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Abstract

The computation of aerodynamic parameters using Navier-Stokes (NS) equations is notably time-consuming.
To address this, a data-driven Deep Attention Network (DAN) is introduced for rapid reconstruction of steady
flow fields over various airfoil shapes. To effectively represent geometric information of different airfoils, the
airfoil profile grayscale images fed into the network are segmented into distinct patches, and embedding cor-
responding positional information. Subsequently, these embedded geometric vectors are processed through a
Transformer encoder to extract attention-based geometric features specific to each airfoil. Finally, the extracted
geometric features from the Transformer encoder, combined with flow coordinates and wall distance, are fused
and input into a multi-layer perceptron to predict the velocity and pressure fields of the airfoil. Through quanti-
tative and qualitative analysis of extensive experimental results, it is observed that the proposed deep attention
network model possesses certain geometric interpretability. Furthermore, it showcases robust generalization
capabilities and high prediction accuracy across a wide array of airfoil flow fields.
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1. Introduction
In aerodynamics, calculating the flow field is a crucial step to study complex flow phenomena such
as flow separation and transition to turbulence. Typically, the airfoil flow field is computed by solving
the NS equations on appropriate computational grids. With the advancement of high-performance
computing and efficient computational methods, the computational time required for Computational
Fluid Dynamics (CFD) simulations has been significantly reduced. Consequently, CFD simulation
methods are commonly employed for aerodynamic design and analysis, replacing some experimen-
tal investigations. However, for solving large and intricate engineering problems, CFD simulations still
demand extensive iterations. Therefore, simulating flows through solving the NS equations remains
expensive and time-consuming for such cases. In recent years, the rapid development of machine
learning techniques in the field of data science has introduced a new paradigm for modeling physical
systems, known as data-driven modeling. Leveraging machine learning enables the analysis and
modeling of historical aerodynamic data, accelerating the efficiency of future aerodynamic modeling.
Researchers in this domain have made numerous attempts to explore and utilize these techniques.
Guo et al. [1] were among the first to employ convolutional neural networks for predicting steady flow
fields. Through experiments, researchers found that the velocity field prediction based on convolu-
tional neural networks was two orders of magnitude faster than CFD solvers accelerated by GPUs
and four orders of magnitude faster than CPU-based solvers. Cihat Duru et al. [2] established a func-
tional mapping relationship between the Signed Distance Function (SDF) and the pressure field of
an airfoil. They utilized convolutional neural networks to train the model, which accelerated the com-
putation speed of the airfoil’s pressure field. The Signed Distance Function is widely applied in deep
learning flow field modeling due to its capability to deeply characterize geometric features. Saakaar
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Bhatnagar et al. [3] used the SDF of an airfoil as the geometric input and predicted the airfoil’s velocity
and pressure fields as outputs, utilizing a convolutional neural network as the foundational architec-
ture for predicting the airfoil flow field. Similarly, Wu et al. [4] and Ribeiro et al. [5] followed a similar
approach, augmenting the neural network inputs with a label channel that reflects initial boundary
conditions to characterize the flow field. Additionally, Generative Adversarial Networks (GANs) have
found widespread use in the field of flow field prediction. Chen et al. [6] employed airfoil images as in-
puts, subsequently merging encoded geometric information of the airfoil with Reynolds numbers and
angles of attack, decoding them into corresponding flow field outputs. They established a one-to-one
mapping relationship between given boundary conditions, geometric shapes, and their respective
flow fields. Following a similar network architecture, Wu [7] and Wang et al. [8] conducted related
research in this area. Hu et al. [9] successively introduced an improved deep learning flow field
prediction model based on the UNet architecture. Their approach differed from previous models by
defining the input network parameters from the perspective of grid generation, which enhanced the
physical constraints of the modeling to some extent. A common characteristic of the aforementioned
methods is the establishment of a mapping between geometry and flow fields, conducting research
on the entire flow field. This type of solving method is defined here as a "field-to-field" mode. Once
the solving domain is fixed, after training, neural networks can only predict flow fields of the same
domain size, limiting their flexibility in solving. In order to obtain more accurate solutions for the near-
wall region of the airfoil flow field, Sekar et al. [10] employed a "point-to-point" mode to predict the
flow field. Specifically, this method involves two main steps: 1) utilizing a convolutional neural network
to extract geometric parameters from the input airfoil image; 2) inputting the geometric parameters
obtained in step (1) along with flow characteristic parameters such as Reynolds number and angle
of attack into a Multilayer Perceptron (MLP) to predict the flow field at each grid point. Zuo et al. [11]
also explored the application of multi-task learning in flow field modeling. Considering step (1), ensur-
ing an equal number of geometric coordinates for different airfoils and necessitating separate training
of a convolutional neural model for both geometric extraction and flow field prediction poses several
practical challenges. To address this issue, this paper conducts rapid flow field predictions for differ-
ent airfoils based on the Transformer [12] neural network architecture. Expanding on prior research,
this study further delves into augmenting the interpretability of geometric features and enhancing the
generalization capability of the DAN model.
The rest of this article is organized as follows. Section II primarily introduces the architecture and
hyperparameter design of the self-attention network used for extracting airfoil geometric features,
along with the multi-layer perceptron employed for flow field prediction. Section III delineates the
definition and division of the flow field dataset. Section IV analyzes the training results of the deep
learning model. Section V extensively discusses the flow field prediction results of the deep attention
network model. And the conclusion is given in Section VI

