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Abstract

This work focuses on utilizing a supervised surrogate Kriging model, which employs data input from objective
metrics derived from heart rate variability sensors to predict workload levels. These signals are collected
during simulated flight tasks, with workload levels classified according to the complexity of these tasks. An
experimental low-fidelity flight simulator was developed specifically for this study, involving 20 participants from
a bachelor’s degree program in aerospace engineering. This study represents an application of Kriging for
stress assessment in simulated flight environments. The model’s performance indicates room for improvement,
suggesting the need to expand the participant group for robust validation and broader applicability in future
studies.
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1. Introduction
The human factor (HF) generally refers to incidents resulting from the failure to execute actions pre-
scribed by documentation [1]. Over the years, various idealized models of HF have been developed
to enhance the understanding of this phenomenon. As reported in [2], contemporary aviation ac-
cidents are attributed to HF by approximately 70-80%. Within the HF domain, excessive workload
(WL) in the aviation industry poses a significant contemporary challenge. With increasing air traf-
fic, the need to cover more routes, and a limited number of human resources, pilots frequently find
themselves in stressful situations. Over the years, stress assessment methods have been developed
and categorized into subjective and objective approaches. Subjective tests represent a subjective
method of stress based on questionnaires, typically administered before, during, and after perfor-
mance. Common methods include the NASA Task Load Index (TLX) [3]. These subjective methods
can be complemented by objective metrics capable of measuring the subject’s physiological con-
dition. While the subject’s psychological condition may influence objective metrics, their value is
independent of the subject’s will, in contrast to subjective techniques. Various objective metrics are
employed in stress evaluation, including eye blink rate (e.g. [4] and [5]), respiration rate (e.g. [6] and
[7]) and heart rate variability (HRV) (e.g. [8] and [9]) which is the most widely used one. HRV cap-
tures spontaneous fluctuations over time between consecutive heartbeats, measured by the distance
between two successive ’RR’ peaks on an electrocardiogram. HRV measures in the time domain
include the standard deviation of NN interval series (SDNN) [10], as well as nonlinear indexes de-
rived from the Poincaré Plot, such as SD1 and SD2 [11]. According to existing literature, a reduction
in these parameters indicates an increase in both cognitive and physical demands [12]. HRV also
extends to the frequency domain, employing the Fourier transform to estimate power spectral den-
sity associated with frequency bands. These frequency bands provide meaningful information about
sympathetic and parasympathetic activities. Furthermore, the HRV-related parameter, Total Power,
reflects the total variance of heart rate and requires the analysis of various components at very low,
low, and high frequencies of cardiac variability [13].



METAMODELLING OF THE WORKLOAD ASSESSMENT

Thus, in this work, the focus will be on objective metrics obtained using sensors in an in-house
Low Fidelity Flight Simulator (LFFS). Additionally, by employing the supervised surrogate Kriging
model provided by [14], a pilot study of the workload assessment has been conducted, classifying
the workload level between two different levels based on the complexity of the task. Understanding
and mitigating the HF and excessive WL plays a crucial role in enhancing safety and performance.
In addition, the use of multidimensional approaches based on artificial intelligence (AI) promises a
deeper understanding of these phenomena.

2. Kriging Surrogate Model
AI encompasses various subcategories, with Machine Learning (ML) being the prominent one. In
particular, Supervised Learning (SL) algorithms are fed with inputs and outputs, also known as labels,
making SL an accessible and powerful tool for data prediction. Indeed, ML represents a path towards
achieving AI [15], which is expected to create an economic value of $13 trillion worldwide by 2030
[16].
In this work emphasis will be placed on a specific surrogate model known as Kriging. In general,
Kriging is a technique for creating prevision models based on datasets, and it was pioneered by the
South African engineer Danie Krige for use in geostatistics [17]. Various works related to Kriging can
be found in the literature, focusing on topics such as multi-fidelity strategies for engineering design
optimization [18], and the use of Kriging in constructing multi-fidelity aerodynamic models [19].
In addition, [20] describes the development and application of an active extremum Kriging-based
multi-level linkage method for dynamic multi-component system reliability analysis.
Kriging has also been applied in the medical field. Further literature research reveals several notable
works, including [21] which employs Kriging for mapping disease rates, and [22] which introduces a
multi-objective optimization method for coronary stents using the aforementioned surrogate model.
Over time, Kriging algorithms have been adapted for both nondeterministic and deterministic sim-
ulation models. In the former case, only a limited number of random samples are available from
nondeterministic simulations or physical experiments under uncertainty [23]. Conversely, determinis-
tic models are characterized by input and output data [24], each capable of providing varying levels
of accuracy. The Kriging method assumes predictions are weighted linear combinations of observed
values, with closer input data indicating a higher positive correlation in prediction error [25].
From an analytical point of view, the Kriging is composed of a regression f (x) and a Gaussian process
Z(x) with zero mean, variance σ2, and correlation matrix.
Therefore,

