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Abstract

This paper presents robust powered descent guidance(PDG) algorithm based on dynamic tube model predic-
tive control(MPC). Employing the dynamic tube MPC as a baseline guidance methodology, the modeling error
and disturbances are explicitly considered in the MPC problem and the robust control invariant tube geometry is
simultaneously optimized along with the original powered descent guidance states. Furthermore, the proposed
robust PDG problem is transformed into convex optimization framework through sequential convex program-
ming(SCP) algorithm which is suitable form for real-time application. In the end, numerical experiments are
carried out to validate the performance and robustness of the proposed PDG algorithm.
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1. Introduction
Powered descent guidance(PDG) is a key technology to achieve precise soft landing of reusable
launch vehicle(RLV). For effective and successful PDG implementation, guidance command should
satisfy optimality in fuel consumption for landing with limited fuel and adhere to several path con-
straints to ensure vehicle safety during the flight[1]. To meet these requirements, applying convex
optimization based computational guidance and control schemes[2] to the PDG algorithm has being
actively researched[3, 4, 5, 6]. Since convex optimization problem can guarantee global optimality
and leverages algorithm with polynomial time convergence, such as interior-point method[7], it is
well-suited for PDG algorithm that requires real-time onboard computation of the optimal guidance
commands. However, the fidelity of the model significantly influences the performance and robust-
ness of the algorithm because computational guidance schemes derive solutions based on system
model information[2]. Unfortunately, uncertainties from model errors and disturbances, such as aero-
dynamic coefficient errors and wind, arise during the landing process and the trade-off between the
problem’s complexity and model fidelity may restrict the use of high-fidelity models. These factors
can degrade the performance of the guidance algorithm and, in severe cases, lead to its failure.

To derive a robust guidance algorithm that can efficiently handle disturbances and uncertainties,
this paper introduces a robust PDG algorithm based on the dynamic tube MPC[8]. Dynamic tube
MPC incorporates the boundary layer sliding mode controller as an ancillary controller, enhancing
robustness against disturbances and uncertainties. As sliding mode control is a nonlinear controller,
it can directly handle the nonlinear dynamics without linearization. Moreover, robust control invari-
ant(RCI) tube and control bandwidth are simultaneously optimized based on the currents states and
uncertainty level in the dynamic tube MPC. This allows to handle disturbances and uncertainties with
reduced conservativeness. For a practical implementation of the proposed PDG algorithm, a model
predictive guidance structure that divides the process into trajectory planning and tracking phase[9]
is adopted in this paper. The reference trajectory and control inputs are initially determined through
the trajectory planning phase. Subsequently, a model predictive control(MPC) scheme generates
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the control commands, aiming to adhere to the reference trajectory based on a feedback of the cur-
rent state, which may deviate from the planned path. The proposed algorithm utilizes dynamic tube
MPC for trajectory tracking phase, instead of nominal MPC, so that it can explicitly consider external
disturbances and model uncertainties. Therefore, it can ensure a safe, precise landing and robust
trajectory tracking performance in the presence of disturbances and model errors. Then, the pro-
posed robust PDG problem is transformed into convex optimization framework by using the lossless
convexification[3] and sequential convex programming[10], allowing the problem to be suitable for
real-time implementation.

The remainder of the paper is organized as follow. Section 2 introduces the dynamics model and con-
straints for the powered descent guidance problem. Section 3 presents the robust powered descent
guidance problem based on the dynamic tube MPC scheme and convex formulation of the robust
PDG problem is described in section 4. In section 5, the results of numerical experiments to verify
the performance and robustness of proposed algorithm are depicted. Lastly, the conclusion of this
paper is provided in section 6.

2. Powered Descent Guidance Problem
Before getting into the description of the PDG problem for trajectory tracking, we introduce the as-
sumptions made for the problem formulation in this paper.

• Assumption 1. Non-rotating flat Earth with uniform gravitational field is assumed since the
powered descent guidance phase begins at relatively low altitude and takes short times.

• Assumption 2. The thrust is assumed to be aligned with the longitudinal axis of the body since
the thrust deflection angle is small and the roll attitude is well regulated in 0◦.