2. Constructing the Deep Learning Flow Field Prediction Network
2.1 Airfoil Geometric Feature Extraction Network
In existing literature, convolutional neural networks have been widely used for flow field prediction
tasks. However, as the feature dimension increases, deep learning model architectures become more
complex, leading to increased training costs. Inspired by the significant success of vision Transformer
[13] in image segmentation and recognition fields, here we employ Transformer encoders based on
self-attention mechanisms to extract geometric information from different airfoils. As shown in Figure
1, for the Transformer encoder, the initial step involves partitioning the airfoil image χ =RH×W×C into a
series of two-dimensional patches χ ∈RN×(E2.C). Here, H×W represents the original resolution of the
airfoils, C signifies the number of channels in the airfoil image, E ×E denotes the resolution of each
airfoil image patch, and N = HW/E2 indicates the total number of airfoil patches. To facilitate subse-
quent neural network training tasks, the series of two-dimensional patches are further transformed
into one-dimensional embeddings. To maintain the positional information of these embeddings within
the original airfoil image during neural network training, positional encodings are embedded into the
embeddings. Additionally, an extra learnable embedding token is defined to map the geometric fea-
tures of the airfoil. The calculation formula for positional encoding is:
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Figure 1 – Deep attention network architecture for flow field prediction.

PE(pos,2i) = sin
(

pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/model

) (1)

The Transformer encoder primarily consists of 12 identical neural network feature extractors. Each
module mainly comprises a LayerNorm (LN) layer, a multi-head self-attention layer (MHSA), and
a multi-layer perceptron (MLP) layer. As depicted in Figure 2, the multi-head attention layer mainly
comprises three parts: queries Q and a series of key-value pairs (K,V ) with a dimensionality of dmodel.
The computation involves computing the dot product of Q with all K and then applying the softmax
function to obtain the weights for V . The calculation formula is:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2)

Furthermore, we utilize the multi-head attention network to integrate the geometric features of differ-
ent patches of the airfoil:{

MultiHead (Q,K,V ) = Concat ( head 1, . . . , head m)W E

head i = Attention
(

QW Q
i ,KW K

i ,VWV
i

) (3)

As shown in Figure 1, when the calculated attention scores are fed back into the original airfoil
image, it can be observed that compared to traditional convolutional neural networks and similar
models, the geometric features of airfoils extracted by the Transformer network exhibit good geometric
interpretability. Moreover, it can effectively extract meaningful boundary feature for different airfoils.
This reflects the considerable potential of Transformer network architecture in extracting geometric
features from airfoils, indicating promising applications in flow field prediction.

