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Abstract

Robotics is a constantly evolving field that benefits from the use of tools powerful tools for robot development
and simulation. Two of these tools, widely used ROS (Robot Operating System) and CoppeliaSim (formerly
known as V-REP). ROS is an open-source framework widely used in the robotics community. On the other
hand, CoppeliaSim is a simulation platform for powerful and versatile 3D robots. In this paper, we distributed
an F16 simulation using ROS to create tasks, combining flight visualization by Flight Gear and collision analysis
of a robotic flight simulator using CoppeliaSim.
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1. Introduction

Distributed simulation in aircraft refers to the utilization of interconnected, networked simulations to
replicate the behavior, functionalities, and interactions of various aviation systems. This approach al-
lows for comprehensive testing and analysis of aircraft technologies, flight procedures, and scenarios
in a collaborative virtual environment.

The implementation of distributed simulation involves linking simulators or computational models of
different aircraft components, such as flight controls, interceptors, engines, and environmental sys-
tems, into a cohesive network. These simulations communicate in real-time, exchanging data and
responses to mimic the complexities of actual flight conditions.

One of the primary advantages of distributed simulation in aircraft is its ability to facilitate cost-effective
and comprehensive scenarios. Pilots, maintenance personnel, and other aviation professionals can
engage in simulated flight operations, emergency procedures, or system malfunctions without requir-
ing access to a physical aircraft.

Moreover, distributed simulation enhances the evaluation and validation of new technologies or mod-
ifications to existing systems. Engineers and researchers can conduct thorough tests on software
upgrades, system integration, or aircraft designs within a controlled virtual environment before imple-
menting them in actual aircraft. This helps in identifying potential issues, ensuring safety, and refining
the performance of aviation systems before deployment.

However, distributed simulation in aircraft also presents challenges. Achieving synchronization among
distributed simulations, ensuring real-time data exchange, and maintaining consistency across inter-
connected models are crucial technical hurdles. Additionally, cybersecurity concerns, data integrity,
and network reliability must be addressed to guarantee the accuracy and security of simulated envi-
ronments.

2. Literature Review

Flight simulators are sophisticated training tools designed to replicate the experience of flying an
aircraft in a safe and controlled environment. These simulations have evolved significantly since their
inception, offering an immersive experience that closely real-world flight conditions [1].

Flight simulators serve multiple purposes, primarily for pilot training and aircraft development. They
provide a cost-effective and risk-free environment for pilots to learn and practice various maneuvers,
emergency procedures, and instrument operations [2].
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Moreover, the paper[2] reflects the advancements in the foundational technologies of flight simula-
tion, ranging from mathematical modeling to real-time computation, motion actuation, visual image
generation systems, and projection systems.

A collaboration between ITA and EMBRAER has given rise to the SIVOR project (Robotic Flight
Simulator), aimed at exploring the feasibility and boundaries of employing anthropomorphic robots as
motion systems for flight simulators. This innovative simulator features a high-fidelity cockpit equipped
with an integrated vision system. Central to its design is a 6 degree-of-freedom robot mounted on a
rail, effectively serving as a seventh axis for the robot’s motion [3]. ‘Figure 1’ illustrates SIVOR.
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Figure 1 — SIVOR from [3].

2.1 Model Background
2.1.1 Aircraft Model

In this paper, we use a linearized model of the F16 aircraft. From [4], the state-space is described by
the ‘Equation 1.

X =AX +BU

(1)

Y=CX+DU.
where A € R1>*15 is the state matrix; B € R'>** is the input matrix; C € R?®*!5 is the output matrix;
D € R?*4 is the direct transition (or feedthrough) matrix; X € R!>*! is the states; U € R**! is the
control inputs and Y € R?*! is the output variable.
The transposed X vector contains the following variables: X' = [uwv pgrxyh ¢ 6 w power lat lon|,
where u is the x-axis component of body velocity; w is the y-axis component of body velocity; v is
the z-axis component of body velocity; p is the roll rate; g is the pitch rate; r is the yaw rate; x is the
position in x-axis; y is the position in y-axis; 4 is the altitude; ¢, 6 and y are the Euler angles; power
is the engine power; lat is the latitude; lon is the longitude.
The transposed U vector contains the following variables: U’ = [§; &, 8, 6,], where §; is the throttle; &,
is the elevator deflection; §, is the aileron deflection; J, is the rudder deflection.
The transposed y vector contains the following variables:
Yy =[VaBCXCYCZCICmCnCDCSCLT cpower power nc;,np, @ 0 hxy 2], where V is the aircraft's
body velocity; o is the angle of attack; f is the sideslip angle; CX, CY, CZ, CI, Cm, Cn, CD, CS and
CL are the aerodynamic coefficients; T is the thrust; cpower is the commanded throttle; power is the
power; nc, € R3*! is the load factor at the aircraft center of gravity; np;, € R¥*! is the load factor at the
pilot’s position; ¢ is the angular velocity about x-axis; 6 is the angular velocity about y-axis; v is the
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angular velocity about z-axis; / is the oposite of z; x is the linear velocity about x-axis; y is the linear
velocity about y-axis; z is the linear velocity about z-axis.