• Assumption 3. The dynamics can be expressed in control affine form ẋ = f (x)+b(x)u+d, where
x ∈ Rn is the states, u ∈ Rn is the control input and d ∈ Rn is the external disturbances.

• Assumption 4. The dynamics f (x) can be expressed by f (x)= f̂ (x)+ f̃ (x) where f̂ is the nominal
dynamics incorporating the best estimates of model parameters and f̃ (x) is the bounded model
uncertainties where

∣∣ f̃ (x)
∣∣≤ ∆(x).

• Assumption 5. The external disturbances d belong to the closed, bounded and connected set
D= {d ∈ Rn : |d| ≤ D} and d ∈ span(b(x)).

• Assumption 6. The reference trajectory for powered descent guidance is well established
through the explicit trajectory planning problem and this paper only focuses on developing
methodology for the trajectory tracking problem.

2.1 Dynamics Model
The 3-DOF translational dynamics model is used to describe the motion of RLV. The equations of mo-
tion are expressed in the inertial NED(North-East-Down) frame with the origin at the desired landing
position as in Figure 1.
From the assumptions, the translational dynamics in the presence of external disturbances and model
uncertainties can be written as,

r̈(t) =
[

1
m(t)

(
−1

2
ρ
(
Ĉd +C̃d

)
Sre f ∥ṙ(t)∥2ṙ(t)

)
+g

]
+

1
m(t)

T (t)+d (1)

ṁ(t) =−∥T (t)∥2 +PatmAe

Ispg0
(2)

where r(t) ∈ R3 is the position vector, ṙ(t) ∈ R3 is the velocity vector of the vehicle with respect to
the reference frame, m(t) ∈ R is the mass of the vehicle, T (t) ∈ R3 is the thrust vector considering
the reduction of thrust by atmospheric pressure, g ∈ R3 is the constant gravitational acceleration, ρ

is the air density, Sre f is the reference area for an aerodynamic drag force, Patm is the atmospheric
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Figure 1 – Reference frame (Inertial NED frame)

pressure, Ae is the exit area of the rocket engine, Isp is the specific impulse of the engine and g0 is the
standard gravity at the Earth’s surface. Ĉd is a nominal value of drag coefficient and C̃d is a bounded
uncertainty in drag coefficient. d ∈ R3 is a bounded external disturbances, representing the effects
of wind or unmodeled dynamics such as lift. For conciseness and clarity, let the states vector and
control vector be defined as

x(t) =
[
r(t) ṙ(t) m(t)

]T
, u(t) = T (t) (3)

Then, equation (1) can be expressed as

r̈(t) = f (x(t))+b(x(t))u(t)+d (4)

where b(x(t)) = diag(1/m(t),1/m(t),1/m(t)) and the dynamics f = f̂ + f̃ is consisted of the nominal
dynamics f̂ and bounded uncertain dynamics f̃ as follow.

f̂ (x(t)) =
1

m(t)

(
−1

2
ρĈdSre f ∥ṙ(t)∥2ṙ(t)

)
+g (5)

f̃ (x(t)) =
1

m(t)

(
−1

2
ρC̃dSre f ∥ṙ(t)∥2ṙ(t)

)
≤ ∆(x(t)) (6)

2.2 Constraints and Cost Function
In this subsection, the constraints to obtain physically feasible solution and to ensure safe landing are
introduced. First, the thrust magnitude is bounded as

0 < Tmin −PatmAe ≤ ∥T (t)∥2 ≤ Tmax −PatmAe (7)

Since the typical solution form of the propellant-optimal powered descent guidance is the bang-bang
control profile[3], which may be physically restricted by the engine properties, the rate of thrust mag-
nitude change constraint is imposed as follow.

−Ṫmax ≤
d∥T (t)∥2

dt
≤ Ṫmax (8)

To ensure the stability during the powered descent, tilt angle constraints based on Assumption 2 is
considered.

−Tz(t)≥ ∥T (t)∥2 cosθmax (9)

where Tz is the z-component of the thrust represented in inertial NED frame and θmax is a maximum
tilt angle. Similarly, the angle of attack(AoA) constraint is imposed to prevent excessive aerodynamic
loads, with a maximum allowable AoA denoted as αmax.

