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Abstract

Vortex shedding turbines (VST), a new type of wind turbine capable of generating renewable energy utiliz-
ing vortex-induced vibration (VIV) were recently found. To evaluate the potential and performance of a VST,
accurate VIV prediction are necessary. VIV phenomena are usually formulated via complex fluid-structure in-
teraction multi-physics problems, however, they are proven to be computationally heavy. On the other hand,
experimental approaches are also impractical as it is very labor and equipment-intensive, hence an alternative
is needed. Surrogate modeling emerges as a potential alternative. In this research, three models which are the
linear regression, Gaussian Process Regression (GPR), and Neural Network (NN) methods are used to create
surrogate models to predict the trend of vortex shedding frequency in a vortex shedding turbine on varying
design variables. The design variables are freestream velocity (V), mast diameter (D), and model mass (m).
The models achieved accuracy values ranging from 0.1770 to 0.2400 Root Mean Square Error and 0.60 to
0.84 R-squared values on validation data. The results indicate that the linear regression model could predict
shedding frequency at best compared to GPR and NN. Furthermore, it is found that the vortex shedding fre-
quency is linearly dependent on freestream velocity and mast diameter, and is inversely proportional to the
model mass with gradients of 0.03, 0.0024, and -0.012 respectively.

Keywords: Vortex Shedding, Surrogate Modelling, Vortex Shedding Turbine, Renewable Energy, Vortex In-
duced Vibration

1. Introduction

In the search of sustainable and renewable energy generation, researchers and engineers have
explored various innovative approaches to harnessing clean energy. A new concept of renewable
energy generation is through wind energy, particularly through the vortex shedding phenomenon.
Vortex shedding occurs when a fluid is flowing through a stationary bluff body, particularly a cylinder,
resulting in a periodic separation of boundary layer [1]. Figure [1] shows the vorticity contour on a
vortex shedding phenomenon that occurs on a cylinder. The Strouhal number usually parameterizes
vortex shedding. Strouhal number is a proportionality constant between vortex shedding frequency
(fs) and diameter (D) with free-stream velocity (U). The Strouhal number describes the ratio of inertial
forces due to the local acceleration (change of velocity with respect to time) to the inertial forces due
to the convective acceleration (change of velocity to distance). This means at high Strouhal numbers,
oscillations are prevalent, while at low Strouhal numbers, the oscillations are swept by the flow and
subside [2]. Strouhal numbers are formulated in Equation 1] [3].

fyxD
== (1)
If a flexible structure is experiencing vortex shedding, a vortex-induced vibration (VIV) phenomenon
will occur. VIV refers to the cyclic oscillation of structures in response to the generation of periodic
vortices due to vortex shedding caused by the flow [4]. This topic has been considerably studied,
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Figure 1 — Vorticity contour of vortex shedding in cylinder.

particularly in the offshore and aerospace fields. From a structural standpoint, VIV is known to be
hazardous, leading to fatigue and damage to structures [5]. However, recent research has recognized
the potential of harnessing the vibrations generated as a renewable energy source. A new type of
wind turbine that utilizes the vortex-induced vibration phenomenon is the Vortex Shedding Turbines
(VST).

The main components of VST consist of a fixed base, a core structure (that is the main structural
component), a cylindrical mast that acts as the oscillator, and an energy generator such as an al-
ternator. The typical VST are shown in Figure 2l The way VST mainly operates is by utilizing the
oscillation of a cylindrical mast, which will create relative displacement that can be used for energy
generation through induction or other means [4]. Therefore, displacement of the cylindrical mast
proves to be an important parameter.

Mast

(free) \

Core

Fixed Base <« Structure

\

Figure 2 — Vortex shedding turbine components.

In comparison to the conventional counterparts, VST possess several advantages some of which
are; less space requirements, omnidirectionality, cheaper and easier fabrication, greater life span,
and many more [4]. Also, VST usually operates in lower wind speeds, meaning they can be used
in more parts of the world. However, VST poses several challenges. To design an optimal VST, an
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accurate prediction of VIV in the structure is needed.

