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Abstract

A novel single-domain Ritz approach is proposed for the free vibration analysis of laminated cylindrical panels
with cutouts. The panel structural model is based on the first order shear deformation theory and the problem
primary variable, namely the midplane translations and the section rotations, are approximated by a set of
trial functions built as the tensor product of one-dimensional orthogonal Legendre polynomials. The problem
governing equations in terms of the primary variables unknown Ritz coefficients are determined by the sta-
tionarity condition of the total energy potential obtaining the algebraic resolving system. The matrices of the
resolving system are computed using a special integration technique that, based on the implicit description of
the cutout via a suitably-defined level set function, allows for an accurate evaluation of the involved integrals
over the panel domain. To show the potential of the method, validation results and studies are presented,
highlighting the features of the approach and its capability in dealing with general configurations with respect
edge constraints, layups and cutout shape and position.
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1. Introduction
Laminated cylindrical panels have great importance in aerospace applications due to their structural
effectiveness and potential for significant weight savings and enhanced structural performance re-
sulting from innovative design and optimisation strategies. When dynamic loads are applied to these
structural components, they can induce larger strain and stress fields than predicted by static anal-
yses, especially when the structure’s natural frequencies are excited [1]. Therefore, it is essential
to investigate the dynamic behaviour accurately. Additionally, these components often incorporate
cutout openings such as windows, holes, and access cutouts to meet functional and weight require-
ments, adding complexity to their behaviour and modelling.
Numerous studies have been conducted on the dynamic behaviour of laminated shells the finite ele-
ment method (FEM), which is widely used in industrial practice, e.g. [2, 3, 4, 5]. However, alternative
techniques such as analytical solutions for simple cases [6], the domain decomposition method [7, 8],
the wavelet based methods [9, 10, 11], the wave based method [12, 13], the discrete singular convolu-
tion method [14, 15], the method of reverberation ray matrix [16], the spectral-Tchebyshev technique
[17], and meshless methods [18, 19, 20, 21] can offer valuable insights by providing benchmark so-
lutions and efficient alternatives to finite elements, particularly during the preliminary design phase
and optimisation procedures. One such approach is the Ritz method [22], renowned for its computa-
tional efficiency in modelling composite structures. It has been successfully employed to analyse the
behaviour of cylindrical shells, generally without cutouts, e.g. [23, 24, 25, 26, 27]
In the framework of Ritz approaches,the present work proposes a novel single-domain formulation
for free vibration analysis of cylindrical composite shells with cutouts. The plate structural model is
based on the first-order shear deformation theory, whose primary variable, namely the shell midplane
translation and the shell section rotations, are approximated by a set of trial functions built with or-
thogonal Legendre polynomials. The stationarity condition of the total energy potential provides the
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resolving algebraic system in terms of the primary variables unknown Ritz coefficients. The charac-
teristic matrices of the resolving system are computed using a unique integration technique, which
relies on the implicit description of the cutout via a suitably defined level set function. This technique
enables an accurate evaluation of domain integrals over the shell domain and constitutes the pro-
posed Ritz approach’s core and principal novelty. Validation results and studies demonstrating the
potential of this method are presented.

2. Formulation
Let us consider a cylindrical shell panel with rectangular planform, having radius R, panel open angle
2α and length 2L as depicted in Fig. 1. The panel mid-surface occupies the domain Ω with boundary
∂Ω. It is built as a laminate with general layup having NL constant thickness layers of composite
material. The panel is generally constrained along its edges.

R

2α

h

∂Ω

Ω mid-surface domain

Ωp planform domain

Figure 1 – Cylindrical shell panel geometry.