−T (t)T ṙ(t)+∥T (t)∥2∥ṙ(t)∥2 cosαmax ≤ 0 (10)
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The cost function to track the reference trajectory is formulated as a quadratic form of tracking error.

J =
∫ t f

t0
[r(t)− r∗(t)]T Q [r(t)− r∗(t)]+ [u(t)−u∗(t)]T R [u(t)−u∗(t)]dt (11)

where r∗(t) and u∗(t) is the reference position and control input, which are determined from a sepa-
rated trajectory planning phase.

2.3 Powered Descent Guidance Problem for Trajectory Tracking Phase
Based on the dynamics and constraints, the optimal control problem for powered descent guidance
during the trajectory tracking phase can be formulated as follow.

Problem 1 : Powered Descent Guidance for Trajectory Tracking

minimize
u(t)

J =
∫ t f

t0
[r(t)− r∗(t)]T Q [r(t)− r∗(t)]+ [u(t)−u∗(t)]T R [u(t)−u∗(t)]dt

subject to

r̈(t) = f̂ (x(t))+ f̃ (x(t))+b(x(t))u(t)+d

ṁ(t) =−∥T (t)∥2 +PatmAe

Ispg0

r(t0) = r0, ṙ(t0) = ṙ0, m(t0) = m0

Tmin −PatmAe ≤ ∥T (t)∥2 ≤ Tmax −PatmAe

− Ṫmax ≤
d∥T (t)∥2

dt
≤ Ṫmax

Tz(t)+∥T (t)∥2 cosθmax ≤ 0

−T (t)T ṙ(t)+∥T (t)∥2∥ṙ(t)∥2 cosαmax ≤ 0

3. Dynamic Tube MPC for Robust Powered Descent Guidance
3.1 Ancillary Controller
This subsection overviews the boundary layer sliding mode controller which is used as an ancillary
controller in dynamic tube MPC[8]. Let r̃(t) := r(t)− r∗(t) be the tracking error for the position. Then,
the sliding variable si for the states ri can be defined as

si(t) =
(

d
dt

+λi

)
r̃i(t) = ˙̃ri(t)+λir̃i(t) = ṙi(t)− ṙr,i(t) for i = {1,2,3} (12)

where λi > 0 is the positive slope of the sliding surface and ṙr(t) = ṙ∗i (t)−λir̃i(t). For si(t), the sliding
surface is defined such that si(t) = 0 which makes the tracking error exponentially converge to 0
as it reaches the sliding surface. However, high frequency chattering problem in the control input
may arise due to the modeling imprecision and disturbances in the sliding mode controller[11]. To
avoid chattering problem, a time-varying boundary layer is introduced around the sliding surface. The
boundary layer with thickness Φi(t) can be defined as

Bi := {r(t) : |si(t)| ≤ Φi(t)} (13)

and the boundary layer is attractive if the following condition holds.

1
2

d
dt

s2
i ≤

(
Φ̇i −ηi

)
|si| (14)

where ηi is the convergence rate to the sliding surface. Then, the dynamics of the sliding variable
can be obtained by differentiating (12) as

ṡi = r̈i − r̈r,i = fi(x)+
3

∑
j=1

bi j(x)u j +di − r̈r,i (15)

4
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By expressing equation (15) into a vector form,

ṡ = f (x)+b(x)u+d − r̈r (16)

Note that b(x) ∈ R3×3 is a diagonal matrix and thus invertible. The control law for the boundary layer
sliding mode controller is given as a form of

u = b−1(x)
[
− f̂ (x)+ r̈r −K(x)◦ sat (s⊘Φ)

]
(17)

where ◦ and ⊘ operator is the Hadamard product and division. From (14), the boundary layer is
attractive for |s|> Φ if

K(x) = ∆(x)+D+η − Φ̇ (18)

For the sliding variable within the boundary layer |s| ≤ Φ, the sliding variable dynamics can be ex-
pressed as follow.

