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Abstract

In this paper, static and dynamic problems in the framework of coupled and uncoupled thermoelasticity are
analyzed. A refined one-dimensional (1D) model, based on the Carrera Unified Formulation (CUF), is em-
ployed to provide accurate predictions for the displacement and temperature change fields within homoge-
neous isotropic structures under thermal loadings. This approach offers the distinct advantage of transforming
the complex three-dimensional (3D) problem into a computationally efficient 1D model, ensuring a balance
between precision and reduced computational costs. This work introduces generalized theories of thermoe-
lasticity, specifically based on the Lord-Shulman and Green-Lindsay models. Other cases such as static,
quasi-static and dynamic can be seen as particular cases of this generalized formulation. The study focuses
on a simplified configuration, employing variable kinematics models, such Lagrange polynomial and Taylor ex-
pansion functions. Numerical solutions and convergence studies are presented to demonstrate the accuracy
of the formulation.
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1. Introduction
In aeronautics, a large number of problems require the study of thermal stresses. Components are
often subjected to very high temperatures or large temperature variations. Such problems can be
solved according to different models.
In static uncoupled thermoelasticity, the stationary temperature distribution determines an effect on
deformations. Quasi-static uncoupled thermoelasticity considers the time-dependent temperature
distributions resulting from the transient thermal conduction equation, which leads to transient ther-
mal stresses. In contrast, dynamic uncoupled thermoelasticity incorporates inertia effects when ex-
ternal thermomechanical loads vary rapidly over time. In uncoupled theories, temperature is obtained
independently directly from the heat conduction equation, while displacements are partly due to the
effect of temperature.
However, the uncoupled approach does not always make it possible to realistically evaluate the be-
haviour of a structure when, for example, it is subjected to rapid and high thermomechanical loads.
In fact, in this case, the effects of deformations on temperature and inertial forces are no longer
negligible. Hence, the need to use more sophisticated theories of coupled thermoelasticity.
Introduced by Duhamel [1] in 1837, the coupling effect in the equations of thermoelasticity was later
studied by Biot, who in 1956 presented the theory of classical thermoelasticity [2]. According to the
classical theory, thermal disturbances propagate with infinite speed through the body. Because of this
nonphysical behaviour, several coupled thermoelasticity models have been developed that overcome
the limitations of the classical model. The Lord-Shulman (LS) and Green-Lindsay (GL) models are
among these [3–5].
The analytical solution of these coupled equations is usually available only for simple configurations
and boundary conditions [6–8], which has led to an increasing reliance on numerical methods such
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as the FEM. The FE formulation of the thermoelastic governing equations can be obtained through
the Principle of Virtual Displacements (PVD) [9].
For complex configurations, 1D and 2D models do not always provide the accuracy the problem re-
quires. The three-dimensional nature of the problem demands solid models, incurring high computa-
tional costs. A refined one-dimensional model in the framework of Carrera Unified Formulation [9–14]
is used in this work. This approach was implemented first for the plate and shell [15] and later for the
beam [16]. CUF allowed, compared to the 1D and 2D FE models usually used, to achieve accuracy
comparable to solid models while maintaining a low computational cost. In addition, another strength
of CUF is the ability to analyze multi-field problems (mechanical, thermal, electrical) [17–19] with high
accuracy. Recently, CUF has also been used for thermoelastic analysis on beams and disks [20–22].
This paper aims to show the use of 1D FE-CUF models in the context of three-dimensional coupled
thermoelasticity problems. In particular, some numerical results related to static and quasi-static
problems are proposed.