A unique phenomenon that occurs in structures experiencing VIV is the resonance or lock-in phe-
nomenon. Cylinder vibration near the shedding frequency of a stationary cylinder increases in
strength of the shed vortices, hence the vortex shedding measured in a stationary cylinder is not
a reliable predictor in a VIV motion [3]]. To fully evaluate the VIV motion, a complete formulation of the
fluid and structural dynamics is needed. This means a study using Fluid Structure Interaction (FSI)
is needed. Several studies show that a complex FSI multi-physics modeling is capable of solving a
vortex-induced vibration phenomenon. Cajas et al [6] developed a fluid-structure interaction in house
code and successfully reproduced a satisfactory agreement between the numerical code with the
experimental result. On the other hand, Hamdan et al [7] evaluated the performance of a VST using
commercial software that facilitates two-way FSI numerical modeling, and validated the result with an
experiment that is done in a wind tunnel on a smaller scale VST. Although both studies show a good
agreement between the experiment and numerical modeling, the computational and labor costs for
the numerical and experimental studies are very large.

To reduce computational and labor costs, surrogate modeling emerges as a promising candidate.
Previous studies regarding surrogate modeling in Fluid-structure interaction cases include the re-
search done by Arcones et al [8] where they developed an artificial neural network (ANN) as a basis
of surrogate modeling specified for FSI implementation. The approach that is taken involves data
generation using a conventional finite element model, model training using neural network architec-
ture and finally implementing the created surrogate model. The model resulted in a decrease of
simulation type without sacrificing accuracy. In addition to that, Wu et al [9] created an FSI design
optimization framework that is used to improve the structural performance of a water brake. The
surrogate management framework (SMF) is used to save time on the design of the water brake.
The work resulted in a desirable decrease in von Mises stress from the baseline design, creating a
time-efficient optimization procedure.

Although plenty of stationary cylinder vortex shedding studies are present, as mentioned before, VST
motion cannot be interpreted using the still cylinder formulation. This paper therefore aims to predict
the trend of the VIV properties, particularly in VSTs, using surrogate modeling in an effort to promote
practicality, create time-efficient solvers, and observe the change of VIV frequency within the design
space. Surrogate models will be developed to predict frequency tendencies based on the changes
in the design parameters for small to mid-sized VSTs. In this research, the design variables that
will be varied are the freestream velocity (V), mast diameter (D), and model mass (m). Freestream
velocity and mast diameter are varied as the shedding properties are commonly dependent to them
(seen in Equation[1), whereas mass proves to be an important parameter in determining the natural
frequency of a system, which influence the total motion of a VST system. In a simplified single degree
of freedom (SDOF) system, the natural frequency can be written as Equation [2|[10].

o =1/~ (@)
m

with w, is the natural frequency of the system, k is the stiffness of the system, and m is the mass of the
system. This means generally mass is inversely proportional to the natural frequency of a system. A
change in mass will influence the natural frequency of a system, thereby altering the system’s motion
tendencies.
Furthermore, the study will be limited at a low Reynolds number as nonlinearity and a larger degree of
uncertainties become more apparent in the supercritical Reynolds regime. Several studies have been
conducted in effort to find the trend of Strouhal Numbers in varying Reynolds numbers on a stationary
cylindrical body. Aerodynamic flows in cylindrical objects are categorized into three regimes, namely
the subcritical (Re <2 x 10°), critical (2 x 10° < Re < 6 x 10°), and the supercritical regime (Re > 6 x 10°)
[3][11]. Below the subcritical regime, it is found that the Strouhal number is function of the Reynolds
number, with an average Strouhal number of approximately 0.21 [12]. However above Reynolds
number of 2 x 10°, they are independent of Reynolds number [13], making the prediction of vortex
shedding frequency harder in the high Reynolds regime.
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2. Experimental Setup and Data

To obtain the training data, VST models are constructed and tested in a closed-loop wind tunnel.
The main interest is to capture the frequency of the VST model in diverse design points. The wind
closed-loop wind tunnel section can be seen in Figure[3]

Figure 3 — Closed loop wind tunnel test section.