The panel mid-surface is referred to a Cartesian coordinate system with the x1 and x2 axes spanning
the rectangular planform domain Ωp and the origin located at the planform domain center. A curvi-
linear orthogonal coordinate system ξ1,ξ2,ζ is introduced on the mid-surface being ξ1 directed along
the circumferential direction, ξ2 parallel to the cylinder axis and ζ directed along the normal to the
panel mid-surface. Finally, a linear map is established between the curvilinear coordinates ξ1ξ2 and
the natural coordinates ξ and η , which span the domain Q ≡ [−1, 1]× [−1, 1]. The Fig. 2 shows the
reference systems employed. Accordingly, the panel mid-plane point coordinates are given by

x1
x2
x3

=


Rsinαξ

Lη

R(cosαξ − cosα)

 (1)

The panel can present a cutout, obtained by intersecting it with a general section cylinder, having
axis directed along the x3 direction, see Fig. 2. The cut-out geometry is implicitly described via a
level set function ϕ provided in terms of the cartesian coordinates x1 and x2, i.e. ϕ = ϕ(PPP) = ϕ(x1,x2).
Accordingly, the panel cutted mid-surface domain Ωc is defined as the part of Ω where the function ϕ

has negative value, namely

Ωc ≡ {(x1,x2,x3) ∈ Ω : ϕ(x1,x2)< 0}. (2)

The level set function ϕ also allow to define the cutout boundary Γ as the part of the domain Ω where
ϕ is zero

Γ ≡ {(x1,x2,x3) ∈ Ω : ϕ(x1,x2) = 0}. (3)

It is worth noting that the level set function ϕ can be expressed in terms of the curvilinear coordinates
ξ1ξ2ζ or natural coordinates ξ η by using the Eq. (1). The Fig. 3 provides some examples of level set
functions describing typical cutouts.

2



FREE VIBRATIONS OF CYLINDRICAL PANELS WITH CUTOUTS BY THE RITZ METHOD

x2

x1

x3

ξ1

ξ2

ζ

ϕ(x1, x2) = 0

Ω

Ωc

(−1.0, 1.0)

(−1.0,−1.0) (1.0,−1.0)

(1.0, 1.0)

η

ξ

P (x1, x2, x3) ≡ P (ξ1, ξ2) ≡ P (ξ, η)

P (ξ, η)

Figure 2 – Cylindrical panel references systems and mapping.

2.1 Shell panel kinematics
To describe the panel kinematics, the Fist Order Shear Deformation theory (FSDT) is assumed and
the displacement field dddT =

{
dξ1 dξ2 dζ

}T is given by

ddd = uuu+ζ LLLϑϑϑ (4)

where dµ , µ ∈ {ξ1, ξ2, ζ}, are the displacement component along ξ1ξ2ζ axes, and

LLL =

[
1 0 0
0 1 0

]T

(5)

In Eq. (4), the generalized displacement vectors uuu and ϑϑϑ are defined as uuu =
{

u v w
}T and ϑϑϑ ={

ϑξ1 ϑξ2

}T being u and v the in-plane translations of the mid-surface points along the ξ1 and ξ2 axes,
w the transverse deflection along the ζ direction, ϑξ1 and ϑξ2 the section rotations around the ξ2 and
ξ1-axis, respectively.
The linear strain-displacement relations are written as [28]

eeep =


e11
e22
e12

=ZZZ εεε +ζZZZ κκκ (6a)

eeen =

{
e13
e23

}
=ZZZ Sγγγ (6b)

where the generalized strain vectors εεε,κκκ and γγγ are defined as

εεε =


∂

∂ξ1
0 1

R

0 ∂

∂ξ2
0

0 ∂

∂ξ1
0

∂

∂ξ2
0 0




u
v
w

=DDD puuuu (7a)

κκκ =


∂

∂ξ1
0

0 ∂

∂ξ2

0 ∂

∂ξ1
∂

∂ξ2
0


{

ϑξ1

ϑξ2

}
=DDD puϑϑϑ (7b)
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x1

x2

x1c

x2c

r

ϕ(x1,x2,x3) = r2 − (x1 − x1c)
2 − (x2 − x2c)

2

x1c

x1

x2

x2c

β
2a

2b

ϕ(x1,x2,x3) =

1−
(
(x1 − x1c)cosβ +(x2 − x2c)sinβ

a

)2

−(
−(x1 − x1c)sinβ +(x2 − x2c)cosβ

b

)2

x1c

x1

x2

x2c

β
a

b

ϕ(x1,x2,x3) =(a
2

)2d
− ((x1 − x1c)cosβ +(x2 − x2c)sinβ )2d −(

−(x1 − x1c)sinβ +(x2 − x2c)cosβ

r

)2d

Figure 3 – Level set functions describing typical cutouts.
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γγγ =