2.2 Flow Field Prediction Network
Figure 3 depicts a typical multi-layer perceptron (MLP) neural network architecture, consisting of
three main components: the input layer, hidden layers, and the output layer. The input to the MLP
comprises 13 physical parameters. Gi denotes 10 latent airfoil geometric features extracted by the
transformer encoder. Di represents the wall distance at any point in the airfoil flow field. x and y
denotes the coordinate information of different positions within the flow field. MLP neural networks
have fully connected layers, meaning each neuron in an upper layer is connected to every neuron in
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Figure 2 – Multi-head attention layer.

the subsequent layer. There are three fundamental elements in an MLP: weights, biases, and acti-
vation functions. The weights are used to control the strength of connections between neurons, and
their magnitude indicates the strength of possibility. Biases are crucial parameters within the model,
ensuring that the output values computed from input values aren’t arbitrarily activated. The activation
function plays a role in nonlinear mapping, restricting the range of neuron amplitudes typically to (-1,
1) or (0, 1). The output of the neural network consists of pressure p and the velocity components
u− velocity, v− velocity along the x and y directions, respectively. The prediction function for the MLP
can be defined as follows:

fMLP(Di,x,y,Gi) = (u,v, p) (4)

On the left-hand side represents the prediction function of the MLP, and on the right-hand side repre-
sents the predicted results of the model. The Mean Square Error (MSE) serves as the loss function
during the training process of the MLP and is defined as:

MLPloss =
1

3×N

N

∑
i=1

[(
ut

i −up
i

)2
+
(

pt
i − pp

i

)2
+
(
vt

i − vp
i

)2
]

(5)

In the above formula, ut
i and up

i represents the ground-truth and predicted values of u − velocity,
respectively. Similarly, vt

i, vp
i and pt

i, pp
i denotes the ground-truth and predicted values of v− velocity

and pressure p, respectively.

3. Flow Field Data Preparation
The airfoil shapes used in the experiment are obtained by perturbing the CST (Class/Shape Transfor-
mation) parameters of the NACA0012 airfoil. CST parameterization method was proposed by Kulfan
et al. [14] in 2008. This method primarily describes the geometric shape of an airfoil using a class
function and a shape function. It can be represented mathematically as :

ζ (ϕ) =CN1
N2(ϕ)S(ϕ)+ϕζT E (6)

In the above formula, ζ = y/c,ϕ = x/c. Here, c represents the chord length, x and y denotes the airfoil
profile’s horizontal and vertical coordinates respectively, and ζT E stands for the airfoil’s trailing-edge
thickness. The class function can be further represented as :

CN1
N2(ϕ) = ϕ N1(1−ϕ)N2 (7)
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Figure 3 – Neural network architecture for flow field prediction.

For airfoils with a rounded leading edge and a pointed trailing edge, the parameters in the class
function are typically N1 = 0.5 and N2 = 1.0. The shape function is represented using an N-th order
Bernstein polynomial:

S(ϕ) =
N

∑
i=0

Ai

[
N!

i!(N − i)!
ϕ i(1−ϕ)N−i

]
(8)

In the above formula, N represents the polynomial order, and Ai is an undetermined coefficient. Once
Ai is determined, the entire airfoil is defined. As shown in Figure 4, by setting different parameters, a
total of 500 airfoils were generated for subsequent flow field prediction tasks.

Figure 4 – Multiple airfoils generated by the CST parameterization method.

The flow field modeling work was conducted under the operating conditions of Mach number (Ma)
= 0.5, angle of attack (AOA) = 2 ◦, and Reynolds number (Re) = 3.0 × 106. The first grid layer
height is set to 8.48× 10−6, the computational domain is 364× 120. The turbulence model utilized
is the Spalart-Allmaras (SA) model, and the calculations is performed using the PHengLEI software
developed by the China Aerodynamics Research and Development Center (CARDC). Using Latin
Hypercube Sampling (LHS), 10% of the computed 500 airfoil flow field is selected as the test set,
another 10% were designated for cross-validation, and the remaining data served as the training set
for the DAN (Deep Attention Network) model. Furthermore, to explore the impact of the Region of
Interest (ROI) within the flow field on the prediction effects of the deep learning model, training was
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Figure 5 – Flow field mesh dataset. Left: Full-flow data. Right: ROI-Flow data.

conducted separately using two sets: the entire flow field data (Full-Flow) and only the boundary
airfoil flow field data (ROI-Flow). The division of the flow field regions is illustrated in Figure 5.

