruction remains below 0.02, while the RMSE for RF_CS reconstruction remains
below 0.005. Specifically, for the Ma=0.72 flow condition, the average RMSE for POD_CS
reconstruction is 0.0049, and for RF_CS reconstruction, it is 0.0011. For the Ma=0.74 flow
condition, the average RMSE for POD_CS reconstruction is 0.0103, and for RF_CS reconstruction,
it is 0.00139. For the Ma=0.76 flow condition, the average RMSE for POD_CS reconstruction is
0.0068, and for RF_CS reconstruction, it is 0.000943. This thoroughly validates the reconstruction
accuracy of the RF_CS method proposed in this paper, providing valuable insights for the
distribution of surface sensors on the wing and effectively controlling measurement costs.
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Figure 22 – The RMSE of reconstruction using POD_CS and RF_CS method.

6. Conclusion
This paper proposes a standardized process for obtaining high-precision Power Spectral Density
(PSD) and Overall Sound Pressure Level (SPL) distributions. Firstly, a priori criterion for high-
precision prediction of PSD results is established based on the flow correlation characteristic and
Random Forest (RF) predictions. For monitoring points that meet this criterion, the RF can be
directly applied for prediction. In cases where the flow correlation a priori criterion is not met, the
paper introduces the RF-CS algorithm. This algorithm embeds the RF model into the compressive
sensing reconstruction process, combining a small number of sensor positions to achieve high-
precision reconstruction of PSD and SPL results. The main conclusions are as follows:
(1)Established a priori criterion based on flow correlation and RF prediction results. Specifically,
when a monitoring point satisfies both RMSE_corr < 0.05 and RMSE_adj < 0.05, it ensures that
RMSE_PSD < 0.05. This indicates that using the RF algorithm can achieve high-precision
prediction of PSD.
(2)For monitoring points that do not meet this criterion, the proposed RF-CS algorithm in this paper
is employed to reconstruct high-precision PSD results. The results indicate that this algorithm can
achieve higher precision PSD results with the same number of sensor positions, reducing the
RMSE of predictions by 1-3 orders of magnitude. Comparing the POD_CS and RF_CS methods,
the RF_CS method has more advantages. It can use fewer sensor positions and basis functions to
obtain higher precision PSD results, keeping the RMSE of reconstructed PSD results at the level of
10-3.
(3)The RF_CS method can also be applied to the spatial reconstruction process of aerodynamic
noise, achieving high-precision reconstruction of the SPL distribution at various monitoring points
on the upper surface of the airfoil using approximately half of the monitoring points. Specifically,
only 10 sensor positions are needed on the upper surface of the airfoil to obtain a complete and
highly accurate SPL distribution, maintaining RMSE at the level of 10-3. In contrast, the
mathematical foundation of the POD method relies on a linear relationship assumption, making it
unable to achieve accurate PSD or SPL results without using a complete set of basis functions.
This can lead to high-frequency distortion or inflection point distortion and even inaccurate
reconstruction. This highlights the advantages of the RF_CS method proposed in this paper.
While this paper has provided a comprehensive study of the POD_CS and RF_CS methods, there
are still limitations in terms of the selection of sensor positions and experimental measurement
support. Future research will explore different methods for selecting sensor positions and assess
the applicability of the proposed approach with experimental measurement data.
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