All of the conditions used during the equilibrium calcularion are already displayed in the trimmed flight
parametersﬂ, as well as the space-state matrice: A, B, C and D.

2.1.2 Washout Filter Model

The washouit filter, often referred to as the motion cueing algorithm, serves to translate the expansive
movement range of an aircraft into the confined space of a flight simulator[1]. Typically, it takes inputs
such as linear accelerations and angular velocities of the aircraft, producing position and rotation
commands for the motion platform.

The traditional washout filter operates through three channels, aiming to prevent movement com-
mands from surpassing the physical constraints of the platform[3]. In ‘Figure 2’, the translational
channel consists of high-pass filters, designed to capture high-frequency maneuvers across the
three axes of the aircraft. Likewise, the rotation channel incorporates high-pass filters to depict high-
frequency rotations along the three axes of the plane.

Meanwhile, the tilt coordination channel aims to emulate sustained acceleration maneuvers along
the lateral and longitudinal axes of the airplane. Attempting to replicate low-frequency accelerations
could lead the platform to surpass its operational limits too easily. The entire SIVOR washout model
is in [5].

Airplane linear Translational channel Simulator linear

acceleration . ] displacements
High-pass filter — ————

Tilt-coordinational channel

Low-pass filter
Airplane angular Rotational channel ‘ Simulator angular

velocity _ ! displacements
— High-pass filter — ——

Figure 2 — Classical washouit filter from [1].

2.1.3 KR-Titan Robot Model

In [6], the authors propose an alternative method for discerning the dynamics of industrial robotic
systems, treating them as closed-loop Position IN/Position OUT systems. They focus on the external
dynamics of a conventional 7-degrees-of-freedom (7-DoF) serial manipulator alongside its real-time
positional controller.

The identified model illustrates how an external client application interacts with the internal control
loop. The experiment detailing the identification process and the resulting dynamics are discussed.
Its application is particularly relevant in the context of robotic flight simulators and sensor-integrated
industrial robotic systems.

2.1.4 Coppellia Model

The CoppeliaSim model encompasses collision assessments between the cockpit and the robot arm,
irrespective of the pilot's commands, ensuring a comprehensive evaluation of simulated actions. Sub-
sequently, with physical SIVOR we can realize research encompassing the development of novel
technologies and the analysis of human factors. In ‘Figure 4’, we have a front and side view of the
model in CoppeliaSim model.

"https://drive.google.com/file/d/1cN8V4D2-QobNFCeRAUGH5VD23WZEh8Xa/view ?usp=sharing
2https://drive.google.com/file/d/1cN8V4D2-QobNFCeRAUGH5VD23WZEh8Xa/view?usp=sharing
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Figure 3 — KR-Titan from [5].

3. Methodology

Given these challenges, this paper aims to address them by utilizing ROS[7], which stands for Robot
Operating System, as the primary connectivity tool to establish a distributed simulation of aircraft,
focusing on its flight dynamics.

ROS is an open-source framework designed to simplify the development of robotics software. Despite
its name, ROS is not an operating system in the traditional sense; rather, it serves as a middleware
that provides a structured environment for various robotic applications and functions.

At its core, ROS offers a collection of tools, libraries, and conventions aimed at assisting developers
in building complex and modular robotic systems. It provides a framework that facilitates communica-
tion between different components of a robot’s software architecture, enabling seamless interaction
between sensors, actuators, controllers, and higher-level algorithms.

One of the key strengths of ROS is its emphasis on modularity and reusability. It utilizes a decen-
tralized architecture, allowing developers to create individual software modules known as "nodes."
These nodes can perform specific tasks, such as processing sensor data, controlling actuators, or
implementing algorithms, and communicate with each other through a publish-subscribe messaging
system.