ṡ =−(K(x)⊘Φ)◦ s+ f (x)− f̂ (x)+d (19)

or
ṡ =−(K(x∗)⊘Φ)◦ s+

(
f (x∗)− f̂ (x∗)+d +O(x̃)

)
(20)

which is a first order filter with cut-off frequency K(x∗)⊘Φ. For the desired cut-off frequency κ, the
boundary layer dynamics can be obtained as

Φ̇ =−κ ◦Φ+∆(x∗)+D+η (21)

From the Theorem 1 in [8], the robust control invariant(RCI) tube Ωi is induced as

Ωi(t)≤ e−λi(t−t0)Ωi(t)+
∫ t

t0
e−λi(t−t0−τ)

Φi dτ (22)

We can notice, from (19) and (21), that higher κ produces tighter boundary layer thickness but in-
creases the effect of the uncertainties and disturbances. Consequently, κ is designated as a decision
variable in the optimization process allowing for the appropriate value of κ to be chosen based on
the current states. To obtain continuous and smooth control input, κ is assumed to follow auxiliary
dynamics relation[8]

κ̇(t) = w (23)

where w is the slack variable which is determined from the optimization process.

3.2 Constraints Tightening
States and control constraints should be tightened in dynamic tube MPC problem to prevent the
constraints violation by the ancillary controller due to disturbances[8]. From (17), the control input
can be rewritten as

u = u∗+u f b = u∗+b−1 [ f̂ (x∗)− f̂ (x)−λ ◦ ˙̃r−K(x)◦ sat(s⊘Φ)
]

(24)

where u∗ is the feedforward control input from the MPC solution and u f b is the feedback control by
the ancillary controller. The upper bound of u f b can be obtained as

u f b ≤ b−1
[

1
2m

ρĈdSre f
(
∥ṙ∗∥2 ˙̃rmax +∥ ˙̃rmax∥2ṙ∗

)
−λ ◦ ˙̃r−κ ◦Φ

]
:= ũmax (25)

From the definition of the sliding variable s, the upper bound of magnitude of velocity tracking error is
calculated as

| ˙̃ri|= |si −λir̃i| ≤ Φi +λiΩi (26)

Using (26), |ũmax| can be expressed

|ũmax,i|= b−1
[

1
2m

ρĈdSre f (∥ṙ∗∥2(Φi +λiΩi)+∥Φi +λiΩi∥2ṙ∗)−λiΦi −λ
2
i Ωi −κiΦi

]
(27)

Then, the control constraints can be tightened as

Tmin −PatmAe +∥ũmax(t)∥2 ≤ ∥T (t)∥2 ≤ Tmax −PatmAe −∥ũmax(t)∥2 (28)

5
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3.3 Robust Powered Descent Guidance Problem
The robust powered descent guidance problem based on the dynamic tube MPC can be formu-
lated as Problem 2. The tightened control constraint is applied and the tube geometry is simul-
taneously optimized along with the original state in PDG problem leveraging the state-dependent
uncertainties[8]. The cost function is augemented by adding the penalizing term for the controller
bandwidth and the constraints for the control bandwidth are newly added.

Problem 2 : Robust Powered Descent Guidance for Trajectory Tracking

minimize
u(t),w(t)

J =
∫ t f

t0
[r(t)− r∗(t)]T Q [r(t)− r∗(t)]+ [u(t)−u∗(t)]T R [u(t)−u∗(t)]

+ [κ(t)−κmin]
T M[κ(t)−κmin]dt

subject to

r̈(t) = f̂ (x(t))+b(x(t))u(t)

ṁ(t) =−∥T (t)∥2 +PatmAe

Ispg0

Φ̇(t) =−κ(t)◦Φ(t)+∆(x(t))+D+η

Ω̇(t) =−λ ◦Ω(t)+Φ(t), κ̇(t) = w(t)

r(t0) = r0, ṙ(t0) = ṙ0, m(t0) = m0

Φ(t0) = Φ0, Ω(t0) = |r̃(t0)|, κ(t0) = κ0

Tmin −PatmAe +∥ũmax∥2 ≤ ∥T (t)∥ ≤ Tmax −PatmAe −∥ũmax∥2

− Ṫmax ≤
d∥T (t)∥2

dt
≤ Ṫmax, Tz(t)+∥T (t)∥2 cosθmax ≤ 0

−T (t)T ṙ(t)+∥T (t)∥2∥ṙ(t)∥2 cosαmax ≤ 0

κmin ≤ κ(t)≤ κmax, −κ̇max ≤ w(t)≤ κ̇max

4. Convex Formulation of Robust Powered Descent Guidance Problem
Since the Problem 2 should be repeatedly solved for the MPC approach, formulating the problem
into convex optimization framework is desirable. However, the proposed robust powered descent
guidance problem (Problem 2) is non-convex due to nonlinear dynamics and non-convex inequal-
ity constraints. Thus, convexification technique such as lossless convexification[3] and sequential
convex programming[10] is applied to obtain the convexified problem.

