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Abstract

Making decisions on future aircraft design configurations exploring all the possible solutions of the design space
is essential to drastically reduce the overall cost. Usually, value-model theories are used to support the multi-
criteria decision-making process. In this paper, the value model theory is leveraged for the identification of the
best solution based on multiple criteria related to the design of the aircraft, its manufacturing and supply chain.
In addition, uncertainty propagation analyses are performed for the identification of the robust and flexible
solutions, thus the solutions minimizing the value oscillations and being optimal independently from the
analyzed scenario. An aeronautical application case demonstrates how this approach increases the decision-
makers ‘awareness when performing trade-off studies related to uncertain scenarios and/or expectations. It
shows, for instance, how the best solution, in terms of value and cost, for a decision-maker in a specific scenario
can drastically change its value under different conditions, being not robust.
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1. Introduction

In the last decade, the European Commission introduced the Flightpath 2050 [1], the EU Aviation
Sector’s vision for the future of aviation, placing new challenges for the design of innovative and
sustainable aircraft configurations with the objective to reduce the environmental impact in terms of
consumption, waste and emissions associated with all aeronautical activities and operations. Hence,
the necessity to extend the branches of the aeronautical research to the entire aircraft life-cycle, from
the design to production, to the disposal after the end of the system operative life. In this context, the
DLR Institute of System Architecture in Aeronautics aims at developing methods, processes and tools
supporting the design of aeronautical systems, while considering different life-cycle stages [2]. The
challenge is to enable the concurrent design of the system of interest (i.e. the aircraft) and the enabling
systems, defined as systems supporting the system of interest in one or more life-cycle stages [3].
Traditionally, in fact, the design of enabling systems is addressed once the aircraft design is completed
[4]. Among others, enabling systems are the supply chain and manufacturing systems. The supply
chain system is meant as combination of enterprises involved in the production of the aircraft; the
manufacturing system as combination of machines needed to manufacture the aircraft. Indeed, the
design of the enabling systems starts when the design of aircraft is already defined. For instance, the
enterprises needed to produce the aircraft are chosen when the aircraft configuration is already fixed
in terms of components, materials and processes. The main problem of this sequential approach is
that issues in production which requires changes in the design cause drastically increase of cost [5].
Instead, the analysis of production aspects during the design of the aircraft might help experts foreseen
the reduction of the overall cost and an increase of supply chain’s gains and product competitiveness
[6] [3]. In this context, a methodology for the concurrent design of aircraft, manufacturing and supply
chain has been already developed by DLR [7]. This methodology leads to a value-driven tradespace
in which each solution provides information on the aircraft and production performance and thus on
the fuel consumption mass, production time, quality, risk and cost. These parameters, identified as the
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most important for taking decisions, are aggregated in a value by leveraging the Multi Attributes Utility
(MAU) Theory [8], as shown in Figure 1 by the gray, blue and green boxes.
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Figure 1 —Attributes Weights and Utility Functions Uniform Distribution for Value Uncertainty
Propagation (red boxes): Value as Aggregation of Supply Chain and Aircraft Performance

The MAU theory therefore enables the exploration of a tradespace addressing the concurrent aircraft
design, manufacturing and supply chain. Other value model theories are available in literature, having
each one a unique interpretation, quantification and representation of the term value. Among others,
there are the Net Present Value (NPV), Surplus Value (SV) and Cost—Benefit Analysis (CBA) [9] [10]
[11]. However, the MAU has been selected in this work since it well suits the aim to increase the
decision-makers’ awareness during trade-off studies involving multiple criteria. The MAU theory, in
fact, leverages the concept of single attribute utility (SAU) functions and attributes weights to
aggregate these criteria a single dimensionless value and generate a ranked ordering of design
alternatives in which the best solution can be easily identified as the one with the highest value [12].
In details, the weights represent the relative importance of these attributes. Instead, the utility functions
represent the way decision-makers would take decisions. The best solution is therefore a solution well
matching decision-makers’ expectations with respect to all the aggregated criteria. Therefore, looking
at Figure 1, the best solution is the alternative well matching decision-makers ‘expectations in terms
of time, quality, risk and fuel consumption. How to assess and quantify decision-makers ‘expectations
through single attribute utility functions and weights while considering production and design
performance is already well explained in [13] [14]. Here, reader can also find more information about
the possible trade-off studies that can be performed.