4. Training of the Deep Attention Network Model
During the model training, the initial learning rate was set to 5.0 × 10−5. The model parameters
were trained using the Adam optimizer, and the model underwent 200 iterations. The software and
hardware configurations during the model’s training, along with the predicted flow field data, are
detailed in Table 1. Both the training and testing tasks of the model were completed on a Linux
platform, utilizing the NVIDIA RTX 3090 GPU for accelerated training of the deep learning model. For
the two types of flow field data (Full-Flow, ROI-Flow), three different MLP neural network architectures
(MLP-Nodes-240, MLP-Nodes-300, MLP-Nodes-360) are tested. The detailed settings of the network
architectures are shown in the last column of Table 1, where the first number represents the number
of network layers, and the second number denotes the number of neurons per layer in the neural
network. The loss function curves during the training process for different neural network models are
depicted in Figure 6. It can be observed that when using all the flow field data for model training,
the model’s loss function curves on both the training and cross-validation sets exhibit significant
oscillations and converge to relatively high loss values. If modeling is solely focused on the near-wall
region (ROI area) of the flow field, a smaller loss is obtained. This suggests that when modeling the
entire airfoil flow field, the flow field data from the far field of the airfoil can be considered as noise
or dirty data interfering with the neural network’s flow field prediction results. By excluding some of
the far-field flow field data, the prediction accuracy of the neural network is significantly enhanced.
Furthermore, the impact of differences in the number of nodes per layer in the neural network on
flow field prediction accuracy is further tested. From Figure 6 and Table 2, it’s evident that with
an increase in the number of neurons, the Mean Squared Error (MSE) loss of the Deep Attention
Network decreases. Specifically, when considering 360 neurons per layer, the MSE loss reduces
to 6.48× 10−6 on the training dataset and 3.31× 10−4 on the cross-validation set. After comparison,
this study sets the number of network layers to 10, each containing 360 neurons, for the subsequent
tasks involving the prediction of flow fields in variable-geometry airfoils.

5. Results and Discussion
Firstly, encode the 500 airfoil flow field data obtained in Section III, where air f oil −CST − i(i =
1,2,3, ...,500). Secondly, validate the flow field prediction capability of the DAN model using the
flow field data from the test dataset. To comprehensively investigate the model’s generalization, here
we select the flow field data labeled as air f oil−CST −19 and air f oil−CST −215 (detailed prediction
results can be found in Appendix A) for the testing task of the DAN model. Additionally, for ease
of subsequent analysis of flow field test results, the DAN model trained using Full-Flow data will be
defined as Full-Flow-DAN, while the one trained using ROI flow field data will be defined as ROI-
Flow-DAN. As shown in Figure 7, the predicted results of the test flow field air f oil−CST −19 by both
the Full-Flow-DAN and ROI-Flow-DAN models are presented. It’s noticeable that when all the flow
field data is used for deep learning model training, the flow field curve predicted by Full-Flow-DAN is
not smooth and exhibits significant discrepancies from the ground-truth flow field data. Conversely,
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Figure 6 – Loss Function Variation Curve for Training and Validation Sets. Left: Training set. Right:
Validation set.

Table 1 – Software and hardware configuration of DAN training

Name Version ROI-Flow Full-Flow Neural network model
CPU Intel Xeon Platinum 8273CL N/A N/A N/A
GPU NVIDIA RTX3090 N/A N/A N/A

PyTorch 1.11.0+cu113 N/A N/A N/A
Learning rate 5×10−5 N/A N/A N/A

Epoch 200 N/A N/A N/A
Tensorboard 2.8.0 N/A N/A N/A

Computational domain N/A 364×75 364×120 N/A
MLP-Nodes-360 N/A ✓ ✓ 10×360
MLP-Nodes-300 N/A ✓ ✓ 10×300
MLP-Nodes-240 N/A ✓ ✓ 10×240
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Table 2 – Loss of Neural Network Models on Training and Validation Sets

Name Network architecture Training set loss Cross-validation set loss
Full-Flow MLP-Nodes-360 10×360 1.55×10−4 1.59×10−3

ROI-Flow
MLP-Nodes-300 10×300 1.60×10−5 2.97×10−4

MLP-Nodes-240 10×240 7.09×10−5 1.77×10−4

MLP-Nodes-360 10×360 6.48×10−6 3.31×10−4

Table 3 – MAE loss comparison on training and test sets

Model name MAEu−velocity MAEv−velocity MAEp

Full-FLow-DAN 0.0159 0.0066 0.0047
ROI-Flow-DAN 0.0093 0.0063 0.0058

the predictions by the ROI-Flow-DAN model demonstrate similarity to the CFD computed results, with
a high smoothness in the curve, effectively predicting CFD-computed flow field data. The prediction
error meets the requirements of practical engineering applications.