4.1 Lossless Convexification of Thrust Magnitude Constraints
The thrust magnitude constraints (7) is non-convex due to its lower bound and this non-convexity
can be handled without linearization through lossless convexification technique[3]. By introducing
the slack variable Γ ∈ R, the non-convex thrust magnitude constraints can be relaxed as

∥T (t)∥2 ≤ Γ(t) (29)

Tmin −PatmAe ≤ Γ(t)≤ Tmax −PatmAe (30)

Then, the tightened control constraints(28) can be replaced as

Tmin −PatmAe +∥ũmax(t)∥2 ≤ Γ(t)≤ Tmax −PatmAe −∥ũmax(t)∥2 (31)

or
∥ũmax(t)∥2 ≤ Γ(t)− (Tmin −PatmAe) (32)

∥ũmax(t)∥2 ≤−Γ(t)+(Tmax −PatmAe) (33)

Note that ũmax is still non-convex and if ũmax is linearized, equation (32) and (33) become standard form
of second-order cone constraints. Moreover, thrust magnitude in other constraints can be replaced
into Γ.

6
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4.2 Linearization and Discretization
Let X =

[
r , ṙ ,m ,Φ ,Ω ,κ

]T be the state and U =
[
T, Γ, w

]T be the control vector of the Problem 2.
Then, the dynamics of Problem 2 including the tube dynamics can be expressed in vector form as

Ẋ = F(X ,U) (34)

F(X ,U) :=



ṙ(t)
f̂ (x(t))+b(x(t))u(t)

−Γ(t)+PatmAe

Ispg0
−κ(t)◦Φ(t)+∆(x(t))+D+η

−λ ◦Ω(t)+Φ(t)
w(t)


(35)

With reference state and control X̄ , Ū , the dynamics can be linearized as

Ẋ = AX +BU +D (36)

where

A :=
∂F
∂X

∣∣∣∣
(X̄ ,Ū)

, B :=
∂F
∂U

∣∣∣∣
(X̄ ,Ū)

, D := F(X̄ ,Ū)−AX̄ −BŪ (37)

Then, the linearized dynamics can be discretized by using trapezoidal rule with discrete time node
k ∈ {0,1, ...,N}.

Xk+1 = Xk +
∆t
2
([AkXk +BkUk +Dk]+ [Ak+1Xk+1 +Bk+1Uk+1 +Dk+1]) (38)

For constraints, only non-convex components are linearized with reference state and control. Let hi

denote the non-convex component in the constraints such as ũmax. Then, it can be linearized with X̄
and Ū as

hi(X ,U)≃ AhiX +BhiU +Dhi (39)

where

Ahi :=
∂hi

∂X

∣∣∣∣
(X̄ ,Ū)

, Bhi :=
∂hi

∂U

∣∣∣∣
(X̄ ,Ū)

, Dhi := hi(X̄ ,Ū)−AhiX̄ −BhiŪ (40)

and the convexified constraints are imposed on every discrete time node k.

4.3 Convex Subproblem
The sequential convex programming derives the solution by sequentially solving the convex subprob-
lem which can be constructed by linearizing the non-convex components in the original problem.
The subproblem solution of current iteration is used as a reference point of linearization in the next
subproblem, and this successive process is repeated until the solution converges. The convex sub-
problem for robust powered descent guidance problem is formulated in Problem 3. The soft quadratic
trust region is added to maintain the validity of linearization and to avoid the artificial unboundedness
problem that may arise from the linearization process.