Y (x) = f (x)+Z(x) (1)

Where Y (x) is a random function and x is the sample under consideration.
There are different facets of the Kriging method. In particular, when the f (x) is constant and known,
it is called Simple Kriging. When the correlation function is constant but not known, it is called
Ordinary Kriging. In the most general case, if the function is a multivariate polynomial, then it is
called Universal Kriging. Nevertheless, for a comprehensive mathematical treatment of the problem,
refer to [26] and [27]. As observed above, the Kriging model has been employed across various
fields, from engineering to medicine. This study marks the first instance of utilizing such a model for
stress prediction purposes. Hence, the Kriging model has been selected for its predictive capabilities
based on dataset analysis. Inputs for the model include HRV values, while the output considered is
the WL level, as elaborated further in subsequent sections.

3. Experimental Setup
Evaluating the psychosomatic state of pilots is challenging, especially in real critical flight situations
such as takeoff, landing, or emergencies [28]. For this reason, flight simulators can be employed,
offering valuable opportunities including training [29] and stress assessment [30]. These simula-
tors can range from basic low-fidelity flight simulators (LFFS) to more advanced and technologically
sophisticated FFS [31]. The utilization of FFS, while extremely reliable [30], may pose significant lim-
itations including purchase, maintenance, and operational costs [32]. In this research study, a LFFS
was employed with the primary aim of engaging a broader population. As a matter of fact, FFS are
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typically restricted to professional pilots. Furthermore, an examination of the existing literature has
unveiled several studies centered on LFFSs, for instance [33], [34], [35], [36], which underline that
LFFS represent a good tool for verifying WL status. Thus, this research work is based on the LFFS
developed at Kore University of Enna. In this study, the LFFS design is based on the three equilib-
rium equations of motion, together with the navigation equations. These equations are based on four
reference systems, namely: Ground Earth Frame, Moving Earth Frame, Body Reference System,
and Wind Frame. To formulate the mathematical model, it is assumed that the thrust (T) lies along
the XBODY axis and is modeled as an ideal constant thrust system, unaffected by airspeed and only
influenced by air density variation with altitude. Fuel consumption depends on a constant specific
consumption (C) and thrust intensity. The Earth is considered flat, and the air is assumed to be
calm. Under these assumptions, these equations were then executed in Matlab/Simulink along with
the International Standard Atmosphere model (to compute air density variation with altitude) and a
simplified aerodynamic model.
Thus, the setup is divided into software and hardware components. From a software perspective,
three interface subsystems were employed: pilot, instrumentation, and virtual reality subsystems.
The pilot subsystem implements the software interface with the pilot’s commands, namely the joy-
stick that controls throttle, pitch, and bank. As the mathematical model does not account for rota-
tional dynamics, some transfer functions are introduced between the joystick input signals and the
model equations to create the illusion of flight. These transfer functions have been calibrated using
characteristic time responses from the FFS of the Kore University of Enna. The instrumentation sub-
system connects the simulated flight variables with basic cockpit indicators; namely, the anemometer,
the altitude indicator, the attitude indicator, the turn coordinator, the vertical speed indicator and the
magnetic compass. In addition to these, the subsystem includes a clock and a ’master caution-like’
push button that is used during the HF exercise, as described in the following section. Finally, the
VR subsystem connects the variables computed during the flight simulation to the virtual reality en-
vironment. In this case, the VR environment is represented by the open-source software FlightGear,
which visualizes the flying scenario and serves as the simulator’s visual system. On the other side,
the hardware part consists of the Joystick (Model T.Flight Stick X), which can generate four input sig-
nals corresponding to variations in throttle and pitch, roll, and yaw angles. Additionally, two monitors
have been installed. The Polar H10 sensor was also used to assess HRV while the student performed
the exercise. During the baseline phase, the student wore the HF sensor and received instructions
on basic commands and instrumentation usage during a briefing session. This briefing session was
considered a resting phase to establish participants’ baseline physiological signals. Afterward, the
student was asked to perform two distinct exercises with increasing levels of WL, particularly:

• TASK 1: Push-Button Exercise (Lower WL level): starting already at 3000 [ft] with a Mach
number of 0.5, the simulation begins in a trimmed state. The subject presses the button as soon
as possible, as the ’master-caution-like’ warning activates. The exercise lasts for six minutes,
and at the end, the student must complete a questionnaire on the subjective perception of WL
(more details on the questionnaire are given in the following section).

• TASK 2: Holding Circuit Exercise (Higher WL level): the simulation starts in balanced flight con-
ditions at an altitude of 3000 [ft] with a Mach number of 0.5. The student is asked to "press the
button" as soon as possible when the ’Master-Caution-like’ warning light turns on. Additionally,
after one minute of level flight, the subject should execute a standard right turn for one minute,
followed by one minute of level flight; then, a second standard right turn is executed for one
minute, concluding the exercise in level flight. During the maneuvers, the altitude should be
maintained constant and equal to the trim altitude. The exercise lasts for six minutes. Finally,
the student completed a questionnaire to evaluate subjective WL.

Figure 1 illustrates the test configuration. The display featuring the simulated VR scenario is outlined
in blue, the basic instrument panel in green, and the joystick, along with other simulation controls like
the throttle, push button, marker, and the label displaying the current local time, are all delineated in
red. Figure 2 represents the briefing scheme designed to clarify the exercise for students involved in
the experiment.
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At the end of the session, three sets of data will be collected: i) subjective WL assessment; ii)
physiological signals, enabling an objective evaluation of WL; iii) flight data, providing insights into
piloting performance. Specifically, flight data comprises recorded signals, which enable a step-by-
step visualization of piloting performance, and performance indices calculated from simulated FDR
data, providing an overall quantification of the entire exercise in terms of an error function relative to
the required task. Further details regarding the computation of the performance index and the data
recorded are provided in the subsequent sections.

Figure 1 – Low-Fidelity Flight Simulators (LFFS). Figure 2 – Task 2 briefing
scheme.

3.1 Subjective Test Assessment
As previously mentioned, following the task performed, students were provided with a questionnaire
to evaluate their WL after completing the mission. This test was created with the NASA-TLX as
a reference point and compiled on a dedicated Google Forms platform. The test begins with the
participant’s demographic data, including: student ID, age, weight, height, smoking status, years of
pilot experience, and whether the participant is familiar with WL assessment or situational awareness
questionnaires. Subsequently, participants are asked to compare their usual work activity with the
scenario of the exercise performed based on their work experience. Following this, they are prompted
to evaluate each individual point on a scale ranging from ’extremely low,’ ’low,’ ’average,’ ’high,’ to
’extremely high.’ A total of six questions were asked to assess the participants’ experience throughout
the simulation, with the aim of evaluating different characteristics of WL. Figure 3 shows an overview
of the subjective questionnaire.

Figure 3 – Subjective form with workload items.
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4. Results
This section presents the results of the workload evaluation. First, the results in terms of subjective
evaluation are presented, followed by the performance indices and their results, which are presented
and commented on. Finally, the results section describes the HRV indexes, focusing on the super-
vised surrogate Kriging model.

4.1 Results based on Subjective assessment
The data sample was obtained from a group of 20 students from a bachelor’s degree course in
aerospace engineering. The population details can be found in Table 1, and the density plots of the
sample are presented in Figure 4.