{
ϑξ1

ϑξ2

}
+

[
− 1

R 0 ∂

∂ξ1

0 0 ∂

∂ξ2

]
u
v
w

= ϑϑϑ +DDDnuuuu (7c)

and

ZZZ =


1

(1+ζ/R) 0 0 0
0 1 0 0
0 0 1

(1+ζ/R) 1

 (8a)

ZZZ S =

[
1

(1+ζ/R) 0
0 1

]
(8b)

2.2 Ply constitutive equations
Assuming plane stress (σ33 = 0), the k-th ply constitutive equations are written as

{
σσσ

(k)
p

σσσ
(k)
n

}
=



σ
(k)
11

σ
(k)
22

σ
(k)
12

σ
(k)
31

σ
(k)
32


=

[
QQQ(k)

p 000
000 QQQ(k)

n

]{
eeep

eeen

}
(9)

where the superscript (k) is employed to denote quantities related to the k-th ply. The elements of the
ply stiffness matrices QQQ(k)

p and QQQ(k)
n have the following expressions

Qp
(k)
11 = Q̄(k)

11 cos4
θ +2

(
Q̄(k)

12 +2Q̄(k)
33

)
sin2

θ cos2
θ + Q̄(k)

22 sin4
θ (10a)

Qp12(k) = Q̄(k)
12 cos4

θ +
(

Q̄(k)
11 +Q(k)

22 −4Q̄(k)
33

)
sin2

θ cos2
θ + Q̄(k)

12 sin4
θ (10b)

Qp
(k)
22 = Q̄(k)

11 sin4
θ +2

(
Q̄(k)

12 +2Q̄(k)
33

)
sin2

θ cos2
θ + Q̄(k)

22 cos4
θ (10c)

Qp
(k)
13 =

(
Q̄(k)

11 −Q(k)
12 −2Q̄(k)

33

)
sinθ cos3

θ +
(

Q̄(k)
12 −Q(k)

22 +2Q̄(k)
33

)
sin3

θ cosθ (10d)

Qp
(k)
23 =

(
Q̄(k)

11 −Q(k)
12 −2Q̄(k)

33

)
sin3

θ cosθ +
(

Q̄(k)
12 −Q(k)

22 +2Q̄(k)
33

)
sinθ cos3

θ (10e)

Qp
(k)
33 =

(
Q̄(k)

11 +Q(k)
22 −2Q̄(k)

12 −2Q̄(k)
66

)
sin2

θ cos2
θ + Q̄(k)

33

(
sin4

θ + cos4
θ
)

cosθ (10f)

Qn
(k)
11 = Q̄(k)

44 cos2
θ + Q̄(k)

55 sin2
θ (10g)

Qn12 =
(

Q̄(k)
55 − Q̄(k)

44

)
cosθ sinθ (10h)

Qn
(k)
22 = Q̄(k)

44 sin2
θ + Q̄(k)

55 cos2
θ (10i)

where θ is the stacking angle, measured with respect to the ξ1-axis, and

Q̄11 =
E1

1−ν12ν21
(11a)

Q̄22 =
E2

1−ν12ν21
(11b)

Q̄12 =
ν12E2

1−ν12ν21
(11c)

Q̄66 = G12 (11d)

Q̄44 = G23 (11e)

Q̄44 = G13 (11f)

being Ei the Young’s moduli, Gi j the shear moduli and νi j the Poisson’ coefficients in the material
orthotropic reference system.
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2.3 Equilibrium and governing equation
Assuming the kinematical boundary conditions are satisfied the equilibrium governing equations for
the free vibrations problem can be deduced from the stationarity conditions of the following energy
potential [31]