In this research activity, instead, the ambition is to introduce uncertainty in the weights and single
attribute utility functions to give decision-makers insights on the behavior of the alternatives populating
the value-driven tradespace (red boxes in Figure 1). To reach this objective, first a so-called value-
driven Reference Pareto-front is generated by assuming same weights and linear utility functions for
all the attributes. Then, as shown in Figure 1, a uniform distribution is used to propagate uncertainty
on the value through the weights and utility functions. It means that hundreds of weights combinations
and utility functions trends are analyzed to understand how the value of the solutions on the Reference
Pareto-front change. Particularly, three case studies are addressed in this paper of increasing
complexity:

e Case Study I: a uniform distribution is used to propagate uncertainty on the value through the
weights

e Case Study II: a uniform distribution is used to propagate uncertainty on the value through
utility functions

e Case Study llI: a uniform distribution is used to propagate uncertainty on the value through the
weights and utility functions

The objective is to identify the robust and flexible solutions. The robust solution is the alternative
minimizing the value oscillation in each of the case study. In situations in which decision-makers are
not sure about possible future scenarios (e.g. which criteria to prioritize), the robust solution might
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represent a good candidate to be considered with respect to the best solution (solution with highest
value for specific weight combination). The flexible solution, instead, is here proposed as the
alternative having the highest probability to be on the Pareto-front while considering each case study.
The Pareto-front, per definition, is the set of all the optimal solutions. The solutions on the Pareto-front,
thus the optimal solutions on the value-driven tradespace, might change when changing the weights
and utility functions. In this study, the probability of the solutions identified on the Reference Pareto-
front to be optimal, thus to be on the Pareto-front while changing weights and utility functions, is
estimated. Summarizing, the flexible solution is the alternative on the Reference Pareto-front which
has the highest probability to be optimal in all the analyzed case studies. These new information allows
decision-makers to perform new trade-off studies among the best, robust and flexible solutions
especially if these solutions are different. Decision-makers might decide to have a solution which is
optimal in all the case studies (flexible solution) even do it has not the highest value in a specific
scenarios of interest (e.g. for a specific weight combination prioritizing some criteria). As consequence,
some designs and supply chains might be selected instead of others.

In this paper, more details on the approach proposed to perform uncertainty propagation analyses and
on the meaning of adding uncertainty in the three case studies are provided in Section 2. Instead, in
Section 3, the technologies used to automatize the analyses are presented. The results related to the
aeronautical application case are presented and discussed in Section 4. Finally, conclusions are
reported in Section 5.

2. Uncertainty Propagation Formulation: Best, Robust and Flexible Solutions

The MAU theory has been selected as value model theory since it well suits the aim to increase the
decision-makers’ awareness during trade-off studies involving multiple criteria. The formula to
estimate the value is the following one [15]:

N
value = Z A UK L
=1

In which:
e N is the number of criteria;

e ], is the weight associate to the criteria X; and the following condition must be respected:
0<AN<1: YN AN=1;
e U(X;) is the utility function associate to the criteria X;.

Therefore, once assigned the weights and utility functions per each attribute, the value model theory
allows to aggregate multiple criteria in a single dimensionless one, called value. A ranked ordering of
design alternatives is so generated and the best solution can be easily identified as the one with the
highest value. In this study, a value-driven Reference Pareto-front is generated by assigning the
same weight (0.25) and linear utility functions to the attributes. As shown in Figure 1, the attributes
are the production risk, time, quality and fuel consumption. Instead cost is used as other independent
variable for the value vs. cost trade-off studies. The linear utility functions used to generate the value-
driven Reference Pareto-front are shown in Figure 2. These functions have a decreasing trend for
risk, time and fuel consumption since the utility of the alternatives increases when these parameters
are low. Opposite trend is for quality.