Mean Median Standard Deviation Min Max
Age 21.1 21.0 1.36 19 24

Weight 80.6 79 14.7 60 115
Height 179 178 6.63 170 194

Table 1 – Statistical characteristics of the participants.

Figure 4 – Density of population characteristics distribution.

As described in section 3.1, the participants were asked to complete a questionnaire on their per-
ceived workload at the end of each task. The results are collected and presented in Figure 4. The
Likert scale was converted to a scale from 0 to 5 (extremely low = 0 and extremely high = 5). An
exception to this was made for the item relating to performance, which was presented as a reverse
item. The obtained value represents, for each participant, the average of the 6 questionnaire items.

Figure 5 – Subjective perception of workload level for Task 1 (blu) and Task 2 (dashed bleak).
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As illustrated in Figure 4, for the majority of participants, the blue bars (representing task 1) are lower
than the black bars (representing task 2). This trend suggests that Task 1 is generally perceived as
less complicated than Task 2. An exception is seen with student No. 12, who finds Task 1 slightly
more complicated than Task 2, as indicated by the blue bar being marginally higher. Thus, to confirm
what was hypothesized in terms of WL levels, the subjective results reveal that participants consider
Task 2 more complicated than Task 1.

4.2 Results based on Performance indexes
Two performance indexes are introduced to investigate the pilot’s ability to carry out the assigned
tasks. The first one refers to task 1 regarding the master caution-like pushbutton exercise and is
defined as described in what follows. Figure 6 shows (in black) the time history of the master caution
warning that is triggered every 30 seconds and remains turned on for 7.5 seconds, let say it is called
y(t); on the other hand, the blue curve, z(t), shows a representative push-button response to turn off
the warning light. The performance index for such exercise is defined as

Ipb =

∫ T
o z(t)dt∫ T
o y(t)dt

(2)

being T = 360 s the simulation time. The index Ipb ∈ [0,1] and the best is ideally obtained at zero,
representing the pilots’ full awareness of the warning signal as well as his/her good reaction time.

Figure 6 – Example of pushbutton exercise signals.

The second performance index is instead used to have a measure of the standard turn exercise Ist .
As described before, also during exercise two, the students are asked to turn off the master caution-
like warning; thus, the pushbutton index Ipb is considered as well. In addition, two more metrics are
introduced: one, Itr, refers to the desired turn rate signal to be tracked by the student, while the other,
Ialt , refers to constant altitude to be maintained during the exercise. More particularly, the turn rate
metric Itr is defined as the ratio of the integral absolute error between performed y1(t) and expected
y2(t) turn rate, see Figure 7 and the integral of the absolute value of the expected turn rate as

Itr =
∫ T

o |y1 (t)− y2 (t)|dt∫ T
o |y2 (t)|dt

(3)

while the constant altitude metric is defined as

Ialt =

∫ T
o |y3 (t)− y4 (t)|dt∫ T

o |y4(t)|dt
(4)

being y3(t) the actual aircraft altitude and y4(t) the expected altitude, similar performance indexes
were used by Alaimo et al. in [37]. Then, the exercise performance index is obtained by averaging
the three metrics as
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Ist =
Ipb + Itr + Ialt

3
(5)

also in this case, the best performance is obtained when the index Ist tends to zero. Representative
results of performed exercises are given in Figure 7 where the time histories of turn rate and altitude
and the path followed by the aircraft center of mass can be appreciated.

Figure 7 – Example of flight data derived from simulated FDR.

Last, the exercise performance indexes computed for all the students are reported in Figure 8. It can
be appreciated that for 17 out of 20 students, the second exercise has been more difficult to perform,
confirming that a higher level of difficulty with respect to the first one characterizes it. Thus, it is
expected that a higher level of WL is required of students.