The test model consists of 4 main parts, namely the base, spring (main structural component), cylin-
drical mast, and sensor. To obtain the VST motion data, an inertial measurement unit (IMU) is used.
The MPU-6050 GY-521 sensor module is used. The MPU-6050 is equipped with a 3-axis accelerom-
eter which is capable of measuring linear acceleration in the X, Y, and Z orientation, and a gyroscope
that can obtain the angular velocity in the 3-axis as well. The IMU module is placed inside the test
specimen. The test model is shown in Figure {4

Figure 4 — Experimental test model.

The experiment will be divided into two experiments each consisting of 27 design points. The design
variables that are varied are the freestream velocity (V), mast diameter (D), and model mass (m)
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which is sampled using Latin hypercube sampling (LHS). Freestream velocity is varied by changing
the compressor rate which corresponds to the volume of fluid flowed, mast diameter is adjusted by
changing the mast sample (see Figure[5), where the model mass is modified by applying a ballast to
give additional weight to the system.

V ) Base ';\
¥4

Cylindrical
/f Mast

Figure 5 — Unassembled experimental test model.

The experiment will be done in the low Reynolds number region, which ranges between 4219, to
98087, the Reynolds number variation can be seen in Figure[6] The experimental result and sampling
points for experiments 1 and 2 can be seen in Figure [7]and Figure [8] respectively.
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Figure 6 — Experimental Reynolds number variations.

To accurately extract the frequency of the VST, the data on acceleration and angular velocity obtained
by the IMU is analyzed using the persistence spectrum. The persistence spectrum is presented in
a power-frequency histogram which shows the percentage of time a given frequency is present in
a signal. The spectrogram of the signal is computed in a specified leakage, time resolution, and
overlap. Then the power and frequency values are partitioned into 2-D bins and the histogram of
the power spectrum for each time value. The power spectrum is the distribution of power contained
within a signal over the frequency domain. To compute the time-dependent spectrum of a signal, the
obtained signal will be divided into segments (to avoid calculating large Fourier transforms) that will
be analyzed using a short-time Fourier transform. The sample of the persistence spectrum analysis
can be seen in Figure[9
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3. Prediction Models

In this research, a set of supervised learning methods will be used to create surrogate models to
predict the fluid-structure interaction response, specifically vortex shedding frequency. The surrogate
models will be constructed using several methods with different levels of flexibility and interpretability,
including linear regression, Gaussian Process Regression (GPR), and neural networks.

3.1 Linear Regression Models
A linear regression model is one type of statistical model that is able to predict the value of a de-
pendent variable with the assumption that it is based on one or more independent variables [14]. In
general, linear regression is able to create a prediction based on the relation between a response Y
with the predictor X.

Y =~ Bo+BiX, (3)

with Sy and f represents the unknown intercept and slope constants, also called coefficients. Let
there be n number of samples, the value of estimated coefficients (B, and ;) will be evaluated such
that it can minimize the least square values.

g T - X)(-7)
o x-x2 (4)
Po=Y-BiX,

| - 1 .
with Y = =X ,¥; and X = —-X! |X;, also called the sample means. Additionally, the terms of X can
n n

be modified. Specifically, for this research, the terms used are linear and interactions. Linear terms
mean that the system only consists of an intercept and linear terms of each predictor. On the other
hand, for interactions terms, the model contains intercept and linear terms, but also with the addition
of pairs of distinct predictors, which allows for more accurate predictions [15].

3.2 Gaussian Process Regression Models

Gaussian Process Regression (GPR) is a probabilistic model in machine learning that is nonpara-
metric and relies on kernels [16]. In general, GPR has a high flexibility but is harder to interpret
compared to the linear regression model. Consider a linear regression model as follows.

Y~X"B+e, e~N(0,0%), (5)

where N(0,0?) as the Gaussian distribution with zero mean and o variance . The Gaussian process
model predicts the response by using a set of latent variables (f(X;)) from the Gaussian process and
a set of explicit basis functions 4. Hence, the response Y can be modeled in vector form as follows.