ROS provides a set of communication protocols that enable nodes to share data, such as sensor
readings or control commands, using topics, services, and actions. Topics facilitate asynchronous
communication by allowing nodes to publish and subscribe to messages, while services enable syn-
chronous communication for requesting specific tasks from other nodes. Actions offer a way to exe-
cute long-running tasks with feedback.

Another notable aspect of ROS is its extensive library of packages, tools, and resources contributed
by a large community of developers. These packages cover various functionalities, including mapping
and localization, path planning, manipulation, perception, and simulation. This rich ecosystem allows
developers to leverage existing solutions and integrate them into their robotics projects, accelerating
development and fostering collaboration within the robotics community. ROS is platform-independent
and supports multiple programming languages, primarily C++ and Python, making it accessible to a
broad range of developers.

Furthermore, it provides simulation capabilities through tools like Gazebo, enabling developers to
test and validate their algorithms and applications in simulated environments before deploying them
into physical robots[8]. Overall, ROS has become an achievement in the field of robotics, empow-
ering researchers, hobbyists, and industry professionals to create sophisticated robotic systems by
providing a flexible, modular, and collaborative framework for developing robotics software. lts con-
tinued development and widespread adoption contribute significantly to the advancement of robotics
technology.
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Figure 4 — CoppeliaSim model from [2].

In this paper, we propose that the researchers working on autonomous flight or advanced flight control
algorithms can leverage ROS to develop and test these systems in simulated environments. By in-
terfacing with ROS-nodes representing flight controllers, autopilot systems, or autonomous decision-
making algorithms, developers can validate these systems before deploying them to actual aircraft.

4. Proposed Architecture

A significant aspect highlighted in our paper is the development of an architecture utilizing ROS.
This architecture facilitates the testing of various maneuvers on an aircraft, enabling the validation
of simulation movements within a robotic flight simulator built in CoppeliaSim software. Emphasiz-
ing the importance of this validation process, it serves as the initial stage before implementing any
maneuvers within the SIVOR physical simulator at Aeronautics Institute of Technology(ITA).

In our paper, we replicated the dynamics of an aircraft, the F16 model, distributing both input and out-
put of the model through ROS. Initial tests demonstrated the feasibility of integrating diverse operating
systems(OS) and software, creating an interconnected system capable of executing the simulation.
To enhance comprehension of the proposed architecture, a visual representation was crafted in ‘Fig-
ure 5.

The diagram illustrates the simulation architecture incorporating two distinct operating systems. We
utilized ROS1, establishing topics to manage the inputs and outputs associated with the F16 model.
We opted for the Linux operating system as our master platform due to its comprehensive access to
all ROS tools, in the diagram this is represented by the black arrow.

On Windows OS, we utilize Simulink, accessing the ROS plugin solely through MATLAB. It is worth
noting that the computers are using the same local network. We use publisher and subscriber to
transfer data between the created topics, in the diagram this is represented by the red arrow. Our
proposal involves a four computer.

The first computer(PC1) manages the input, emphasizing the initial computer significance, it serves
as the focal point for the human-machine interface (HMI). However, first computer(PC1) contains the
dynamics model and the LQR controller.

The second computer(PC2) contains the washout filter and identified model of the KR-Titan robot.
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Figure 5 — Simulation architecture.

The third computer(PC3) contains the SIVOR model in CoppeliaSim and FlightGear visualization.
Lastly, the fourth computer(PC4) contains ROS master.

The rgt serves as a software framework within ROS, embodying a range of GUI tools through plugins.
It allows users to execute all available GUI tools as dockable windows within its interface.

In ‘Figure 6’, the ROS rqt graph for the simulation depicts nodes within the system and the topics
facilitating their communication. Nodes are represented by ovals, while rectangles represent ROS
topics. Arrows indicate the direction of data flow, indicating whether a node is publishing to or sub-

scribing from a topic.

/Simulink_dynamics_9755

[matiab_global_node_25693
/matiab_global_node_96987

Figure 6 — ROS rqt graph.

According to ‘Figure 6’, the system has 17 topics; 14 were created by us; the other 3 are standard
ROS masters; they are /statistics, /rosout and /rosout_agg. As for nodes, we have 8, 6 were created
by us; 1 of which is created by default by ROS (/rosout) and 1 is the rat tool.
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5. Results

For the results section, we simulate two cases: a flight without a collision in the CoppeliaSim model
and a flight with a collision in the CoppeliaSim model. It is important to remember that in a distributed
simulation, we have different frequencies in different systems. In our case, we have the F16 frequency
and the washout frequency with the KR-Titan model. We choose % s for F16 dynamics and 0.012s
for washout filter.