Π =
∫

Ωc

NL

∑
k=1

∫ hk

hk−1

1
2

[
eeeT

p QQQ⟨k⟩
p eeep + eeeT

n QQQ⟨k⟩
n eee⟨k⟩n

](
1+ k1ζ̄

)(
1+ k2ζ̄

)
dζ dΩ−

ω
2
∫

Ωc

NL

∑
k=1

∫ hk

hk−1

1
2

[
ρ
(k)dddT ddd

](
1+ k1ζ̄

)(
1+ k2ζ̄

)
dζ dΩ =

=
∫

Ωc

1
2

[
εεε

T AAA εεε + εεε
T BBB κκκ +κκκ

T BBB εεε +κκκ
T DDD κκκ + γγγ

T AAAS γγγ

]
dΩ −

ω
2
∫

Ωc

1
2
[
uuuT IIIuuuuu+uuuT IIIuϑ ϑϑϑ +ϑϑϑ

T IIIϑuuuu+ϑϑϑ
T IIIϑϑ ϑϑϑ

]
dΩ

(12)

where ω is the natural circular frequency, hk−1 and hk are the ζ coordinates of the k-th ply bottom and
top faces, and ρ(k) is the ply density. The panel stiffness and inertia matrices involved in Eq. (12) are
given by

⟨AAA, BBB, DDD⟩=
NL

∑
k=1

∫ hk

hk−1

ZZZ T QQQ⟨k⟩
p ⟨1, ζ , ζ

2⟩ ZZZ (1+ζ/R)dζ (13a)

AAAS =
NL

∑
k=1

∫ hk

hk−1

ZZZ T
S

QQQ⟨k⟩
s ZZZ S (1+ζ/R)dζ (13b)

⟨IIIuu, IIIuϑ , IIIϑu, IIIϑϑ ⟩=
NL

∑
k=1

∫ hk

hk−1

ρ
(k)⟨III3×3, ζ LLL, ζ LLLT , ζ

2LLLT LLL⟩(1+ζ/R)dζ (13c)

being III3×3 the 3×3 identity matrix.

3. Ritz solution
The cylindrical panel model introduced in the preceding section is solved by a Ritz approach [22, 29,
30, 32, 31]

3.1 Generalized displacements and strains approximation
The shell generalized displacements uuu and ϑϑϑ , namely the problem primary variables, are approxi-
mated by series of trial function and they are conveniently written in matrix form as

uuu =

ΨΨΨu 000 000
000 ΨΨΨv 000
000 000 ΨΨΨw


CCCu

CCCv

CCCw

= ΦΦΦu UUU (14a)

ϑϑϑ =

[
ΨΨΨϑx 000

000 ΨΨΨϑy

]{
CCCϑx

CCCϑy

}
= ΦΦΦϑ ΘΘΘ (14b)

where the row vectors ΨΨΨτ , with τ ∈ {u,v,w,ϑx,ϑy}, and the column vectors CCCτ contain the employed
trial functions χi and the corresponding unknown coefficients, respectively. In the present work, the
trial functions used for the approximation of the primary variable are built basing on the tensor product
of one-dimensional polynomials [32]. In particular, the generic trial function χi is defined as

χi = fχ(ξ , η)φm(ξ )ψn(η) (15)

where φm(ξ ) and χn(η) are one-dimensional Legendre orthogonal polynomials of order m and n, re-
spectively. The so-called boundary function fχ is chosen to ensure the fulfillment of the homogeneous
essential boundary conditions and is defined as

fχ(ξ ,η) = (1+ξ )a1(1−ξ )a2(1+η)a3(1−η)a4 (16)

6
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where the exponents ai take the value 0 or 1 according to the condition of constrained or unknown
value of χ along the edge implicitly described by the corresponding power base, see Table 1.

Table 1 – Possible combination of the exponents in Eq.(16).

Edge Free Constrained

(1+ξ ) = 0 a1 = 0 a1 = 1
(1−ξ ) = 0 a2 = 0 a2 = 1
(1+η) = 0 a3 = 0 a3 = 1
(1−η) = 0 a4 = 0 a4 = 1

Accordingly, the discretized form of the generalized strain reads as

εεε =DDD puΦΦΦuUUU =BpuUUU (17a)

κκκ =DDD puΦΦΦϑΘΘΘ =Bpϑ ϑ
ΘΘΘ (17b)

γγγ0 = ΦΦΦϑϑϑΘΘΘ +DDDnuΦΦΦuUUU = ΦΦΦϑϑϑΘΘΘ +BnuUUU (17c)