The value-driven Reference Pareto-front, generated by leveraging these functions and same weights,
shows the optimal analytical solutions meaning the optimal alternatives not affected by the decision-
makers’ expectations. In fact, same weights imply same importance of attributes. Instead, linear utility
functions simply translate criteria with different unit of measures (e.g. production risk and fuel
consumption mass) in the single dimensionless one (utility). The best solution is anyway proposed
as the alternative with the highest value on the Reference Pareto-front.

The challenge is to investigate the behavior of the alternatives populating the Reference Pareto-front
when decision-makers’ expectations are considered and particularly when decision-makers is not
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completely sure on which weight combinations and utility functions analyze.
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Figure 2 — Single Attributes Utility Functions for Time, Quality, Risk and Fuel Consumption

Therefore, the idea is to propagate the uncertainty to the value through the weights, utility functions
or both of them. Two different techniques can be used to propagate uncertainty in the value model
theory: the Monte Carlo and the Latin Hypercube Sampling (LHS) [16]. The main difference among
them is related to the correlation between the inputs and outputs. In fact, differently from the Latin
Hypercube sampling method, in the Monte Carlo method for the same input two different outputs can
be found. An example of this difference is reported in Figure 3. l
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Figure 3 — Latin Hypercube Sampling (LHS) and Monte Carlo Methods Comparison [16]: a)
LHS b) Monte Carlo

In this case study, however, the Latin Hypercube sampling method is chosen because a single
correlation between inputs (weights, functions or both) and outputs (value) is required. As starting
point, the LHS method needs the definition of number of samplings (N). The number of samplings is
used for the generation of the matrix shown in Figure 3. An exact formula to calculate N does not
exist in literature, although, an inequality that must be satisfied (N> 4/3 K with K number of
parameters) has been empirically established. The range of each parameter is then divided into N
not-overlapping equiprobable intervals and each interval is sequentially assigned to a sampling index
from 1 to N. To propagate uncertainty in the weights (Case Study ), in the utility functions (Case
Study II) and in both weights and utility functions (Case Studies), 250 samplings are generated by
leveraging uniform distributions. More details on the case studies are provided in the next sections
2.2.1, 2.2.2 and 2.2.3. However, once estimated the value of the solutions in each case study, the
robust and flexible solutions are identified respectively as the alternative minimizing the value
oscillation and the alternative having the higher probability to be optimal. In particular, to identify the
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robust solution, the maximum and minimum value of each solution of the Reference Pareto-front is
estimated considering all the combinations of each case study. The value oscillation of each solution
is then proposed as the difference between these boundaries. The alternative with the lowest
difference between the highest and lowest value is then recognized as the robust solution. Instead,
to identify the flexible solution, the Pareto-front is estimated for each combination of the case study
and a check is made to verify if the alternatives populating the Reference Pareto-front are on the new
estimated Pareto-front. The number of positive cases (solution is on the Pareto-front) with respect to
the total cases provides the probability that this is solution is optimal. The flexible solution is then the
alternative having the highest probability to stay on the Pareto-front.

2.2.1 Case Study I: Weights Uncertainty Propagation

In the value model theory weights are used to prioritize attributes. Each weight combination therefore
corresponds to a specific strategic scenario that a decision-maker can investigate by prioritizing the
attributes of interest. For instance, decision-makers might decide to prioritize time with respect to risk
with the objective to identify the best solution in a scenario in which production rate increases and
time gets the priority. The best solution in this scenario might be different from another one, for
instance form the reference case in which same weights is assigned to all the attributes. Adding
uncertainty in the weights is extremely useful to analyze the behavior of the solutions in many
scenarios and identify the one minimizing the value oscillations (that is the robust solution). This
solution can be an alternative which has not the highest value. However, its value surely does not
change drastically in all the other scenarios. Having this information allows decision-makers to
perform trade-off studies between the best solution (highest value) and the robust solution (minimum
value oscillation).

To propagate uncertainty through the weights, a uniform distribution is used as input for the Latin
Hypercube sampling method. The choice of such distribution for the samplings allows decision-
makers to analyze all the possible combinations that can be generated. Each weight changes from 0
to 1, but a constraint is set to assure that their sum is 1.