Figure 7 – Comparison diagrams of Air f oil−CST −19 flow fields. (First row: ground-truth flow fields.
Second row: predicted results based on the Full-Flow-DAN model (u-velocity, v-velocity, p). Third

row: predicted flow fields of the ROI-Flow-DAN model.)

To visually illustrate the prediction errors of the two models, Figure 8 presents the absolute error
contours for the two models regarding test flow field air f oil −CST − 19. The test results reveal that
the prediction error of the Full-Flow-DAN model is significantly greater than that of the ROI-Flow-DAN
model. For the u−velocity, the maximum error in the prediction results of the Full-Flow-DAN model is
0.32, whereas the maximum absolute error in the prediction of the ROI-Flow-DAN model is only 0.1.
Regarding the v− velocity, the maximum absolute error in the Full-Flow-DAN reaches 0.13, while the
maximum absolute error in the ROI-Flow-DAN model is only 0.07.
For a more intuitive comparison of the prediction results between the two models, Table 3 presents
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the Mean Absolute Error (MAE) values for the prediction results of Full-Flow-DAN and ROI-Flow-DAN
models. The MAE is computed using the following formula:

MAE =
1
m

m

∑
i=1

|(yi − ŷi)| (9)

In the above formula, m represents the number of grid points in the flow field, yi represents the ground-
truth flow field values, and ŷi represents the predicted flow field values. From the test results in Table
3, it can be observed that training deep learning models using near-wall flow field data effectively
enhances the accuracy of flow field predictions. Specifically, for the velocity component v− velocity,
the MAE error value of the ROI-Flow-DAN model is reduced by 0.0066 compared to the prediction
error of the Full-Flow-DAN model.

Figure 8 – Airfoil flow field absolute error comparative diagrams. (First row: absolute error diagrams
between the predicted results by the ROI-Flow-DAN model and the CFD computed flow fields.

Second row: absolute error diagrams between the prediction results by the Full-Flow-DAN model
and the ground truth values.)

Figure 9 further provides a comparative analysis between the Full-Flow-DAN and ROI-Flow-DAN
models regarding the predicted Cp (pressure coefficient) on the airfoil surface. From the Cp distri-
bution curves shown in Figure 9(a) and Figure 9(b), it’s apparent that compared to the Cp prediction
curve of the Full-Flow-DAN model, the Cp distribution obtained by the ROI-Flow-DAN model exhibits
a better fit with the ground-truth Cp distribution on the airfoil surface. To further illustrate the differ-
ences in errors between the two models, Figure 9(c) to Figure 9(f) present histograms and scatter
plots of the absolute errors between predicted and ground-truth. In Figure 9(c) and Figure 9(d), it
can be observed that the absolute errors of the Cp values predicted by the ROI-Flow-DAN model are
more concentrated within the range below 0.04, whereas the absolute errors in the predictions of the
Full-Flow-DAN model are more dispersed, especially with numerous errors falling within the range of
0.08. Figure 9(e) and Figure 9(f) provide a clearer visualization of the differences in the distribution
of absolute errors between the two models.
To further validate the prediction accuracy of the proposed DAN model for two-dimensional airfoil
flow fields, Figure 10(a) presents the velocity profiles predicted by the Full-Flow-DAN model. Three
velocity profiles at different stations were chosen to compare the model’s prediction results with the
ground-truth values. From Figure 10(a), it can be observed that the model’s predicted curves closely
align with the ground-truth curves. However, there are instances of curvature in the predicted curves
at some positions for the first and second stations, especially noticeable at the third station, where
the model’s predicted curve deviates from the ground truth. For a more intuitive understanding of
these error distributions, Figure 10(b) depicts the data distribution histograms of the velocity profiles
predicted by the Full-Flow-DAN model at three different stations. It’s noticeable that, except for certain
positions showing discrepancies, the most data distribution is similar.
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（a） （b）

（c） （d）

（e） （f）

Figure 9 – Airfoil surface Cp distribution curve and absolute error distribution. First row: Cp
distribution curve. Second row: absolute error distribution histogram. Third row: scatter plot of

absolute error distribution.