3.2 Governing equations
The discrete system governing equations are obtained from the stationarity condition with respect to
the Ritz coefficients of the discrete version of the functional Π. This is obtained introducing the Ritz
approximation, namely Eqs. (14) and (17) into Eq. (12) and applying the classical variational calculus
procedures. Finally, the following resolving system is obtained(

KKK −ω
2MMM

)
XXX (18)

where XXXT =
{

UUUT
ΘΘΘ

T}T is the vector containing the Ritz unknown coefficients, KKK is the stiffness
matrix and MMM is the mass matrix. The mass and stiffness matrices involved in Eq. (18) are defined
by

MMM =

[∫
Ωc

ΦΦΦ
T
u IIIuuΦΦΦudΩ

∫
Ωc

ΦΦΦ
T
u IIIuϑ ΦΦΦϑ dΩ∫

Ωc
ΦΦΦ

T
ϑ IIIϑuΦΦΦudΩ

∫
Ωc

ΦΦΦ
T
ϑ IIIϑϑ ΦΦΦϑ dΩ

]
(19)

KKK =

[
KKKuu KKKuϑ

KKKϑu KKKϑϑ

]
(20)

where
KKKuu =

∫
Ωc

[
BT

puAAABpu +BT
nuAAASBnu

]
dΩ (21a)

KKKuϑ = KKKT
ϑu =

∫
Ωc

[
BT

puBBBBpϑ +BT
nuAAASLLLΦΦΦϑ

]
dΩ (21b)

KKKϑϑ =
∫

Ωc

[
BT

pϑ DDDBpϑ +ΦΦΦ
T
ϑ LLLT AAASLLLΦΦΦϑ

]
dΩ (21c)

The Eq. (18) identifies a linear algebraic eigenvalue problem whose solution provides the panel
natural circular frequencies and the corresponding Ritz coefficients that via Eq.(14) enable the mode
shape reconstruction.

4. Stiffness and mass matrix computation
The calculation of the mass and stiffness matrices requires the evaluation of complex domain in-
tegrals, as shown in the Eqs. (19) and (20). In the most general case, such integrals cannot be
evaluated analytically and require the introduction of appropriate numerical integration or quadrature
techniques. In this work, exploiting the implicit description of the cutout via a level set function, high-
order quadrature rules obtained using the algorithm developed in [33] are employed coupled with an
adaptive subregioning scheme to improve the integration effectiveness.

7
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As discussed in Sec. 2., it was assumed that a generic point on the panel mid-surface can be repre-
sented using a system of natural coordinates (ξ ,η) defined in the square domain Q ≡ [−1,1]× [−1,1]
through Eq. (1). Assuming then that the domain ΩS is a generic subregion of the panel mid-surface,
such mapping allows the integral of the generic function f on ΩS to be expressed as∫

ΩS

f (PPP)dΩ =
∫

Ω̃S

f [PPP(ξ ,η)]J(ξ ,η)dΩ (22)

here J(ξ ,η) is the determinant of the Jacobian matrix of the mapping employed and Ω̃s is a subregion
of the square domain Q such that the points (ξ ,η)∈ Ω̃s are mapped into ΩS. The numerical evaluation
of the second-member integral of Eq.(22) is written as∫

Ω̃S

f [PPP(ξ ,η)]J(ξ ,η)dΩ =
Ng

∑
g=1

f gJgwg (23)

where f g represents the value of the function f evaluated at the integration point defined by the
natural coordinates (ξ g,ηg), Jg represents the value of J(ξ ,η) evaluated at the integration point, wg

represents the weight of the integration point, and Ng is the total number of integration points. The
set of integration points and their weights is the quadrature rule for the domain Ω̃s.

4.1 Panel without cutout
For panels without cutout, the computation of the mass and stiffness matrices is obtained by evalu-
ating integrals of the form introduced in the Eqs. (22) and (23) where the ΩS domain coincides with
the Ω domain of the panel and, consequently, the Ω̃S domain coincides with the Q square domain. In
this case, the integration points and weights are provided by the tensor product of one-dimensional
Gauss quadrature rules.