P(Y|f(X),X) ~ N(Y|HB + f.0°]), (6)

where H is h(X;) in vector form. In this research, the basis function of the prior mean Gaussian pro-
cess regression model function is constant. The Gaussian process model interprets the covariance
function between two latent variables f(X;) and f(X;). This covariance function (k(x;,x;|0)) is defined
by kernel functions vector (6). Let the kernel parameters be defined by the standard deviation o, and
the characteristic length scale o;, then the parametrization of kernel vector 6 can be described as
Equation [7][16].

91 = IOgGl, 92 = IOg Of. (7)

Specifically, in this research, the used kernel functions will be the rational quadratic and exponential
kernel. In the case of the rational quadratic kernel, the kernel function is defined as a function that
consists of positive-valued scale-mixture parameter «, as written in Equation

(Xi —X;)" (X — X;)
2000} > '

u&&m=#0+ ®)
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On the other hand, for the exponential kernel, the kernel function is defined as Equation[9]

VX X)) (X - X))
k(X;,Xj|0) = ofe Y : (9)

In this research, various kernel functions will be utilized for the Gaussian Process Regression (GPR)
method to evaluate the effect of the kernel function on the fitness of the model.

3.3 Neural Networks

A neural network refers to a computational model that consists of a collection of interconnected nodes
that process and learn from data. Neural network models typically have high flexibility, which can vary
depending on the number of active layers and the size of each corresponding layer. In this research,
the model used is a fully connected, feedforward neural network.

The surrogate modeling process involves connecting the predictor data to the first layer. For each
subsequent layer, the inputs are connected to the previous layer. Each layer provides a weight matrix
and bias vector for the inputs. Generally, the number of fully connected layers and their size increase
the model’s flexibility.

4. Surrogate Model Training and Prediction Result

The experimental results that have been obtained will be used to train a surrogate model using several
methods, including linear regression, Gaussian Process Regression (GPR), and neural networks.
The trained model will then be interpreted using the partial dependence analysis.

4.1 Model Setup

In general, this research will involve three main modeling methods: linear regression, GPR, and
neural networks. Each model will contain several different hyperparameters to investigate the impact
of these parameters on the results. For linear regression, the terms used will vary between linear and
interaction. The linear regression setup are shown in Table[f]

Table 1 — Linear regression setup.

Model Linear Linear (Interactions) Linear (Robust)
Terms linear interactions linear
Robustness off off on

For GPR, the kernel function will vary between Rational Quadratic and Squared Exponential, which
is detailed in Table [2] In this case, an isotropic kernel will be used for each scenario, with the basic
function set to be constant. An isotropic kernel in this case refers to the kernel function properties
which has the same length scale for all input features [16].

Table 2 — GPR setup.

Model GPR (Rational Quadratic) GPR (Rational Quadratic)
Basis Function  constant constant

Kernel Function rational quadratic exponential

Kernel Type isotropic isotropic

Finally, for the neural network model, the number of layers will be varied between one and two, with
different sizes, as tabulated in Table
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Table 3 — Neural network setup.

Neural Network Neural Network Neural Network

Model (Narrow) (Wide) (Bilayer)
Number of connected layer 1 1 2

First layer size 10 35 30
Second layer size - - 30
Activation RelLU RelLU RelLU

4.2 Validation and Test Result

Each experiment consists of 27 training data points and 9 test data points. Additionally, the training
data will be cross-validated with 3 folds to test the robustness of the models. The goal of the surrogate
model is to create a predictive model of vortex shedding frequency generation as the result of fluid-
structure interaction on a vortex shedding turbine. In this case, the model will predict the vortex
shedding frequency (fsnq) as a function of freestream velocity (V), mast’s diameter (D), and the
vortex shedding turbine model mass (m).

ﬁhedding - F(V,D,m) (1 0)

The training results will be validated and tested by evaluating the Root Mean Square Error (RMSE)
and R? value. These metrics are commonly used to evaluate the performance of trained surrogate
models [17]. In this case, RMSE is calculated using Equation

1
RMSE = \[ =X ||F; — Ai|]?, (11)
n

with F as the predicted data array and A as the actual data array. This value measures the average
difference between a model’s predicted values and the actual values. Additionally, to measure the
proportion of the variance in the response variable, the coefficient of determination (R?) is introduced,
as mentioned in Equation

Te?