There is a way to get the operating freqency (Hz) of nodes, we use the rqgt plot and tick the topics
to see the message rate in real-time. In ‘Figure 7’, we can see the diferents rates. Topics /A123
and /A456 correspond to the angles leaving the node, which correspond to the washout filter and
KR-Titan model, their frequencies are the same as the robot model. These angles will be used to
move the robotic joints of the CoppeliaSim model.

Stillin ‘Figure 7°, only topic with the same frequency of the F16 dynamics is the /control. The /control
topic corresponds to the input of the control surfaces by the joystick. The remaining topics were set
at a rate of 10 Hz, which can be seen in ‘Figure 7.

Topic Type Bandwidth Hz Value
» ¥ Jcontrol geometry_msgs/Quaternion 952.94B/s 30.36
» ¥ /PQR geometry_msgs/Point 240.64B/s 10.00
r vl fvel geometry_msgs/Point 240.62B/s 10.00
v v frates geometry_msgs/Quaternion 320.79B/s 10.00
» ¥ fvelang geometry_msgs/Point 240.58B/s 10.00
» vl faccelG geometry_msgs/Point 240.56B/s 10.00
» vl fangles geometry_msgs/Point 240.54B/s 10.00
+ v feulerangles geometry_msgs/Point 240.53B/s 10.00
+ ¥ /geographic geometry_msgs/Point 240.51B/s 10.00
» v| fangle geometry_msgs/Point 240.49B/s 10.00
v [v| /position geometry_msgs/Point 240.47B/s 10.00
+ |v| factuators  geometry_msgs/Quaternion 320.59B/s 10.01
» v /A456 geometry_msgs/Point 2.00KB/s 83.51
v v JA123 geometry_msgs/Point 2.00KB/s 83.51

Figure 7 — Topics rates.

5.1 Case 1- Without Collision

In the first case, we perform a pitching movement. According to ‘Figure 8’, the black line represents
the G-acceleration in the x-direction, the blue line represents the G-acceleration in the y-direction,
and the green line represents the G-acceleration in the z-direction. Here the term G-acceleration is
used for load factors.
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Figure 8 — F16 G-acceleration, without collision.
Still in ‘Figure 8’ where ‘Z’ indicates the same direction of gravity. We can observe, through the

oscillation of the graph, the movement of pitch up and pitch down. With a maximum value of almost
2G.
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In ‘Figure 9’, the black line represents the angular velocity associated with roll, the blue line repre-
sents the angular velocity associated with pitch, and the green line represents the angular velocity
associated with yaw.

As expected, we see oscillations mainly in pitch, since we only performed a pitching maneuver. For a
better visualization, we made a videoﬁ of PC3, in which we compared the pilot’s view through Flight
Gear and the robot simulation with CoppeliaSim.
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Figure 9 — F16 angular velocity, without collision.

5.2 Case 2- With Collision

In the second case, we perform again a pitching movement. According to ‘Figure 10°, the black
line represents the G-acceleration in the x-direction, the blue line represents the G-acceleration in
the y-direction, and the green line represents the G-acceleration in the z-direction. As previously
discussed, the term G-acceleration is used for load factors
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Figure 10 — F16 G-acceleration, with collision.

Still in ‘Figure 10’ where ‘Z’ indicates the same direction of gravity. As we wanted to demonstrate

Shttps://drive.google.com/file/d/1VMLU2vK4SWPgXp1V_QualQRtfWrsNZPm/view?usp=sharing
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a robot collision, we increased the load factor, through the movement of pitch up and pitch down,
represented by the green line.

Again, in ‘Figure 11’, the black line represents the angular velocity associated with roll, the blue line
represents the angular velocity associated with pitch, and the green line represents the angular ve-
locity associated with yaw. As expected, we see oscillations mainly in pitch, since we only performed
a pitching maneuver

However, we performed a collision and exited the flight envelope. In video|7_f], we can notice that when
a collision occurs, the cockpit turns red in CoppeliaSim.
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Figure 11 — F16 angular velocity, with collision.

6. Conclusion

We concluded that the use of ROS in the robotic flight simulator proved to be satisfactory, since
we were able to reach the different frequencies of both the aircraft model and the robot model. Its
flexibility, modularity, and integration capabilities make ROS a powerful tool for advancing the state-
of-the-art in simulation, can aid research and development in the aviation industry.
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