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Abstract

This paper introduces a new computationally efficient tool to predict the postbuckling behavior of thin-walled
aircraft structures, particularly stiffened panels. Focusing on the critical transition where local buckling alters
load distribution but retains the structure’s load-carrying capacity, the proposed postbuckling analysis method
employs a semi-analytical Rayleigh-Ritz-based model and the perturbation approach. The assumed geometri-
cally compatible displacement field functions are based on hierarchical polynomials, which are able to enhance
the versatility and computational efficiency of the semi-analytical model, enabling its application across a wider
range of structural configurations and boundary conditions, whereas currently available perturbation-based
methodologies are limited to simple boundary conditions. The enhancement in computational efficiency, ad-
ditionally, provides substantial benefits to the design and optimization processes. The obtained results for the
linear case perfectly match the analytical values for buckling load. For the nonlinear case, results come in a
good agreement with literature.
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1. Introduction
Thin-walled aircraft structures are highly expected to experience instability as a dominant failure
mode [1]. A typical airframe is made of multiple elements which may undergo instability separately or
collectively, in what is known as local buckling or global buckling, respectively. The aircraft structures
are mainly stiffened plates reinforced by ribs and stiffeners. Stiffened plates are more likely to buckle
locally between ribs and stiffeners, but they will still be able to carry load after buckling [1]. When a
panel buckles locally, its local stiffness is reduced reflecting a reduction in the load carrying capacity
of the skin region, with load being distributed to the adjacent stiffeners. Many methodologies have
been developed in the literature to predict the behaviour of post-buckled stiffened panels. Grisham
[2] introduced a methodology to predict the postbuckling behaviour of metallic panels, in a method
based on prestrain loading instead of stiffness reduction of elements. The method required a detailed
mesh of different structural components, making it computationally expensive. A program called VI-
CONOPT [3] was first developed to design plate assemblies subject to buckling constraints. Then,
Anderson [4] extended the program to allow postbuckling below the design load. He accounted for
the reduction in stiffness by multiplying the initial stiffness by a factor of half. Collier and Yarrington
[5] modeled the reduction in the stiffness due to postbuckling using the effective width method and
disregarding the region that assumed to no longer carry load. As an example of the efforts done un-
der the supervision of the project POSICOSS is the simulation developed by Mocker and Reimerdes
[6], based on strip elements to reduce the number of degrees of freedom and consequently the com-
putational time. Trigonometric functions were used as a basis for the displacement field to describe
simply supported stiffened panels. The problem they reported, is the need of many terms to cap-
ture the postbuckling behavior, which in turn increases the computational cost. Moreover, the use of



Towards Efficient Analysis of Postbuckling in Aircraft Stiffened Structures

sine trigonometric functions to represent the out-of-plane deflections limited their work to simply sup-
ported panels. Different approaches of predicting the postbuckling behaviour based on metamodels
consisting of response surfaces have been developed [7, 8], but still limited by the design space and
specific load cases that were used to train the metamodels.
The present study proposes a new method for analyzing postbuckling, using a Rayleigh-Ritz-based
semi-analytical model and the perturbation approach. The distinctive feature of the proposed method
involves utilizing hierarchical polynomials instead of traditional trigonometric shape functions. This
development not only improves the flexibility of the model in handling various boundary conditions,
but also uses the recurrence nature of Legendre polynomials to derive closed-form integrals, thereby
reducing the dependence on numerical integration and significantly enhancing computational effi-
ciency. The proposed tool holds promise in providing a practical solution for predicting postbuckling
behavior in stiffened plates, making it adaptable to a broader range of structural configurations in the
realm of aircraft design and optimization.

1.1 Implementation

The formulation starts with assuming a displacement field that is capable of keeping the four edges
of the plate straight in the deformed state, as shown in Fig. 1:
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Figure 1 – Plate under applied edge strain only in the x direction
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Seresta et al. [9] employed trigonometric shape functions which limited their analysis to simply sup-
ported plates. Here, hierarchical Legendre polynomials are used, which are defined as:
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where Li represents Lobatto Polynomials and Hi represents the integral of the Lobatto Polynomials,
both expressed as follows:

Li+1(ξ ) =
∫

ζ

−1
Pi(ξ )dζ , i ⩾ 1

Hi+1(ζ ) =
∫

ζ

−1
Li(ζ )dζ , i ≥ 3

(3)

where Pi represents Legendre Polynomials.
The nonlinear strains are described assuming the von Kármán model in terms of mid-plane strains
and curvatures:
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then the total potential energy is evaluated:
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The recurrence nature of Legendre polynomials is used to find a closed form for the integrals instead
of using numerical integration which is supposed to increase the computational efficiency. The next
step is to minimize the total potential energy with respect to Ritz coefficients leading to the following
equilibrium equations:
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and the definitions of the tensors are given in the appendix.