2.2.2 Case Study II: Utility functions Uncertainty Propagation

Utility functions are used in the value model to quantify the qualitative decision-makers ‘expectations
with respect to each attribute. Therefore, they quantify the way decision-makers would take decisions
with respect to each attribute. The Reference Pareto-front is built considering linear utility functions.
However, changing these functions, the value of the alternative populating the Reference Pareto-
front might change. Usually the utility functions are drawn by decision-makers and several techniques
are available in literature. However, decision-makers might be not sure about the slope of the
functions to use and thus about the way they would model their expectations. Adding uncertainty in
the utility functions gives decision-makers the possibility to analyze many function slopes and identify
the robust solution, that is the alternative minimizing the value oscillations. As in the previous case,
this solution might not be the one with the highest value for a given function trend. However, the value
of this solution surely does not change drastically if the function change, thus if decision-makers
decide to modify the way they would take decisions.

Introducing uncertainty in the utility functions is more challenging than the previous case study. In
fact, the trend of each function (increasing/decreasing) must be preserved while changing the slope
of the function. To assure this condition, boundaries have to be set and a control point defined. To
add uncertainty in the functions, a uniform distribution can be defined for the samplings of the control
point. An example of uncertainty propagation in the utility functions is reported in Figure 4. For
simplicity, in this study, uncertainty is propagated through a utility function of one attribute assumed
to have a decreasing trend (for instance time).
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Figure 4 — Utility Functions Uncertainty Propagation: Control Point (green) and Boundary Points
(gray) as way to propagate Uncertainty

Two boundary Poaints (gray points) are defined to assure the constraints on the utility (y axis ranging
from 0 to 1) and the trend of the functions (decreasing). Instead, a control point (green point) is used
to add uncertainty in the function, meaning to change the slope of the function between the lower
boundary (blue curve) and the upper boundary (red curve). These boundary functions are defined by
the utility or trend function constraints. For instance, functions out of the upper function boundary
might provide points with utility higher than 1 (not feasible according to utility definition).

The equations of the boundary functions (lower and upper) and the coordinates of the control points
on these functions are reported in Table 1.

Function Equation Control Point Coordinates
X Y

Lower Boundary (LB) (1.01-107H) x2 — (2 -107H)x +1 25 0.56

Upper Boundary (UB) (=1-107%) x? + (417 -107Hx +1 40 0.85

Table 1 — Boundaries Functions and Control Points Coordinates

To generate all the functions between the upper boundary (red curve) and low boundary (blue curve)
functions, a uniform distribution is defined for the samplings of each coordinate of the control point.

2.2.3 Case Study llI: Weights and Utility functions Uncertainty Propagation

In the value model theory, weights are used to prioritize attributes while utility functions to quantify
the qualitative decision-makers’ expectations with respect to each attribute. In this case study,
uncertainty is introduced both in weights and utility functions. This allows decision-makers to identify
the alternative minimizing the value oscillations, i.e. the robust solution, when they are not sure about
the scenarios to analysed (weights) and way they would take decisions (utility functions).

This case study is a combination of the previous two. Therefore, for the weights a uniform distribution
between 0 and 1 is defined while for functions a uniform distribution for the samplings of the control
point are used to assure the consistency of the trend functions.

3. Implementation

The approach introduced in the previous section is executed by leveraging some tools developed at
DLR. In particular, to estimate the value of the alternatives populating the value-driven Reference
Pareto-front, the workflow shown in Figure 5 is run within the Remote Component Environment (RCE)
[17]. This workflow includes tools needed for the estimation of the fuel consumption, production cost,
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risk, time and quality. More information is provided here [18]. All the tools are able to automatically
exchange information through CPACS, the Common Parametric Aircraft Configuration Schema
(CPACS) [19].
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Figure 5 — Workflow to estimate the Reference value-driven Pareto-front