R=1-—
T2’

(12)

Table 4 — RMSE result.

Model Experiment 1 Experiment 2
Validation Test Validation Test
Linear 0.1880 0.2298 0.1770 0.1825
Linear 0.2400 02185 0.1722  0.1808
(Interactions)
Linear
(Robust) 0.1808 0.2009 0.1752 0.1839
GPR
(Rational Quadratic) 0.2017 0.2153 0.1861 0.1855
GPR

, 0.2096 0.2616  0.1761  0.1855
(Exponential)

Neural Network 0.1909  0.2528 0.1857  0.2168

(Narrow)
Neural Network 0.1903 0.2520 0.1859 0.2179
(Wide)
Neural Network 0.19504 0.2569 0.1823  0.1923
(Bilayer)




SURROGATE MODELING OF VORTEX SHEDDING TURBINE IN LOW REYNOLDS NUMBER

with Ze? as the sum of squared error and 7?2 as the sum of squared total. After training the model, the
result as tabulated in Table [4] and Table [5]for RMSE and R-squared value respectively are obtained.

Table 5 — Coefficient of determination (R?).

Model Experiment 1 Experiment 2
Validation Test Validation Test
Linear 0.75 0.64 0.83 0.77
Linear 060 068 084 077
(Interactions)
Linear
(Robust) 0.77 0.73 0.83 0.77
GPR
(Rational Quadratic) 0.71 0.69 0.84 0.76
GPR

(Exponential) 0.69 0.54 0.82 0.70

Neural Network 0.74 057 0.82 0.68

(Narrow)

Neural Network

(Wide) 0.75 0.57 0.82 0.67
Neural Network 073 055 079  0.74
(Bilayer)

The results, as tabulated in Table 4] and Table [5, indicate how well the models predict shedding
frequency as a function of the varied variables (V, D, and m). A lower RMSE value suggests that the
model has a lower absolute error on the given data, while a high R-squared value indicates how well
the model explains the variance in the data. From the result table, for the same model, experiment 2
shows a higher accuracy prediction compared to experiment 1.

Notably, higher flexibility models, such as Gaussian Process Regression (GPR) and neural networks,
generally show higher RMSE and lower R-squared values compared to the linear regression model
for both validation and test data on both experimental data sets. This can be observed in Figure
where the predicted response values for the linear regression model are closer to the true response
values, evidenced by the scattered points being nearer to the line. This property indicates that the
model makes accurate predictions across different response values. The result that indicates the
linear regression model provides the best fit to the data suggests a linear relationship between the
vortex shedding frequency and the variables of freestream velocity, mast diameter, and model mass.
Furthermore, each model’s accuracy can be evaluated using response plots, allowing observation
of how much the predicted data deviate from the actual data. These plots visually demonstrate the
relationship between the predicted and actual values, making it easier to assess the performance
and reliability of each model.

Figure[11] with response value in Hertz, shows the response plot of each linear model for both exper-
iments. The plots show that the linear (robust) model provides more overall accuracy in predicting the
shedding frequency than the other two models. This demonstrates how the robust objective function
can make the trained model less sensitive to outliers by assigning lower weights to the outlier data.
On the other hand, for the GPR response plot, as seen in Figure [12] (with response value in Hertz),
the two models show no significant difference in terms of accuracy. This indicates that for Gaussian
process regression, the kernel function choice between Rational Quadratic and Exponential yields
comparable accuracy in predicting the shedding frequency.

In the response plots for the neural network models, as depicted in Figure [13] (with response value in
Hertz), it’s evident that the number and size of the connected layers impact the model’s accuracy. In
this scenario, increasing the size of the layer (for a single connected layer) improves accuracy. This
trend persists with the addition of fully connected layers. Compared to a single active layer, bilayered
neural networks demonstrate improved predictive capability.
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4.3 Interpretation

In this section, we will leverage the linear (robust) model, which provides the most accurate prediction
of the vortex shedding frequency, to interpret the behavior of the model. Utilizing a linear model offers
greater interpretability compared to GPR and neural networks [18]. Specifically, we will examine the
partial dependency of each predictor variable and the predicted response [19]. Our focus will be on
the first experiment’s training data.