2. Equations and models
2.1 Governing equations
The equation of motion in a three-dimensional domain is expressed as in [23,24]:

σi j, j +Xi = ρ üi +ζ u̇i (1)

where σi j is the stress component, ui is the displacement component and Xi denote the volume
forces. ρ and ζ are the density and damping coefficient, respectively. In the chosen notation, the
derivative in time is denoted by the superscript (·) while the derivative in space by the subscript (,).
According to Hooke’s law for a nonhomogeneous anisotropic material, the stress component is ex-
pressed as:

σi j =Ci jpqεpq −βi j(T + t1Ṫ ) (2)

where Ci jpq is the 4-order elasticity tensor, T is the temperature change with respect to the reference
temperature T0 and t1 is one of the two relaxation times predicted by Green-Lindsay (GL) theory .
Strains εi j can be expressed as a function of displacements:

εi j =
1
2
(ui, j +u j,i) (3)

The thermo-stress module βi j can be written as:

βi j =Ci jpqαpq (4)

where αpq is the thermal expansion coefficient.
The energy equation can be expressed through the following relationship:

qi,i = R−T0Ṡ (5)

where qi is the component of heat flux, R denotes the internal heat per unit volume and time and S is
the entropy per unit volume. S can be expressed as:

S =
ρc
T0

(T + t2Ṫ )+βi jεi j −
1
T0

c̃iT,i (6)

The energy equation can be rearranged and written as a function of displacements and temperature
[24]:

ρc(t0 + t2)T̈ +ρcṪ −2c̃iṪ,i − (κi jT, j),i + t0T0βi jüi, j +T0βi ju̇i, j = R+ t0Ṙ (7)

Parameter c is the specific heat, t0 and t2 are the relaxation times relative to LS theory and GL theory,
respectively, and c̃ is a vector of new constants of the material. The thermal conductivity tensor is
indicated by the parameter ki j.
The equations written above are in the most general form possible. In the LS theory case only the
relaxation time t0 is nonzero (t1 = t2 = c̃i = 0), while in the GL case only t0 = 0. Since they are coupled,
the governing equations must be solved simultaneously.
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2.2 Principle of Virtual Displacements
To derive the finite element formulation, the principle of virtual displacements (PVD) is used. For the
coupled thermoelastic case, the PVD has the following form [9]:∫

V
(δεεε pσσσ p +δεεεnσσσn +δT S)dV = δLext −δLine (8)

By convention, subscript p is used for in-plane components, while subscript n denotes out-of-plane
components. The vectors εεε and σσσ represent the components of strain and stress. S is the entropy
per unit volume. δLext and δLine are the external and inertial virtual works, respectively.

2.3 CUF form of governing equations
The 1D FE model involves discretizing the structure along the y-axis of the beam into a number
of finite elements. According to the FEM, the displacement and temperature change fields can be
written as:

u = Nmum

T = NmT m (9)

where Nm are the shape functions, um and T m are the vector of displacements and temperature
change in the m-th node in the element. Depending on the number of nodes in the beam element,
one can have a linear (2-nodes), quadratic (3-nodes) and cubic (4-nodes) interpolation function of
temperature and displacements along y-axis.
The displacements and temperature change in the individual node of the beam can be expressed by
the distribution of the displacements and temperature over the cross section:

um = FτUmτ

T m = FτΘ
mτ

(10)

where Fτ are the generic expansion functions, Umτ is the generalized vector of displacements, and
Θmτ is the generalized temperature change. The parameter τ denotes the number of terms of the
expansion. Taylor expansion (TE) and Lagrange expansion (LE) functions can be used. Lagrange
expansions involve discretizing the section using different types of elements for example a biquadratic
nine-node (1L9) or bicubic 16-node (1L16) elements. According to the Taylor expansions, the number
of terms depends on the order of the model.
Using the geometric and Hooke’s equations (Eqs. 2 and 3) and substituting Eqs. 9 and 10 within the
Principle of Virtual Displacements (8), the following system written in matrix form is obtained [24]:[

Mlmτs
UU 0

Mlmτs
θU Mlmτs

θθ

]{
Üls

Θ̈ls

}
+

[
Glmτs

UU Glmτs
Uθ

Glmτs
θU Glmτs

θθ

]{
U̇ls

Θ̇ls

}
+

[
Klmτs

UU Klmτs
Uθ

0 Glmτs
θθ

]{
Uls

Θls

}
=

{
Fls

Qls

} (11)

where the terms of the matrices are expressed through fundamental nucleus, a condensed notation
that does not depend on model order or expansion type:

[Mlmτs
UU ]3x3 =

∫
Le

∫
Ae
(ρNmNlIFτFs)dAdL

[Mlmτs
ΘU ]1x3 =

∫
Le

∫
Ae
(t0T0NmNl[βββ

T
p (DpFs)+βββ

T
n (DnpFs)]Fτ)dAdL

+
∫

Le

∫
Ae
(t0T0[βββ

T
n Nm(DnyNl)FsFτ ])dAdL

[Mlmτs
ΘU ]1x1 =

∫
Le

∫
Ae
(ρct0NmNlFτFs)dAdL

+
∫

Le

∫
Ae
(ρct2NmNlFτFs)dAdL

(12)
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[Glmτs
UU ]3x3 =

∫
Le

∫
Ae
(ζ NmNlIFτFs)dAdL

[Glmτs
UΘ ]3x1 =−

∫
Le

∫
Ae
(t1NmNl[(DT

p FτI)βββ p +(DT
npFτI)βββ n]Fs)dAdL

−
∫

Le

∫
Ae
(t1(DT

nyNm)Nl[Fτβββ nFs])dAdL

[Glmτs
ΘU ]1x3 =

∫
Le

∫
Ae
(T0NmNl[βββ

T
p (DpFs)+βββ

T
n (DnpFs)]Fτ)dAdL

+
∫

Le

∫
Ae
(T0[βββ

T
n Nm(DnyNl)FsFτ ])dAdL

[Glmτs
ΘΘ ]1x1 =

∫
Le

∫
Ae
(ρcNmNlFτFs)dAdL

−
∫

Le

∫
Ae
(2c̃T Nm[∇nNl]FτFs)dAdL

−
∫

Le

∫
Ae
(2c̃T NmNlFτ [∇pFs])dAdL

(13)

[Klmτs
UU ]3x3 =

∫
Le

∫
Ae

(
NmNl

[
(DT

npFτI)[Cnn(DnpFsI)+Cnp(DpFsI)]

+(DT
p FτI)[Cpp(DpFsI)+Cpn(DnpFsI)]

])
dAdL

+
∫

Le

∫
Ae

(
Nm(DnyNl)[(DT

npFτI)Cnn +(DT
p FτI)Cpn]Fs

)
dAdL

+
∫

Le

∫
Ae

(
(DT

nyNm)NlFτ [Cnp(DpFsI)+Cnn(DnpFsI)]
)

dAdL

+
∫

Le

∫
Ae

(
(DT

nyNm)(DnyNl)FτCnnFs

)
dAdL

[Klmτs
UΘ ]3x1 =−

∫
Le

∫
Ae
(NmNl[(DT

p Fτ)βββ p +(DT
npFτ)βββ n]Fs)dAdL

−
∫

Le

∫
Ae
((DT

nyNm)Nl[Fτβββ nFs])dAdL

[Klmτs
ΘΘ ]1x1 =

∫
Le

∫
Ae

(
NmNl(∇

T
p Fs)κκκ(∇pFτ)

)
dAdL

+
∫

Le

∫
Ae

(
(∇T

n Nl)(Nm)κκκ(∇pFτ)Fs

)
dAdL

+
∫

Le

∫
Ae

(
Nl(∇nNm)κκκ(∇

T
p Fs)Fτ

)
dAdL

+
∫

Le

∫
Ae

(
(∇T

n Nl)(∇nNm)FτκκκFs

)
dAdL

(14)

[Fmτ ]3x1 =
∫

Le

∫
Ae
(XNmFτ)dAdL+

∫
Se
(tNmFτ)dS

[Qmτ ]1x1 =−
∫

Se
(qT nNmFτ)dS+

∫
Le

∫
Ae
(RNmFτ)dAdL

−
∫

Le

∫
Ae
(t0ṘNmFτ)dAdL

(15)

in which the matrices Dp, Dnp and Dny are:

Dp =

 0 0 ∂z

∂x 0 0
∂z 0 ∂x

 , Dnp =

0 0 0
0 ∂z 0
0 ∂x 0

 , Dny =

 0 ∂y 0
0 0 ∂y

∂y 0 0

 , (16)

and the vectors ∇p and ∇n are:

∇p =
{

∂x 0 ∂z
}T

, ∇n =
{

0 ∂y 0
}T

, (17)
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2.4 Newmark method
The system 11 can be rewritten in compact form as:

Mq̈+Dq̇+Kq = R (18)

where q is the vector containing the unknowns of displacements and temperature, M, D and K are
the mass, damping and stiffness matrices, respectively, and finally R is the generalized force vector.
To solve this system, Newmark’s method of integration is adopted [25].
Eq. 19 at time step t +∆t is:

Mq̈t+∆t +Dq̇t+∆t +Kqt+∆t = Rt+∆t (19)

The solution of the equation is obtained by assuming that:

q̇t+∆t = q̇t +[(1−δ )q̈t +δ q̈t+∆t ]∆t

qt+∆t = qt + q̇t∆t +
[(1

2
−α

)
q̈t −α q̈t+∆t

]
∆t2 (20)

The parameters α and δ are for stability and accuracy of integration and are equal to α = 1
6 and δ = 1

2 .
To find qt+∆t , Newmark’s method involves solving the system:

K̂qt+∆t = R̂t+∆t (21)

where K̂ is the effective stiffness matrix:

K̂ = K+
1

α(∆t)2 M+
δ

α∆t
C (22)

and R̂t+∆t are the effective loads:

R̂t+∆t = Rt+∆t +M
(

1
α(∆t)2 qt +

1
α∆t

q̇t +
( 1

2α
−1

)
q̈t

)
+C

(
δ

α∆t
qt +

(
δ

α
−1

)
q̇t +

∆t
2

(
δ

α
−2

)
q̈t

) (23)

After finding the solution qt+∆t , one can also calculate the derivatives in time q̇t+∆t and q̈t+∆t via Eq.
20. The same procedure is repeated for each time-step. More details can be found in [25].

3. Numerical results
In this section, some numerical results are presented for a simple isotropic beam [20]. For repre-
sentative purposes, first a coupled thermoelastic static analysis and then, a transient quasi-static
analysis are proposed.

3.1 Static coupled thermoelastic analysis
The case examined [20] is a cantilever beam with a square cross section, whose area is A = 20 cm2

and length is L = 50 cm. The material of the beam is aluminum and it has the following characteristics:
Young’s modulus E = 73.1 GPa, Poisson’s coefficient ν = 0.33, coefficient of thermal expansion α =
23.1 × 10−6 K−1 and thermal conductivity κ = 237 W/(m K). A heat flux of q = 100 W is applied at the
clamped edge, while the free edge is left at room temperature.
Displacements along y and temperature changes are calculated at different sections along the beam.
The number of 4-node beam elements for two different lagrange expansions (one element L9 and
one L16 on the cross-section) is varied to evaluate the convergence of the results (Tables 1 and 2).
Table 3 then shows the results obtained using second-, third- and fourth-order Taylor models in the
case where the beam is discretized with 30 B4 elements.
The results obtained are in obvious agreement with those obtained in [20]. It can be seen from the
results that it takes only a few elements to already achieve good accuracy of results.
The Fig. 1 shows how displacements and temperature along the beam vary for the 30 B4/1L9 model.
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Location along y-axis [m]
Number of FEs 0.0 0.1 0.2 0.3 0.4 0.5 DOF

5 B4
uy [mm] 0.0 0.242 0.411 0.532 0.606 0.630

576
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

10 B4
uy [mm] 0.0 0.235 0.405 0.527 0.600 0.625

1116
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

20 B4
uy [mm] 0.0 0.234 0.404 0.526 0.599 0.624

2196
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

30 B4
uy [mm] 0.0 0.234 0.404 0.526 0.599 0.624

3276
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

Ref. [20] (20 B4)
uy [mm] 0.0 0.232 0.403 0.525 0.599 0.622

—
T [◦C] 105.5 84.38 63.28 42.19 21.09 0.0

Table 1 – Displacement in y-direction and temperature change along the beam axis as the number of
finite elements changes for a 1L9 model.