4.2 Panel with cutout
In the case of panels with cutout, the domain ΩS coincides with Ωc and then the domain Ω̃S coincides
with a subset of Q, as shown in Fig.4. In the present formulation, the domain Ωc is defined by a

(−1.0, 1.0)

(−1.0,−1.0) (1.0,−1.0)

(1.0, 1.0)

η

ξ

x2

x1

x3

ξ1

ξ2

ζ

ΩΩc ΩS
Ω̃S

Figure 4 – Mapping of a cylindrical panel with cutout.

function level set ϕ, see Eq. (2), which can be expressed as a function of the natural coordinates
(ξ ,η) by introducing a companion level set function ϕ̃ as follows

ϕ̃(ξ ,η)≡ ϕ(PPP(ξ ,η)). (24)

Once the function level set ϕ̃ is defined in the square domain Q, it is possible to apply the algorithm
for computing quadrature rules for implicitly defined domains developed in Ref.[33, 34, 35], whose
steps are recalled in the following. The first step is to partition the Q domain of the natural variables
(ξ ,η) into a set of subdomains that verify one of the following conditions:

8
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a) the level set function ϕ̃ is always negative;
b) the level set function ϕ̃ is always positive;
c) the level set function ϕ̃ changes sign but its gradient in the ξ direction, defined as g≡∂ ϕ̃/∂xi, or

the gradient in the η direction, defined as g≡∂ ϕ̃/∂η , is always positive or negative.
This partitioning starts from the square domain Q and is done recursively, checking the sign of ϕ̃, gξ

and gη . If none of the conditions a), b) or c) is met, the domain Q is subdivided into two subdomains
Q1 and Q2; the direction of subdivision is chosen along the direction for which the gradient of ϕ̃ is
smaller. The conditions a), b) or c) for the domains Q1 and Q2 are then checked, repeating the steps
just described for the domain Q.
As the generic subdomain Qk verifies one of the conditions a), b) or c), the following cases can occur
• in the case of a, the subdomain Qk falls outside the cutout and entirely within the panel domain;

the integration points and weights are computed using the tensor product of the one-dimensional
Gauss quadrature rules.

• in the case of b, the subdomain Qk falls within the cutout and entirely outside the panel domain, not
contributing to the domain integrals; its integration points and weights thus constitute an empty set.

• in the case of c, the subdomain Qk intersects the boundary of the level set function. However, the
condition that, for example, the gradient gξ always has the same sign ensures that, for given η ,
the function ϕ̃ is always increasing or decreasing and thus has at most one zero. On the basis of
these observations, and assuming that the subdomain Qk is identified by Qk ≡ [ξ L,ξU ]× [ηL,ηU ],
the computation of the quadrature rule consists of the following steps:
1. Compute all the zeros of the function ϕ̃(ξ = ξ L,η) and of the function ϕ̃(ξ = ξU ,η).
2. Create an ordered list of η coordinates where the first value coincides with ηL, the last value

coincides with ηU , and the interior values coincide with the zeros just computed; assuming that n
zeros have been computed, the list can be identified by the ordered set {η0, . . . , . . . ,ηn+1} where
η0 = ηL and ηn+1 = ηU

3. Define a set of intervals Ii
η ≡ [ηi−1,ηi], with i = 1, . . . ,n+1.

4. The integral of a generic function f on Qk can then be written as follows.

∫
Qk

f (ξ ,η)dξ dη =
n+1

∑
i=1

∫
Ii
η

f̂ (η)dη (25)

where
f̂ (η)≡

∫
Iξ (η)

f (ξ ,η)dξ . (26)

The interval Iξ (η) in the above equation represents the segment of Qk at η fixed where ϕ̃ is
negative. Recalling that gξ is always of the same sign, if ϕ̃(ξ ,η) has a zero ξk and gξ > 0, the
interval coincides with Iξ (η)≡ [ξ L,ξk]; if ϕ̃(ξ ,η) has a zero ξk and gξ < 0, the interval coincides
with Iξ (η) ≡ [ξk,ξ

U ]; on the other hand, if ϕ̃(ξ ,η) has no zeros, the interval coincides with
Iξ (η) ≡ [ξ L,ξU ]. Thus, using one-dimensional Gauss quadrature for each interval Ii

η and one-
dimensional Gauss quadrature for each interval Iξ (η) associated with the integration point η ∈ Ii

η ,
it is possible to compute the integration points and corresponding weights for the domain Qk.