Model 4.3
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Figure 14 — Partial dependency of predictor variable and predicted shedding frequency.

Using the partial dependency plot illustrated in Figure we can analyze the effect of altering the
parameters (V, D, and m) on the vortex shedding frequency based on the data. The results indicate
that as the freestream velocity increases, the expected vortex shedding frequency also increases.
Similarly, the mast’s diameter affects the shedding frequency, with an increase in diameter leading
to a higher shedding frequency. In contrast to the direct proportionality observed with freestream
velocity and mast diameter, the mass of the model inversely affects the vortex shedding frequency,
with an increase in mass resulting in a decrease in frequency. The effect of each predictor variable
on vortex shedding frequency as the result of fluid-structure interaction can be seen in Table [6]

Table 6 — Effect of increasing vortex shedding turbine operational variables on vortex shedding

frequency.
Increased variable Freestream velocity Mast’s diameter Model mass
. Increasing Increasing Decreasing
Vortex shedding frequency (gradient of 0.03) (gradient of 0.0024) (gradient of -0.012)

In an SDOF system, vibrations that is under harmonic excitation will vibrate under the frequency
of the excitation [10]. VIV motions are known to be excited by the oscillatory shedding vortices
force. Although in practice, the shedding force depends on the cylinder motion (the force excited
in VIV is not the same as vortex shedding in a stationary cylinder), by assuming the VST as an
SDOF system excited by harmonic vortex shedding force, the VST motion can be estimated with the
Strouhal number correlation. Since the research is conducted in the subcritical Reynolds regime,
the Strouhal number throughout the design points is =~ 0.21. Examining equation [1} it can be seen
that the vortex shedding frequency is linearly dependent on the freestream velocity, which follows a
similar trend to the correlation found in this research, showing a linear dependency with a gradient
of approximately 0.025. This means as freestream velocity increases, the tendency of a cylinder to
oscillate at a higher frequency increases. Using the Strouhal equation, it is found that the vortex
shedding frequency is inversely proportional to the diameter, which differs to what is found in this
research. This may occur due to the presence of lock-in phenomenon that is unpredictable using the
stationary cylinder vortex shedding Strouhal number [20]. As the diameter of the mast increases, the
aerodynamic forces become more dominant, meaning the oscillation amplitude will increase under
the same given structural stiffness. This means as the diameter increases, the VIV frequency will shift
closer to the resonance frequency, which is unforeseeable using the still cylinder vortex shedding
motion. From the research, it is found that generally the vortex shedding frequency will increase
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as the mast diameter increases. In addition to that, generally mass is inversely proportional to the
natural frequency of a system as seen in Equation 2| Therefore, the system will tend to vibrate at a
lower frequency, which corresponds to the decreased natural frequency in the increase of mass. This
finding is inline with the finding in the research, where when the model mass is increased, the VST
tends to oscillate at a lower frequency.

5. Conclusion

This research has demonstrated surrogate modeling of vortex shedding frequency resulting from
fluid-structure interaction in a vortex shedding turbine. In this study, experiments were conducted
in a closed-loop wind tunnel using a scaled-down vortex shedding turbine model, and surrogate
models were developed using linear regression, Gaussian Process Regression (GPR), and neural
network methods. The models exhibited accuracies ranging from 0.1770 to 0.2400 RMSE and 0.60
to 0.84 R-squared values on validation data. The results indicated that a robust linear regression
model could predict shedding frequency with the highest accuracy. Additionally, partial dependency
analysis showed that vortex shedding frequency resulting from fluid-structure interaction is directly
proportional to both freestream velocity and mast diameter, but inversely proportional to the model
mass. These findings can assist in the design process of vortex shedding turbines, which involve
complex fluid-structure interaction phenomena, by aiding in the determination of design parameters
for predicting shedding frequency.
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