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Abstract

A Machine Learning (ML) methodology was exploited to predict the aerodynamic performances of a 2D vertical
tail section (VTS) of an airplane with an Active Flow control (AFC) device installed near the hinge of the rudder.
In the 2D section, this AFC device, similar to a Sweeping Jet, is modelled by a set of local boundary conditions
applied to the URANS solver. In particular, the ejected velocities are modelled as square wave function of time
for different frequencies f (50,100,150 Hz), at several maximum values v, ,x (0, 10, 25, 50, 75, 100 m/s).
Computational Fluid Dynamics (CFD) runs have been accomplished for sideslip angles 8 of 0°, 5°, 10° and
rudder deflections 6 of 0°, 10° and 20°, for each square wave profile of the SJ velocity, at Reynolds’ number
(Re) 15 million and Mach number (M) 0.15. The aerodynamic coefficients (Cl, Cd, Cm) gathered by the CFD
were then exploited to train a feed-forward Neural Network (NN) of 4 inputs (B, 8, vy4x.f), one level of 10
neurons, and 3 outputs (Cl, Cd, Cm). The network was then able to correctly match the CFD prediction values.
Moreover, the trained NN was employed for retrieving intermediate flow conditions not covered by the previous
CFD analysis with the aim to get either a sideforce enhancement of 20%, for selected sideslip and rudder
deflection angles, or a target lift coefficient of 1.5 at minimum drag. The advantages of this machine learning
methodology were twofold: to obtain the aerodynamic coefficients within the entire flight envelope of an
airplane (i.e. Pressure Altitude vs. Outside Ambient Temperature, Mach vs Reynolds Number) once the
boundary and some few inner points have been calculated by CFD, to predict the optima SJ parameters as
needed for the Lift enhancement in the flight spectrum. The negligible CPU time, with respect to a pure-CFD
approach is an added value of this approach.

Keywords: Atrtificial Intelligence, Machine-Learning, Neural-Network, Active-Flow-Control, Sweeping-Jet,
Fluidic-Oscillator, Computational-Fluid-Dynamics, Tail-Vertical-Surface

Nomenclature

CFD = Computational Fluid Dynamics

Al = Artificial Intelligence

ML = Machine Learing

SJ = Sweeping Jet

AFC = Active Flow Control

NN = Neural Network

OEI = One Engine Inoperative

URANS = Unsteady Reynolds Averaged Navier-Stokes
MSE = Mean Square Error

f = sweeping frequency [Hz]

Uy ax= Maximum ejection velocity [m/sec]
B = sideslip angle [deg]
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0 = rudder deflection [deg]

Cl = lift coefficient

Cd = drag coefficient

Cm = moment coefficient

AC,, = sideforce enhancement

a = angle of attack [deg]

Re = Reynolds number

M = Mach number

OAT = Outside Air Temperature [K]

SST = Shear Stress Transport

k = Turbulent Kinetic Energy [m?/sec?]

w = Specific Turbulent Dissipation Rate [1/sec]
%t = time of ejection over the ejection period, in percentage
P = power of the ejected jet

C, = power coefficient of P

E = energy of the ejected jet over one period
Cr = energy coefficient of E

1. Introduction

The vertical tail surface of an airplane is commonly designed in order to guarantee controllability and
operability even when emergency conditions (i.e. One Engine Inoperative, OEl, at the take-off, Figure
1.1) occur, so that safety certification or qualification rules are satisfied. Consequently, the tail unit
has to 'passively’ counteract any possible induced flight drawbacks to guarantee the required
aerodynamic performance to sustain the flight or the recovery manoeuvres. This drives the geometric
size of the vertical tail unit, with associated large surfaces that impacts on weight and drag, translating
in higher fuel consumption. One possible way to overcome this issue, thereby having a smaller
surface, is the application of Sweeping Jets (SJ) devices [1], that allow to manage the effectiveness
of the vertical tail surface by guarantying the necessary side force by means of delaying separation.
These devices have an internal shape that creates a periodic plane sweeping jet as an output, Figure
1.2. Although they do need a compressed steady supply of air at high pressure, the advantages are
their applicability to high Reynolds number regimes and the lower mass flow rates with respect to
continuous blowing devices [2]; in addition, these objects are robust, as they have no moving parts,
being the sweeping effect created by the internal geometry itself.

Sweeping jets were successfully tested on full-scale wind tunnel tail model of a Boeing 757 airplane
[3] and their effectiveness was proved by the Boeing 757 eco-Demonstrator flight in 2015 [4].
Extensive studies have been performed in the last decade to assess the flow behaviours and
performance of those devices [8], [9], [10], [11], [13], [14], [15], [16], [18], [19], [20], [21], while an
interesting review of both passive and active flow control tecnhique can be find in [12].