Location along y-axis [m]
Number of FEs 0.0 0.1 0.2 0.3 0.4 0.5 DOF

5 B4
uy [mm] 0.0 0.242 0.411 0.532 0.605 0.630

1024
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

10 B4
uy [mm] 0.0 0.234 0.405 0.527 0.600 0.624

1984
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

20 B4
uy [mm] 0.0 0.233 0.403 0.525 0.598 0.622

3904
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

30 B4
uy [mm] 0.0 0.232 0.403 0.525 0.598 0.622

5824
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

Ref. [20] (20 B4)
uy [mm] 0.0 0.231 0.402 0.524 0.597 0.621

—
T [◦C] 105.5 84.38 63.28 42.19 21.09 0.0

Table 2 – Displacement in y-direction and temperature change along the beam axis as the number of
finite elements changes for a 1L16 model.
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Location along y-axis [m]
Model 0.0 0.1 0.2 0.3 0.4 0.5 DOF

TE2
uy [mm] 0.0 0.234 0.404 0.526 0.599 0.624

2184
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

TE3
uy [mm] 0.0 0.232 0.403 0.525 0.598 0.622

3640
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

TE4
uy [mm] 0.0 0.232 0.403 0.524 0.598 0.622

5460
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

1L9
uy [mm] 0.0 0.234 0.404 0.526 0.599 0.624

3276
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

1L16
uy [mm] 0.0 0.232 0.403 0.525 0.598 0.622

5824
T [◦C] 105.5 84.4 63.3 42.2 21.1 0.0

Table 3 – Displacement in the y-direction and temperature change along the beam axis as the Taylor
model and Lagrange model changes for the 30 B4 case.

Figure 1 – Displacement and temperature variation along the beam for the 30 B4/1L9 model.

3.2 Transient quasi-static analysis
The same configuration is considered as in the static case [20]. Inertial effects are not considered in
this analysis. In addition, the coefficients of the governing equations t0, t1, t2 and c̃ are null. The heat
capacity is equal to c = 903 J/(kg K).
We consider a model with 5 B4 finite elements and a Lagrange expansion on cross-section 1L9. Fig.
2 show the displacements and temperature changes over time for different positions along the y-axis.
After a short transient, the stationary solution obtained in the previous paragraph (Table 1) is reached.
The Fig. 3 shows the temperature trend along the beam for different times.

4. Conclusion
This paper presented the study of coupled thermoelasticity of isotropic and homogeneous beams.
The static and quasi-static problems are analyzed starting from the generalized governing equations.
The results show that the use of refined 1D models based on the Carrera Unified Formulation allows
the accurate evaluation of displacements and temperature changes for a structure subjected to heat
flow and with lower computational costs than 3D models. In addition, it was possible to compare
the results for different polynomial expansions of Lagrange and Taylor types. The convergence rate
is excellent for Lagrange models. It takes only five beam elements to find the correct temperature
value and ten elements to predict displacements. In addition, the results show that the use of Taylor
models also allow to obtain a good accuracy even with low orders (N ≥ 3) and with computational
costs usually lower than Lagrange models.
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In future work, it will be possible to include the study of thermal shock phenomena using coupled
thermoelasticity.

Figure 2 – Displacements and temperature changes over time for different positions along the y-axis.

(a) t = 600 s (b) t = 1200 s

(c) t = 1800 s (d) t = 3000 s

Figure 3 – Temperature variation along the beam at different times.
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