Jtr =
N

∑
k=1

(
[Xk − X̄k]

TWX [Xk − X̄k]+ [Uk −Ūk]
TWU [Uk −Ūk]

)
(41)

where WX and WU is the positive definite weighting matrix for the trust region radius. The resulting
convex subproblem(Problem 3) is formulated in second-order cone programming(SOCP) and it can
be efficiently handled by the interior-point algorithm.

7
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Problem 3 : Convex Subproblem of Robust Powered Descent Guidance Problem

minimize
U

J =
N

∑
k=0

(
[Xk −X∗

k ]
T Q′[Xk −X∗

k ]+ [Uk −U∗
k ]

T R′[Uk −U∗
k ]
)
+ Jtr

subject to Xk+1 = Xk +
∆t
2
([AkXk +BkUk +Dk]+ [Ak+1Xk+1 +Bk+1Uk+1 +Dk+1]) ∀k ∈ {0,1, ...,N −1}

X0 =
[
r0, ṙ0, m0, Φ0, Ω0, κ0

]T

∥Aũmax,kXk +Bũmax,kUk +Dũmax,k∥2 ≤ Γk − (Tmin −PatmAe) ∀k ∈ {0,1, ...,N}
∥Aũmax,kXk +Bũmax,kUk +Dũmax,k∥2 ≤−Γk +(Tmax −PatmAe) ∀k ∈ {0,1, ...,N}
∥Tk∥2 ≤ Γk, −Ṫmax∆t ≤ Γk+1 −Γk ≤ Ṫmax∆t ∀k ∈ {0,1, ...,N −1}
Tz,k +Γk cosθmax ≤ 0, Aaoa,kXk +Baoa,kUk +Daoa,k ≤ 0 ∀k ∈ {0,1, ...,N}
κmin ≤ κk ≤ κmax, −κ̇max ≤ wk ≤ κ̇max ∀k ∈ {0,1, ...,N}

5. Numerical Experiments
The numerical experiments are carried out to validate the performance and robustness of the pro-
posed PDG algorithm. The convex subproblem described in Problem 3 is solved by using the
ECOS[12] in MATLAB and the SCP algorithm is initialized with naive straight-line initial guess. Table
1 presents the parameters used in the numerical experiments.

Parameter Values Parameter Values
Initial Position (r0) [48, 48, -1200]T (m) Sliding Surface Slope (λ ) [1.2, 1.2, 1.2]T (s−1)
Initial Velocity (ṙ0) [-13.2, -13.2, 200]T (m/s) Sliding Surface Convergence Rate (η) [1.2, 1.2, 1.2]T (s−2)
Initial Mass (m0) 14,000 (kg) Disturbance Bound (D) [1.0, 1.0, 1.0] (m/s2)
Max. Thrust (Tmax) 360 (kN) Cd uncertainties (C̃d) 10 (%)
Min. Thrust (Tmin) 144 (kN) Control Bandwidth Lower Bound (κmin) 0.5 (s−1)
Max. Thrust Rate (Ṫmax) 198.5 (kN/s) Control Bandwidth Upper Bound (κmax) 10 (s−1)

Max. Control Bandwidth Rate (κ̇max) 0.5 (s−2)

Table 1 – Simulation parameters

Dispersion Sources Description

(A) Initial States Deviation Deviations in initial position in the range of [-15, 15] (m), initial
velocity in the range of [-3, 3](m/s) and initial mass in the range
of [-2.5 , 2.5](%)

(B) Aerodynamics Coefficient Error Uniformly distributed aerodynamics coefficient error in the range
of [-10, 10](%)

(C) Wind Uniformly distributed wind speed in the range of
[0, 5] (m/s) which affects the angle of attack and dynamic
pressure

(D) External Disturbance External disturbances in uniformly distributed bounded distur-
bance set D in the range of [-1, 1](m/s2)

Table 2 – Dispersion Sources
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Figure 2 – States and trajectory (Baseline Case)

Figure 3 – Thrust magnitude and attitude (Baseline Case)

Figure 4 – Position tracking error and RCI tube (Baseline Case)