In this work, the application of the Active Flow Control to the vertical tail of an airplane was modelled
by a simplified 2D methodology: in particular, the final goal was to investigate a procedure for
exploiting Machine Learning (ML) to predict the aerodynamic performances of a modified NACA 0012
airfoil with a AFC device applied at the hinge of the rudder. The mean aerodynamic chord (cpysc =
4.5 m) was been set as that of the Boeing 757. The sweeping jet modulus of the velocity of ejection
was modelled, on the 2D section, by a square wave as a function of time, and its direction was parallel
to the chord of the airfoil: the exhaust flow was imposed as a boundary condition perpendicular to a
step of 0.9 cm at the hinge of the rudder (see the line in bold red in Figure 1.3). The frequency f of
this wave was studied in a range between 50 Hz and 150 Hz and its maximum velocity v, 4x between
0 m/s and 100 m/s.

CFD simulations were run with ANSYS FLUENT® for three sideslip angles 8 (0°, 5°, 10°) and for
three rudder deflections & (0°,10°, 20°), at different actuation regimes (vy4x, f). CFD aerodynamic
coefficients were collected in a dataset to feed a machine learning MATLAB® tool for training a Neural
Network (NN).
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Figure 1.2 - Sweeping jet scheme, top view

Once the NN was validated by matching the CFD database, the NN was then successfully used to
predict, at the same Re and Mach of the CFD database, the aerodynamic performances (frequency
and exit velocity) of the SJ for two aims: firstly, to increment the lift coefficient of the tail section of
20%, for sideslip angles B from 0° to 10°, and for rudder deflections & from 10° to 20°; secondly, to
obtain as a target Cl=1.5 with the lowest drag. This paper is based on a Master thesis [22] of the
corresponding author (section 6).

The structure of the paper is as follows: in section 2 the base theory of the Neural Network is reviewed,
a summary on the numerical procedures is shown in section 3, the main results are reported in section
4, conclusions and follow-on are presented in section 5.
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Figure 1.3 - 2D simplified modeling of the SJ action in a plane perpendicular to the vertical tail
surface

2. Neural Network

A feed-forward neural network (NN) is a simplified imitation of what happens in the brain: inputs x;
are connected to a layer of neurons, Figure 2.1, and each subsequent layer has a connection from
the previous layer, until the layer of the outputs.

The NN of this paper has one layer of 10 neurons, 4 inputs (B, 6, vy 4x.f), and 3 outputs, (Cl, Cd, Cm).
Each neuron sums up the inputs and it generates a signal F; through a sigmoid activation function,

(1). Finally, the outputs to the net are obtained as a linear combination of F;,(2).

F}'(Xl, ) = O'(Zi Wjixi + b]) (1)
0z = Zj w,;Fj + b, 2

2.1 Training algorithm

It is defined a quantity V(x), (3), as the sum of the errors between the predicted outputs by the net
and the target outputs of the dataset. It follows ¥V V(x) = JT(x) e(x), being J the Jacobian of the
errors e(x) with respect to some vector x.

V(x) =X ef (x) ©)
The training of the neural network is based on the Levenberg-Marquardt algorithm [5], (4).

Xee1 =% — (T + 1) JTe (4)

Where x, is the vector of weights and offsets of the net at the time step t, and t is a parameter.
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Figure 2.1 - layer of neurons
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The value of T is updated each iteration: if V(x) increases, t increases as well; if V(x) decreases, tis
reduced. V(x), (3), is a measure of the goodness of the network: the lower it becomes, the lower the
associate error between predictions and target outputs. The back-propagation algorithm [5] is used
to compute the matrix J.

It is useful to define a performance index of the network as the mean squared error (MSE), (5).

MSE = % V(x) (5)

Where N is the total number of outputs of the training dataset.
The training stops when the MSE does not decrease anymore.

3. CFD settings

Within the ANSYS FLUENT © environment, the chosen numerical method for this study was based
on U-RANS equations. The fluid is an ideal gas which follows the Sutherland's law for viscosity. The
turbulence is modelled with the K-w SST model [17]. The formulation is pressure based and the
energy equation is on. The second order Roe upwind scheme is used in space. The time stepping
is second order implicit. Boundary conditions of the entire domain are reported in Table 1, and the
Active Flow Control (AFC) Device velocity profile was imposed at the step close to the hinge, Figure
3.1

The red velocity profile of Figure 3.1 is a square wave function of time, Figure 3.2: on the x axes, the
time is in seconds; on the y axes, the jet velocity is dimensionless with respect to the vy 45 of the
current simulation.