To run the uncertainty analysis, instead, a tool called UPinSMA is implemented. This tool has been
also “CPACSized” to allow the automatically exchange of information with the other tools, in particular
with the value model tool for the value estimation. The CPACS structure used to execute the
uncertainty analyses is shown in Figure 6. The address <toolspecific> allows users to add new
specifications about the aircraft and create new custom ones. In this case, new branches are added
to include the uncertainty results in the CPACS.
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Figure 6 — CPACS having Information about Uncertainty Propagation Analyses

The workflow used to run the three uncertainty case studies is instead reported in Figure 7. A Design
of Experiment (DOE) is set up to analyze all the combinations in terms of weights and/or functions
depending on the case study executed. The value model tool is used to estimate the value for each
combination while UPInNSMA is used to perform the uncertainty propagation analysis and store the
information needed to identify the robust and flexible solutions.
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Figure 7 — Workflow to execute Uncertainty Propagation Analyses

In particular, the inputs needed by the UPInSMA are the number of samples (points) to consider for
the uncertainty analysis and the number of different combinations. The evaluation of the value per
each point and combination, that is the output of the UPinSMA tool, is allocated in the Value Table
as shown in Figure 8.
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Figure 8 — Value Table storing the value per each sample point (Point) and combination (DOE_run)

Once created the Value Table, each obtained Pareto-front is compared with the Reference Pareto-
front and a specific binary matrix is created. The binary matrix contains binary digits 0 and 1 that
respectively indicate if the point is or not on the Pareto-front. When the binary matrix is completed,
then probability that the point is on the Pareto-front is estimated considering how many 1 are on each
row of the binary matrix. This allows to easily identify the flexible solution being this solution the
alternative with the highest probably to stay on the Pareto-front. Instead, to estimate the robust
solution, the difference between the maximum and minimum value is estimated per each combination
per each solution.

4. Application case

The approach and technologies introduced in the previous section are applied to an aeronautical
case study aiming at identifying the robust and flexible solutions while considering the design and
production of a specific aircraft component that is the horizontal tail plane (HTP). In the following
sections, first the assumptions generating the alternatives populating the value-driven Reference
Pareto-front are introduced. Then, the main results of the three case studies related to the uncertainty
propagation are reported.
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4.1 Value-driven Reference Pareto-front

The value of the solutions populating the Reference Pareto-front depends on the aggregated
attributes and thus on the production risk, cost, quality, time and fuel consumption. These attributes,
in turn, depend on other choices. In particular, the production cost, time, quality and risk vary based
on the enterprises selected to produce the HTP. In fact, the different skills and geographic locations
of enterprises as well as the quantity that enterprises have to produce lead to different fixed,
transportation and manufacturing performance of the supply chain. On the other side, the different
choice of materials and processes characterizing the main HTP components influence the HTP
performance (like mass and drag) and consequently the aircraft fuel mass consumption. To generate
the alternatives of the value-driven Reference Pareto-front, three materials, processes and
enterprises can be selected for each of the main HTP components, as reported in Figure 9.
Combining all the choices, 6765 alternatives can be generated. However, only 1891 are feasible
solutions because of some manufacturing and production constraints.
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Figure 9 — Aeronautical Application Case Assumptions

Once assigned the same weights and the linear utility functions shown in Figure 4, the value-driven
Reference Pareto-front of Figure 10 is obtained. It includes the optimal analytical solutions. Among
the six alternatives populating the value-driven Reference Pareto-front, the best solution that is the
solution with highest value, is solution 23. These solutions refer simultaneously to the supply chain
and aircraft performance being these parameters aggregated in the value. Details in terms of supply
chain and HTP configurations characterizing the solutions of the Reference Pareto-front are shown
in Figure 11 and quickly discussed here-after. The same colors of icons mean that solutions share
the same information in terms of materials and/or processes and/or supply chains.
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Figure 10 — Value-driven Reference Pareto-front