Further analysis from the absolute error distribution histograms in Figure 10(c) reveals that the abso-
lute error values predicted by the model at the three different stations are predominantly distributed
within 0.05. There are fewer error points at positions further along the x-axis. The maximum error
occurs at the first station, with an error value of 0.2.
Figure 11(a) presents the fitting situation of the velocity profiles predicted by the ROI-Flow-DAN model
for three different stations compared with the ground-truth velocity curves. These three test stations
are the same as those presented in Figure 10. It can be observed that compared to the predictions of
the Full-Flow-DAN model, the ROI-Flow-DAN model shows a better fit between the predicted velocity
curve and the ground-truth velocity curve, without similar curve transition issues.
From the histogram in Figure 11(b), it can be seen that at the first station, the predicted data distribu-
tion by the ROI-Flow-DAN model is closely aligned with the ground truth data distribution, while there
is some error at the second and third stations. Further observation of the histogram of absolute errors
reveals that the absolute errors at the first and second stations are roughly distributed within 0.01,
with the largest error occurring at the third station, with a value of 0.03. This value is significantly
lower compared to the maximum error of 0.2 obtained by the Full-Flow-DAN model, further illustrat-
ing that the ROI-Flow-DAN model achieves more precise prediction results than the Full-Flow-DAN
model.

6. Conclusion
To enhance the efficiency of flow field modeling, this paper introduces a novel deep attention network
for rapid prediction of 2D airfoil flow fields. To improve the interpretability of airfoil geometric fea-
tures, different airfoil geometric features were extracted using a Transformer encoder. The encoded
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（a）

（b）

（c）

Figure 10 – Fitting curves of velocity profiles at different locations and histograms of data
distributions. ((a) Fitted curves of velocity profiles at three different locations. (b) Histograms of the

ground truth and predicted velocity values at different locations. (c) Histogram depicting the
distribution of absolute errors between predicted and ground truth velocity values at different

locations.)

airfoil geometric features were evenly distributed across the near-wall region of the two-dimensional
airfoil. Compared to convolutional neural networks, this approach exhibits greater interpretability.
Experimental results further validate the excellent generalization of this method in extracting airfoil
geometric features. Furthermore, the airfoil geometric features extracted by the Transformer encoder
were associated and encoded with the flow field’s wall distance and coordinates. These features were
fed into a MLP to predict the velocity and pressure fields of the airfoils. A comparison between the
Full-Flow-DAN and ROI-Flow-DAN models regarding prediction accuracy revealed that ROI-Flow-
DAN achieved superior accuracy with a maximum MAE value of only 0.0093. This highlights that
training the model using near-wall flow field data significantly enhances the predictive accuracy of
deep learning models. In future work, we aim to further explore this method’s applicability in the rapid
prediction of three-dimensional flow fields. Additionally, by incorporating relevant physical constraints,
it aims to enhance both the physical interpretability and generalization of the deep learning flow field
modeling.
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（a）

（b）

（c）

Figure 11 – Fitting curves of velocity profiles at different locations and histograms of data
distributions. ((a) Fitted curves of velocity profiles at three different locations. (b) Histograms of the

ground truth and predicted velocity values at different locations. (c) Histogram depicting the
distribution of absolute errors between predicted and ground truth velocity values at different

locations.)
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INTELLIGENT RECONSTRUCTION METHOD OF AIRFOIL FLOW FIELD BASED ON DEEP ATTENTION NETWORK

A Appendix: Airfoil-CST-215 Flow Field Prediction Results

Figure 1 – Comparison diagrams of Air f oil −CST −215 flow fields. (First row: ground-truth flow
fields. Second row: predicted results based on the Full-Flow-DAN model (u−velocity, v−velocity, p).

Third row: predicted flow fields of the ROI-Flow-DAN model.)

Figure 2 – Airfoil flow field absolute error comparative diagrams. (First row: absolute error diagrams
between the predicted results by the ROI-Flow-DAN model and the CFD computed flow fields.

Second row: absolute error diagrams between the predicted results by the Full-Flow-DAN model
and the ground truth values.)
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（a） （b）

（c） （d）

Figure 3 – Airfoil surface Cp distribution curves and absolute error distribution scatter plots.

Figure 4 – Velocity fitting curves of predicted and ground truth values at three different station points
for the Full-Flow-DAN model.

Figure 5 – Velocity fitting curves of predicted and ground truth values at three different station points
for the ROI-Flow-DAN model.
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