As an example, the Fig. 5b shows the integration subdomains and quadrature points computed via
the above-described procedure foe the domain described by the level set function shown in Fig. 5a

5. Numerical results
A computer code has been implemented to validate the formulation described in the previous sec-
tions. To this aim tests involving a multilayered cylindrical shell panel having radius R = 0.25m and a
square planform with edge length L = 0.4m are carried out. The ply thickness and material properties
are are listed in Table 2. Different cutouts, layups and boundary conditions are considered to assess
the capabilities of the proposed approach in ascertaining the free vibrations of cylindrical panels with
cutouts.
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(a) Level set function ϕ̃ (b) Subdomains and quadrature points

Figure 5 – Integration subdomains and quadrature points computed for the domain implicitly
described by the level set function ϕ̃.

Table 2 – Properties of the materials and stacking sequence

Property Value

Young’s moduli E1 113.0 [GPa]
E2, E3 9.0 [GPa]

Poisson’s ratios ν12 0.302
Shear moduli G23, G13, G12 3.82 [GPa]
Mass density ρ 1540.0 [kg/m3]
Layers thickness t 0.002 [m]

Preliminarily, representative convergence analysis results are presented and discussed for the case
of a fully clamped panel with [0/90/90/0] layup and a central circular cutout having radius r = 0.075m.
The analyses have been carried out employing trial functions built as in Eq. (15) with m and n running
in the set {1, 2, ..., N}. The same approximation order N is used for all the primary variables and this
approximation scheme is denoted as RN×N . Table 3 lists the convergence study results for the first six
circular natural frequencies ω of the panel. Reference results are also listed and used to calculate
the percentage error; they have been obtained using a finite element model with 29600 four node
quadrilateral elements. The results evidence good convergence properties of the proposed method
and a very good agreement with finite element results.
To illustrate the method capability to accurately ascertain the panel free vibrations, studies have been
performed for different configurations. Table 4 lists the circular frequency of the [0/90/90/0] composite
cylindrical panel subjected to different edges kinematical constraints. In particular, fully clamped
(CCCC), fully simply-supported (SSSS) and cantilever (CFFF) configurations have been analyzed.
The comparison of the present results with those of converged finite element analyses shows the
accuracy of the present solution with respect to different kinematical boundary conditions.
Table 5 lists the circular frequency of the fully clamped panel with different stacking sequences,
namely a four ply cross-ply layup, a four ply non symmetric layup and an eight ply symmetric layup.
The results obtained are compared with converged finite element results showing very good agree-
ment and validating the approach with respect the layup parameters. It is worth noting that to achieve
the same level of accuracy for all of the investigated layups, the R32×32 approximation scheme was
used and this is related to the unsymmetric layup results whose vibration behaviour accurate descrip-
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tion claims for a finer discretization.

Table 3 – [0/90/90/0] laminated cylindrical panel with a central circular cutout: natural circular fre-
quencies ω convergence study.

FEM R16x16 R24x24 R32x32

Mode nr. ω ω % error ω % error ω % error

1 6136.6 6188.8 0.85% 6150.8 0.23% 6141.9 0.09%
2 6888.9 6946.6 0.84% 6900.4 0.17% 6893.8 0.07%
3 8506.9 8597.4 1.06% 8518.3 0.13% 8508.1 0.01%
4 8754.6 9030.9 3.16% 8793.9 0.45% 8762.5 0.09%
5 9430.0 9515.9 0.91% 9449.4 0.21% 9437.7 0.08%
6 9547.9 9929.1 3.99% 9589.4 0.43% 9557.6 0.10%

Table 4 – [0/90/90/0] laminated cylindrical panel with a central circular cutout and different edge
constraints (CCCC, SSSS, CFFF): circular frequencies ω of the first six natural modes.