5.1 Baseline Case
The numerical experiments are carried out for a baseline case to validate the nominal performance
of the proposed guidance. In the baseline scenario, the simulation is performed using the nominal
dynamics model, incorporating additional aerodynamic forces such as lift and side force to assess
the effects of unmodeled dynamics in the MPC model.
Figure 2 presents the states and trajectory of RLV during the powered descent phase, and Figure 3
depicts the thrust control input from the proposed robust powered descent guidance. The red dashed
line represents the reference states established by the explicit trajectory planning problem following

9
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the Assumption 6. The attitude angle in Figure 3 is calculated as

ψ = sin−1
(

Ty

∥T∥

)
, θ = tan−1

(
−Tz

Tx

)
(42)

based on Assumption 2.
Figure 4 presents the tracking error results and RCI tube from the robust powered descent guidance
algorithm. The optimal control bandwidth κ∗ is described as a color map where high bandwidth
is mapped into yellow and low bandwidth is into blue. It can be observed that the tracking error
converges to 0 and remains bounded within the RCI tube despite the initial error with the reference
trajectory and unmodeled dynamics due to additional aerodynamic forces. It is also worth noting that
the tube size is adjusted based on the magnitude of the tracking error, and accordingly, the control
bandwidth κ is modified to bound the tracking error within the RCI tube.

5.2 Maximum Disturbance Case
In this case, the simulation was conducted under conditions with a disturbance of [1.0, 1.0, 1.0] m/s2

and a 10% error in aerodynamic coefficients, which are the maximum values considered during the
PDG design. As shown in Figure 5, the tracking error initially increases due to external disturbances
and modeling error. However, it is eventually bounded within the tube by dynamic tube MPC. Addi-
tionally, as the tube tightens, the control bandwidth κ is increased to ensure that the tracking error
remains within the RCI tube. Since the RCI tube geometry and control bandwidth is optimized by
leveraging the states-dependent uncertainties in the dynamic tube MPC schemes, the proposed ro-
bust powered descent guidance can efficiently handle the uncertainties in response to the current
conditions with less conservativeness. In Figure 6, thrust magnitude result is described for the maxi-
mum disturbance case. The thrust magnitude does not exceed its upper and lower bound even in the
presence of unmodeled dynamics and disturbances, which verfies that the thrust magnitude is well
tightened by (28).

Figure 5 – Tracking error (Maximum Disturbance Case)

Figure 6 – Thrust magnitude (Maximum Disturbance Case)
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5.3 Dispersed Case
To verify the robustness of the proposed PDG algorithm, the Monte Carlo simulation for the dispersed
case is conducted with 500 samples. The dispersion values are sampled based on the the distribution
described in Table 2 for each simulation. Each value is used as a constant for one simulation, and a
newly sampled dispersion value is used for the next Monte Carlo sample.
Figure 7 shows the results of position and velocity trajectory and Figure 8 shows the statistics of the
final landing position and velocity of Monte-Carlo samples. The horizontal landing position error has
an average of 0.02m with a standard deviation of about 0.2m, indicating that most samples result
in precise landing at the desired location. Regarding the final landing speed, horizontal component
averages 0.05m/s with a standard deviation of 0.1 m/s and vertical component averages 1.17m/s
with 1.3 m/s standard deviation. These results validate the proposed guidance algorithm operates
robustly even in the presence of disturbances and modeling errors.

Figure 7 – States of Monte-Carlo samples (Dispersed Case)

Figure 8 – Final States Statistics (Dispersed Case)

6. Conclusion
This paper presents the robust powered descent guidance formulation through dynamic tube MPC.
The MPC problem is formulated based on the powered descent guidance problem for trajectory
tracking. The sliding mode controller with boundary layer is utilized as an ancillary controller allowing
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to explicitly incorporate the modeling error and external disturbances in the problem. Moreover, robust
control invariant tube is derived from the boundary layer of the sliding controller and its tube geometry
is simultaneously optimized along with the original states of the PDG problem. The constraints are
tightened by taking state-dependent disturbances into account to prevent the constraints violation.
The robust PDG problem is finally formulated as a convex optimization framework through lossless
convexification and sequential convex programming. The numerical experiments are conducted to
validate the performance and robustness of the propsed algorithm and it shows the precise soft
landing results even in the presence of modeling error in aerodynamics and external disturbances.
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