Solving for the in-plane Ritz coeffecients from the first two equations, and then substituting in the third
equation, leads to the general non-linear equilibrium equation:[

Kil −λKg
il

]
ai +KNL

i jklaia jak = 0 (9)

where the definitions of the tensors are given in the appendix.

The nonlinear equilibrium equation depends on uniform strains and Ritz coefficients. These parame-
ters can be expanded into series using the perturbation approach.

ex0 = e(0)x0 + ε2e(2)x0 + · · · ey0 = e(0)y0 + ε2e(2)y0 + · · ·
gxy0 = g(0)xy0 + ε2g(2)xy0 + · · · ai = εa(1)i + ε3a(3)i + · · ·

(10)

Substituting eqn 10 back into non-linear equilibrium equation 9 then equating coefficients of different
powers of ε to zero, results in multiple equations. The equation corresponding to the power of ε,
gives the linear buckling eigen value problem from which critical buckling loads and modes can be
assessed. The coefficient of ε3 gives another equation that is used to calculate the second-order
perturpation coefficients of the average applied strains. The approximate postbuckling stiffness can
be determined by evaluating the ratios of the second-order perturpation coefficients of the in-plane
stress resultants to the average in-plane strains.
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2. Results
A simply supported laminate of [(0 90)4]s stacking sequence, and (a = 10in and b = 10in) dimensions
is studied. The material properties are given in table 1.

Table 1 – Ply properties

E11[psi] E22[psi] G12[psi] v tply[in]

18.5×106 1.6×106 0.832×106 0.35 0.005

2.1 Linear Buckling Analysis
The results of the linear buckling analysis is obtained by solving the linear eigenvalue problem:[

Kil −
(

Kgx
il e(0)x0 +Kgy

il e(0)y0 +Kgxy
il g(0)xy0

)]
a(1)i = 0 (11)

As a verification, the obtained results –for a panel under loading only in x-direction– were compared
to the analytical buckling value, with the error calculated as a percentage:

Error(%) =

∣∣Ncrnumerical −Ncranalytical
∣∣

Ncranalytical
∗100 (12)

The result shown in Fig. 2 shows that the error falls below 1 % after using 12 terms in the Ritz
expansion.

Figure 2 – Error percentage vs. No. of terms used in Ritz formulation

2.2 Nonlinear Analysis
In this part an estimate for the postbuckling stiffness is introduced. This is done by expanding the
average resultant forces using the perturbation approach [9] as follows:
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The postbuckling stiffnesses can then be estimated as the ratios between the second order perturbed
parameters of average resultant loads over average strains as follows:
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The average loads over the displaced edges in the postbuckling regime are calculated and will be
compared to the results from literature [9]. The following formula is used to evaluate the average
loads:

Nx =
1
b

∫ b

0
Nx(a,y)dy

Ny =
1
a

∫ a

0
Ny(x,b)dx

(15)

Table 2 – Results Comparison

Full Analysis Seresta et. al Current Method
Laminate
lay up

u0/v0 λcr λ f Nx Ny Nx Ny Nx Ny

[(0 90)4]S (1/0)×10−3 1.22 13.96 711.5 -294.5 767.6 -303.61 768.9 -384.3
[(0 90)4]s (1/1)×10−3 0.61 8.29 244.8 239.07 268.96 268.96 228.4 228.4

The results are reported in table 2 where a comparison is done between the current formulation,
the full nonlinear analysis and the results from [9]. Results are evaluated for two different loading
conditions where u0/v0 represents the type of strain applied at the edge, λcr represents the critical
multiplier for buckling, and λ f represents the full load multiplier at which the results are assessed.

It is clear that the error is higher for Ny which was noticed also in the work of [9]. They reported
an error that can reach up to 100% in some cases especially when u0 is larger than v0 as in the
first loading condition. It was explained in [9] that the relatively large errors in Ny is not crucial for
the design process as it can be considered as a secondary loading direction. In cases where u0 is
comparable to v0, the error goes very low as in the second loading condition in which the error does
not exceed 7%.

3. Conclusion and Future Work
This study presents a computationally efficient postbuckling analysis method for thin-walled aircraft
structures using a semi-analytical Rayleigh-Ritz-based model and perturbation approach. By utiliz-
ing hierarchical polynomials, our method avoids numerical integration and handles a wider range of
boundary conditions compared to similar methods in literature.
Our results, both linear and nonlinear, align well with established literature, confirming the accuracy
and reliability of the proposed method. This validation highlights the method’s potential for practical
application in aerospace design and optimization.

For future work, we suggest extending the analysis to a wider variety of cases, including different
dimensions, stacking sequences, boundary conditions, and loading conditions. This would further
demonstrate the robustness and applicability of our method across diverse scenarios, enhancing its
utility in practical aerospace design and optimization.
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Appendix (Tensors Definitions)
Tensors in equation 9 are expanded as follows:

Kg
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[
Kwba

lip Kwca
lip

]
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{
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The full tensors definitions are defined here. Starting by first order tensors:
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Fourth order tensor:
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