CCCC SSSS CFFF

R24x24 FEM error % R24x24 FEM error % R24x24 FEM error %

Mode 1 6150.8 6136.6 0.23% 5342.0 5339.2 0.05% 913.0 912.0 0.11%
Mode 2 6900.4 6888.9 0.17% 5554.7 5545.0 0.17% 1018.7 1018.3 0.07%
Mode 3 8518.3 8506.9 0.13% 6833.1 6827.3 0.08% 2501.5 2496.2 0.22%
Mode 4 8793.9 8754.6 0.45% 7464.4 7438.2 0.35% 2501.6 2497.0 0.18%
Mode 5 9449.4 9430.0 0.21% 7786.2 7773.1 0.17% 3331.1 3329.5 0.06%
Mode 6 9589.4 9547.9 0.43% 8415.2 8380.7 0.41% 3488.6 3488.5 0.02%

Table 5 – Fully clamped (CCCC) laminated cylindrical panel with a central circular cutout and different
layups: circular frequencies ω of the first six natural

[90/0/0/90] [0/45/-45/90] [0/45/-45/90]S

R32x32 FEM error % R32x32 FEM error % R32x32 FEM error %

Mode 1 6142 6137 0.09% 8247 8245 0.02% 11909 11919 -0.08%
Mode 2 6894 6889 0.07% 8775 8700 0.87% 14205 14246 -0.29%
Mode 3 8508 8507 0.01% 9844 9821 0.23% 15189 15260 -0.47%
Mode 4 8762 8755 0.09% 10445 10361 0.81% 17558 17607 -0.28%
Mode 5 9438 9430 0.08% 10586 10510 0.72% 18879 18965 -0.45%
Mode 6 9558 9548 0.10% 11080 10936 1.32% 20539 20626 -0.42%

Finally, to illustrate the method’s capability in dealing with different cutout shapes and positions, Tab.
6 reports the natural circular frequencies and associated modal shapes for the clamped cylindrical
panel with [0/45/-45/90]S layup and different cutouts. Analyses refer to a central circular cutout with
radius r = 0.075m; an edge semicircular cutout with radius r = 0.075m, a central square cutout with
edge length a = 0.075m and a central, 45◦ inclined, elliptical cutout with axes length a = 0.15m and
b = 0.075m; for a geometrical sketch of the investigated cutouts refer to the first row of Tab. 6. The
presented results have been obtained by the R32×32 discretization scheme, which provides converged
solution. They show the proposed method’s ability in analyzing cylindrical panels with cutouts and
can provide a useful benchmark.
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Table 6 – Free vibrations circular frequencies and modal shapes for the [0/45/-45/90]S, fully clamped
panel with different cutouts.

Mode

# 1

ω = 11909 rad/s ω = 11025 rad/s ω = 10831 rad/s ω = 12005 rad/s

# 2

ω = 14205 rad/s ω = 14337 rad/s ω = 11785 rad/s ω = 15023 rad/s

# 3

ω = 15189 rad/s ω = 17143 rad/s ω = 15419 rad/s ω = 15945 rad/s

# 4

ω = 17558 rad/s ω = 18537 rad/s ω = 17908 rad/s ω = 16987 rad/s

# 5

ω = 18879 rad/s ω = 21609 rad/s ω = 18199 rad/s ω = 18140 rad/s

# 6

ω = 20539 rad/s ω = 21988 v ω = 19227 rad/s ω = 21025 rad/s
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6. Conclusions
In this work, a single-domain Ritz method for the free-vibration analysis of laminated composite cylin-
drical panels with cutouts has been proposed. In the framework of the first order shear deformation
theory, the presence of the cut-out is resolved through an implicit approach, whereby a level-set func-
tion, that implicitly defines the reference domain, is combined with an efficient quadrature algorithm
to compute the resolving system matrices. The formulation has been assessed through multiple
tests employed to study its convergence characteristics and accuracy features with respect to edge
constraints, layups and cutout shape and position. In general, in all the conducted tests, the results
obtained show very good agreement with finite elements reference solutions; demonstrating the po-
tential of the formulation for being used as an effective tool for the free-vibration analysis of cylindrical
panels.
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