The alternatives 9,12 and 15 are characterized by the same HTP configuration. For this reason, these
solutions have the same fuel mass. However, the value associated to them is different because of
the supply chain performance. In particular, solutions 9 and 12 have a lower value since some of the
HTP components are outsourced to suppliers and not produced in house. This leads to higher risk
and lower quality with a consequent decrease of value. The alternative 23, 24 and 26 instead are
characterized by the same HTP configuration which differ from the one related to the other three
solutions for the materials and processes used for the ribs. This HTP is made only by composite.
This difference implies a lower fuel mass and therefore a higher value. In addition, the competences
of the enterprises involved in the manufacturing of these HTP configurations are high. As
consequence, the value of these solutions is higher than the value of others. Finally, among them,
solution 23 has the highest value since mostly produced in house.
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Figure 11 — Details of the Alternatives populating the Value-driven Reference Pareto-front
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In the next section, uncertainty is introduced in the value model theory to analyze the behavior of
these solutions in terms of value when changing the weights, utility functions or both.

4.2 Uncertainty Propagation Case Studies: Robust and Flexible Solutions Identification

Uncertainty is propagated to the value through the weights, utility functions or both by leveraging the
LHS method, as explained in Section 2. The results of the three case studies are reported in Figure
12. In particular, in this Figure, the value oscillation of the solutions populating the Reference Pareto-
front is shown. The value oscillation represents the range in which the value of the specific solution
can vary. Lower is the oscillation, better is the solution for decision-makers since its variability with
the scenario is low.
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Figure 12 — Value Oscillations: Robust Solutions Identification: a) Case Study |, b) Case Study
I, c) Case Study llI

In the Case Study I, in which a uniform distribution is used to propagate uncertainty on the value
through the weights, the alternative minimizing the value oscillation is solution 12. Instead, in the
Case Study II, in which a uniform distribution is used to propagate uncertainty on the value through
utility functions, the alternative 9 is the robust solution. Finally, in the Case Study Ill, in which a uniform
distribution is used to propagate uncertainty on the value through the weights and utility functions,
the alternative 15 is identified as robust solution. In addition, the gray boxes in Figure 12 highlights
the 0.25 and 0.75 percentiles for each alternative. They show where most of solutions are located in
terms of value when considering all the combinations per each case study. Indeed, the variation in
value for the alternatives 12, 9 and 15 are the smallest in each case study. The same results, more
in details, are reported in Table 2. Indeed, the minimum variation in terms of value is provided by the

11
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solutions 12, 9 and 15 respectively in the Case Study I, 1l and IlI.

Solution ID
Case Study
9 12 15 23 24 26
AValue | 0.563 0.562 0.567 0.630 0.628 0.626
Il 0.067 0.068 0.068 0.073 0.074 0.074
I 0.570 0.569 0.568 0.598 0.596 0.594
Table 2 — Numerical Value Oscillation of the Refence Pareto-front solutions for the three Cases

Studies

The Table also highlights how the solutions with highest value in the Reference Pareto-front, thus the
alternatives 23, 24 and 26 have the highest value oscillation in the case studies. As previously
explained, these solutions refer to HTP configuration mainly made by composite. Then, depending
on the solution, this HTP is more or less produced in house or outsourced to suppliers. Instead, the
solutions 9,12,15 also have some components in aluminum and again, depending on the specific
solution, this HTP is mainly made in house or outsourced. In any case, considering these two groups
of solutions (9,12,15 and 23,24,25), one of the trade-off study that decision-makers can perform is
for example the following one:

e Invest for a quite expensive HTP configuration, produced in house or outsourced, that
provides the highest value in a specific scenario (the reference case — no prioritization of
attributes) but whose value change a lot depending on the scenario analyzed (solutions
23,24,26).

e Invest for a less expensive HTP configuration, produced in house or outsourced, that
provides not the highest value in a specific scenario (the reference case — no prioritization of
attributes) but whose value does not change a lot in relation with the analyzed scenario
(solutions 9,12,15)