The chosen flight condition for analysis is a take-off at sea level, OAT=300 K, M=0.15, Re (Fin chord
based) =15million.
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Table 1
Domain INLET 1 atm, 300 K, M =0.15, B
Domain OUTLET 1 atm, 300 K, M =0.15, B
AIRFOIL Adiabatic, no slip
Flow-Control-Device Velocity profile perpendicular to the
step, 300K

FLOW CONTROL DEVICE

0.6

max

v/v

02r

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
S

Figure 3.2 - AFC with a frequency of 100 Hz

The numerical procedures were validated both against experimental data [6] and through grid
convergence procedures.

In Table 2, lift and drag coefficients from CFD are compared to data from experiments [6], where the
angle of attack is a (deg). Lift results are about 1% error; drag coefficient is well computed as well.
CFD results capture both the correct slope of the curve, when linear behaviour happens, and the stall
condition at about angle of attack a=16°, Figure 3.3, where the different maximum value of lift
coefficient is the same of experimental uncertainties, as mentioned in [7]. In Figure 4.1, the Cd-Cl
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curve shows that the Cd behaviour is matched as well.

Table 2
a Cl Cd Ladson CI Ladson Cd
0° -6.730e-7 0.802e-2 1.150e-2 0.803e-2
10° 1.092 1.248e-2 1.080 1.165e-2
15° 1.523 2.335e-2 1.517 1.870e-2

To train the NN, the total number of data points which were simulated for Re= 15 million and M= 0.15
is 162, as follows:

e 3 angles of sideslip  0°,5°,10°,

e 3 angles of deflection & 0°,10°,20°

e 6 values of the vy 4x Of the AFC system 0 m/s, 10 m/s, 25 m/s, 50 m/s, 75 m/s, 100 m/s
e 3values of the frequency of the AFC system 50 Hz, 100 Hz, 150 Hz

CFD aerodynamic coefficients were used to build the dataset for the training of the neural network.

) cl-a NACA 0012

[$)
05 L CFD , Ma=0.15 Re=3 million |
A Ladson, M=0.15 Re=6 million
or i
A
A
_0-5 1 1 1 1 1
-5 0 5 10 15 20 25

[e%

Figure 3.3 — Cl vs a plot, NACA 0012

4. Results

4.1 CFD analysis

In Figure 4.2 it is showed that the actuator becomes effective in the reduction of separation if sufficient
momentum is conveyed to the flow: the first row of the picture represents two conditions where
separation is present on the rudder. On the upper right, vy, 4x is 50 m/s but no differences are obtained
with respect to AFC-off condition (upper left). At the bottom, on the left, vy ,x Of 75 m/s is able to
reduce separation but not to eliminate it; the flow is completely attached for v,4x of 100 m/s, at the
bottom on the right.

In (6), it is defined the increment in sideforce coefficient, AC,, as a measure of the lift enhancement
that the actuator provides to the tail section.



A CFD studyv of an AFC system on a VTS, with the aid of Al.

polar NACA 0012
0.45 T T T

CFD, Ma=0.15 Re=3 million
041 | A Ladson, M=0.15 Re=6 million

0.35 b
031 J
0.25 b

o
(@]
02r J
0.15 J

0.1 i

0.05 4

0 A A H—A A —A . )
-0.5 0 0.5 1 1.5 2
Cl

>

Figure 4.1 — Cd vs Cl plot, NACA 0012

Figure 4.2 - velocity magnitude contours, f=0°, =20°, f=100 Hz; left to right, top to bottom, v,y is
0, 50, 75, 100 m/s respectively

_ AFC-0
B (CJ‘?FC On—Cy ff)

Where C{F¢=0" is the lift coefficient when the AFC is active, and C;"“~%// when it is switched off.

In Figure 4.3, the sideforce enhancement AC, is represented as a function of the output maximum

velocity vy 4x of the actuator, for a rudder deflection & of 20° and f=100 Hz: in blue the results when
B is 0° in red when it is 10°. For a fixed deflection angle of 20°, the bigger the sideslip angle, the
more important the separation, the more is the effort (vy4x) needed to improve effectiveness of the

8
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surface. Considerable increment in the lifting force is reached as vy ,x increases: when vy x =
100m/s, AC, =+100 % for the blue line, AC, =+30% for the red line, Figure 4.3.