Figure 8 – Performance indexes for Task 1 (blu) and Task 2 (dashed bleak).
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4.3 Results based on HRV
Various indices can be derived from the HRV signal for workload assessment. In this study, three spe-
cific indices have been chosen. These selected HRV indexes encompass SDNN, LF , and TOTPow.
The motivation behind selecting these indices is based on their confirmed validity in workload in-
terpretation, as evidenced by Alaimo et.al in [38]. Similarly, the authors substantiate the utility of
employing these HRV indices to effectively approximate the workload tendencies of pilots in Full
Flight Simulator sessions across several flight phases.
Table 2 presents the sample’s descriptive characteristics for each index for completeness. More in
detail, Table 2 reports the mean value and the median for the two Task. The classification of the WL
level lower (Task 1) and higher (Task 2) has been performed based on the complexity of the task.
Moreover, Figure 9 shows the boxplot for the two exercises (Task 1 and Task 2) to prove the effec-
tiveness of the three indexes on the sample. It is essential to recognize that the data pertains to a
sample comprising all 20 subjects. By boxplots, it is practical to note the uniform tendency of the
three indexes that present a decreasing trend correlated to the assumed increase in WL level. The
boxplots also present some outliers; more specifically, two students are outliers among the three
indexes. Thus, their data are excluded from the subsequent Kriging surrogate model.

TASK SDNN HRVT I LF TOTpow SD2
Mean 1 39.4 10 998 1629 84.5

2 37.9 9.39 854 1243 73.2
Median 1 40.6 9.52 934 1472 78.7

2 37.4 9.21 648 1113 72.8

Table 2 – Descriptive sample characteristics in terms of mean value and standard deviation.

Figure 9 – Boxplot of HRV indexes over the WL level.

4.4 Results by Kriging Surrogate Model based on HRV
The main objective of the present work is to test the Kriging approach in the assessment of WL levels.
To achieve this, the 18 remaining participants are divided into two sub-groups: a main group of 17
students used to define the metamodel and a secondary group consisting of one student to predict
the value of the tester subject subsequently. In the results that follow, the main group is referred to as
the "Predictive Group" (PG), while the secondary one is referred to as the "Tester Subject" (TS).
This approach involved selecting participants through windowing the tester subject in the adjacent
row data position. For instance, the first tester subject TS {1} was the attendee 1, and the PG
{2− 18} represented students ID 2 to 18. For the second tester TS {2} and PG {1}∪{3− 18} was
used to form a PG group of 17 subjects, and this pattern continued sequentially.
Considering the 18 testers (TS), a predictive metamodel was tested for each index . Specifically, Ta-
ble 3 summarizes the success rate results of metamodels across all 18 testers for the three indexes.
All models were evaluated at two different task levels, and Table 3 indicates a value of 1 when the
metamodel successfully captures an increase in WL from low to high levels (Task 2 > Task 1). Fur-
thermore, the final row, labeled ’Positive Success Rate,’ indicates a green marker for the respective
TS when at least two out of three indexes exhibit positive activation. The overall analysis of the results
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shows that the metamodels can capture an increase in WL from low to high levels (Task 2 > Task 1)
in 56% of cases. Some discrepancy occurs within the indexes with a success rate for LF an TOTpow

equal to 61% and SDNN of 46%. However, at this stage, the detailed sensitivity analysis of the results
cannot confirm the reliability of the metamodels due to the small considered sample. Thus, while the
developed metamodels can capture the trend associated with increasing WL, the results are also
sensitive to the selection of PGs. There could be several reasons for this. The available data are
limited and, therefore, need to be expanded. At the same time, discrepancies among individual TS
could be attributed to external parameters that may influence both the simulation and the metamodel,
especially considering the impact of outliers in a larger sample. For example, the flight experience
of a student compared to his colleagues mates was not considered. A student with more simulation
experience might exhibit an increasing trend as the flight task difficulty rises, yet his/her heightened
awareness during simulations could lead to greater confidence and a lower overall detection of WL
compared to less experienced colleagues.
Advancements to the present work will focus on extending the sensitivities analyses to a larger num-
ber of students, analyzing input dimensions for the Kriging models to verify the ability to define a
mixed metamodel based on more than one index, and additionally evaluating alternative supervised
models.

Table 3 – Summary table of different metamodels results based on attendee Tester (TS).
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