In addition, as explained in Section 2, the probably of the Reference Pareto-front solutions to stay on
the Pareto-front is also estimated for each case study to identify the flexible solution. The results of
this investigations are reported in Figure 13. In the Case Study I, Solution 15 is always on the Pareto-
front. In the Case Study Il, all the alternatives are flexible solutions. In the Case Study lll, solution 15
is again the flexible solution.
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Figure 13 — Probability of Solutions to be on the Pareto-front: Flexible Solutions Identification: a)
Case Study I, b) Case Study I, ¢) Case Study llI
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The alternative 15 is therefore an optimal solution in all the case studies analyzed. This solution has
the lowest value in the value-driven Reference Pareto-front (Figure 10). However, as previously
discussed, it is robust when changing both the utility functions and weights (Figure 12). It means that
this solution doesn’t change drastically the value when changing the scenario of interest (weight) for
decision-makers, neither their expectations (utility function). In addition, this alternative is always on
the Pareto-front in all the case studies analyzed, meaning that this solution is always among the
solutions optimizing the fuel consumption, production risk, time and quality. From the decision-
makers perspective, new trade-off studies can be performed to increase the awareness in taking
decisions. For instance, they might invest in a solution which has the highest value in a specific
scenario (solution 23 in the Reference Pareto-front) but whose probability to remain optimal strongly
depends on the analyzed case. On the other side, instead, they might invest in a solution which has
a lower value but also cost and remains on the Pareto-front in any scenario.

Concluding, the three case studies of this aeronautical application case highlights the importance of
including uncertainty in the value-driven decision-making. It increases the decision-makers
‘awareness when performing trade-off studies related to uncertain scenarios and/or expectations
showing, for instance, that the best solution in a specific scenario might not be the robust solution.

5. Conclusions and Future Developments

Value model theories are usually used to identify the best solution when multiple criteria have to be
considered at the same time. In this paper, the MAU theory is applied for the identification of the robust
and flexible solutions when considering the design, manufacturing and supply chain of a specific
aircraft component that is the horizontal tail plane. To achieve this objective, first a value-driven
Reference Pareto-front is generated while assuming the same weights and linear utility functions for
all the attributes. Then, three case studies are analyzed in which a uniform distribution is used to
propagate uncertainty on the value first through the weights, the utility functions and both of them.
Therefore, hundreds of weight combinations and utility functions slopes are explored and the behavior
of the solutions identified on the Reference Pareto-front investigated. The robust and flexible solutions
are identified, respectively, as the solution minimizing the value oscillations and the solution having
the high probability to be on Pareto-front, thus be optimal in all the evaluated combinations of each
case study. The approach used to perform these investigations are explained in Section 2, instead the
technologies used to run these analysis in Section 3. The aeronautical application case, presented in
Section 4, highlights the importance of including decision-makers ‘expectations and uncertainty in it.
The solution with the lowest value in the value-driven Reference Pareto-front, solution 15, has the
lowest value oscillation when including uncertainty in the weights and functions. In addition, this
solution is always on the Pareto-front in all the case studies analyzed. From decision-makers
perspective, this results provides even more insights on the decisions to take. For instance, they might
invest in a solution which has the highest value in a specific scenario (solution 23 in the Reference
Pareto-front) whose value drastically change in others. On the other side, they might decide to invest
in a solution which has the lowest value in a scenario, but remains robust and optimal in all the others.
These two solutions correspond to two different HTP configuration and supply chains. Invest in solution
23 means to invest in a HTP configuration made in composite mostly produced in house. Instead,
solution 15 is a HTP configuration mainly made by aluminum and outsourced to suppliers. In addition,
the application case shows that the best solution in a specific scenario, i.e. the solution with highest
value in the Reference Pareto-front (solution 23) might not be the robust and flexible solution. This
information increases decision-makers ‘awareness when taking decisions.

Concluding, the methodology is useful to provide more insights and information to decision-makers
before investing for a solution. The case study proposed here it’s however a simplification study and
uncertainty has been added only on one single utility functions (time). Uncertainty might be added in
more functions to investigate the behavior of solutions in other case studies. In addition, the reference
Pareto-front has been obtained by considering same weights and linear utility functions for all the
attributes. Therefore, the behavior of analytical optimal solutions has been investigated in the case
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studies. Further analysis will be done to investigate the differences between the Reference Pareto-
front and the Pareto-front obtained by considering the utility functions provided by stakeholders for all
the attributes [7]. In this paper, the choice of having the Pareto-front not influenced by decision-makers
as reference has been done to simplify the validation of the results.
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