AC_ (%) VSv___ até=20° f=100Hz
120 T T y| T max| T T T T

B=0°

—3=10°

100

80

60

AC_ (%)

40

20
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Vimax (m/s)

Figure 4.3 - side force enhancement as a function of v, 4x, & = 20°

The energy consumption of the active flow control (AFC) system is dependent not only on the velocity
of ejection vy, 4x, but also on the percentage of time over a period of sweeping %t which the AFC is
turned on. As an example, here it is considered a flight condition at Mach number (M) 0.15 and
Reynolds’ number (Re) 15 million, angle of sideslip B of 10°, deflection angle of the rudder & of 20°.
The frequency of sweeping f, i.e. a measure of the period of sweeping of the SJ device, is 100 Hz.
The values of maximum velocity of ejection vy, 45 are 50 m/s, 75 m/s, 100 m/s.

The percentage of time of ejection across the time period of sweeping is defined as follows:

%ot = “JT"% 7)

Where t,, is the time that the AFC is on, and T is the period of oscillation of the jet.
Figure 4.4 shows the velocity of ejection as a function of time in seconds for %t = 25% and %t =
75%, on the left and on the right respectively.

The power of a jet is proportional to the cube of the velocity; and for this 2D case of study it can be
referred to a unit length in meters and calculated as follows:

1
P = > PU3 lstep (8)

Where p is the density and v is the velocity of ejection at the nozzle, and lg;5p is the heigth of the
step. The power per unit length is measured in [W/m].

The power coefficient can be defined as:

2P

Cp = 9)

3
PooVeoCMAC

Where v, is the farfield velocity, p., the farfield density and cy 4 is the mean aerodynamic chord of
the airfoil.

The energy is the integral of the instantaneous power in time. For this specific case vy, 4x is fixed and
the power is either constant, if the system is on, or null, when the device is off.
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Figure 4.4 - the velocity of ejection as a function of time (seconds) for %t=25% (left), and %t=75%
(right)

Therefore, the energy E per unit length ([J/m]) consumed during the sweeping cycle is the product
between the power and the total time the device is active during one cycle:

E=Pxty, (10)

By considering the way that t,,, and P are non dimensionalized in (7) and (9) respectively, then the
non-dimensional energy coefficient Cz can be obtained from (10) as follows:

In Figure 4.5, it is displayed the behaviour of C, with respect to the energy coefficient Cg, for vy 45 of
50, 75 and 100 m/s and for %t from 0% to 100% . It is observed the effect of %t: the blue line (50
m/s) does not cross any different line, the red line (75 m/s) intersects the black line (100 m/s) when
Cr is about 0.005. Over this value, with the same energy consuming the velocity of ejection of 75 m/s
at high %t, produces higher Cy then v,,,x of 100 m/s at low %t.

Cyvs CE =C1r*%t over 1 second
24 T T T T T

23

22

19+

'y |

17 1 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012

Ce

Figure 4.5- C, vs Cg
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This result leads to the conclusion that it is possible to obtain the same lift coefficient for different
values of vy, ,x When %t is changed. For a fixed flight condition, the best AFC-on solution among
the others is the most efficient in terms of energy coefficient.

4.2 Neural Network quality

The network was trained and its quality in predicting the aerodynamic coefficients is demonstrated by
the plots in Figure 4.6 and Figure 4.7.

In Figure 4.6, the behaviour of the MSE, (5), versus the iterations (epochs) of the training algorithm
is plotted in logarithmic scale: the training set, the validation set, and the testing set are in blue, green
and red respectively. At epoch 36, it is obtained the lowest MSE on the validation set: the group of
weights and biases of this specific iteration are chosen as final values for the network. The value of
the MSE is of the order of e-04, and this means that the CFD target output values are captured quite
well by the network outputs.

Best Validation Performance is 0.00038853 at epoch 36

Train
Validation
Test
......... Best

107

Mean Squared Error (mse)

10'4 E L L L L L L L : L

0 5 10 15 20 25 30 35 40
42 Epochs

Figure 4.6 - MSE behaviour in log scale during the training

In Figure 4.7, regression lines are represented between the network outputs and the target
aerodynamic coefficients from CFD: the training set, the validation set, and the testing set colours are
coherent with Figure 4.6. In black, all the up-mentioned data are collected in a single plot. Regression
slopes are 1 and offsets are almost null, in every plot: the network can predict well the aerodynamic
coefficients.

Consistently with the boundary values of the CFD database, the possible ranges of inputs that can be
simulated are (as described in section 3):

e Flap deflections & from 0° to 20°

e Sideslip angles B from 0° to 10°

e Maximum exit SJ velocities from 0 m/s to 100 m/s
e SJ Frequences between 50 Hz and 150 Hz

4.3 Neural Network applications

The NN was first applied to obtain a sideforce enhancement, AC,, of +20%, in a flight condition of
Re 15 million and M 0.15, for sideslip angles from 0° to 10°, and for deflection angles from 10° to 20°.
This value of AC, has been chosen as an example for studying the entire process. Other targets can

be obviously taken according to a deeply flight mechanics investigation of the manoeuver. The
frequency of sweeping was fixed at 100 Hz and a 3D surface of v, 4x was obtained as a function of &

11
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and B, Figure 4.8. The yellow peak shows a region where the highest effort is needed to obtain the
+20% enhancement because the flow is not separated for that combination of the two x-y coordinated
of the plot. On the other hand, the dark blue valley represents combinations of angles (3, ) where
the vy, 4x demand is the lowest. For deflections angles between 18° and 20°, the dark blue becomes
lighter as 3 is more and more high: separation is growing, and more power is needed to keep the flow
attached.

Training: R=0.99979 Validation: R=0.99943
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Figure 4.7 - regression plots of the values predicted by the network against the CFD target values

In Figure 4.9, the data from the 3D surface are represented on 2D plots: the ejection speed is showed
as a function of ®, and the fixed parameter is the sideslip angle 3. For rudder deflections from 10° to
16°, separation is not present when sideslip angle is low: at B =0°, v, 4x = 100 m/s is needed to
provide 20% side force increment. For sideslip angles from 2° to 4°, a progressive reduction in the
needed speed is visible when & is between 10° and 18°. Over B = 6°, separation on the rudder
becomes important even when & is 10° and it grows as the rudder angle does: v, 4,x Shows a rise with
© as well. Overall, for sideslip angles up to 4°, the effort to increment the lift becomes smaller as the
rudder angle & increases; on the other hand, for § higher than 6°, the effort (v),4x) increases with &:
violet curve, B =6°, and green curve,  =10°, in Figure 4.9, clearly show a monotonically increase in
supplied flow to counter act separation.

12



A CFD studyv of an AFC system on a VTS, with the aid of Al.
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Figure 4.8 - vy 4x 3D surface to obtain AC, =20%
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Figure 4.9 - vy4x as a function of 5 to obtain AC, = 20%

As a second example, the neural network was employed to obtain a target lift coefficient Cl of 1.5,
Figure 4.10. The value of CI=1.5 has been chosen as an example for studying the entire process.
Other targets can be obviously taken according to a deeply flight mechanics investigation of the
manoeuver. The variable parameters are the sideslip angle, the rudder deflection and the ejection
velocity. The frequency is kept fixed at 100 Hz. The ejection velocities are 50 m/s, in green, 70 m/s in
red, and 100 m/s, in black. Among the others, the lowest isolated-airfoil drag solution corresponds to
null sideslip, rudder deflection of 20°, and velocity of 100 m/s: the airfoil NN drag coefficient is 0.36e-
2.

Moreover, flying with no sideslip is optimal for the overall drag of the airplane: in Table 3, the CFD
airfoil drag coefficients are listed, for different flight conditions producing CI=1.5. In the first two rows
of Table 3, the AFC device is off: when 6=0°, the f=0° drag is obtained from the polar of Figure 4.1.
The last row of the table is the above AFC-on condition, which produces an airfoil CFD Cd = 0.830e-
2: this value is considerably lower than the other two. Therefore, the AFC-on null sideslip and 6=20°
combination guarantees to recover the target performance (Cl = 1.5), without any airplane yaw angle,
so minimizing the overall drag.
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Figure 4.10 - d and B combination to obtain C, = 1.5, for variable vy,x and fixed f=100 Hz

Table 3 [CI=1.5, M=0.15, Re=15 mil]

B 0 Vyax Cd
15° 0° 0mi/s 2.335e-2
8° 20° 0ml/s 5.116e-2
0° 20° 100 m/s 0.830e-02

In both the NN applications, results were retrieved in a time of the order of 1 second, each flow
configuration: Al allowed to save time, with respect to performing CFD simulations for all the
combinations of parameters.

5. Conclusions and follow-on

A new methodology of applying machine learning to a simplified model of an active flow control
(AFC) system on a 2D flapped airfoil was explored.

CFD results, obtained by solving 2D U-RANS and k-w SST equations with ANSYS FLUENT ©,
demonstrated that this AFC technology produces significant sideforce increments when separation
is reduced on the rudder section.

CFD results were collected in a dataset, and they were employed successfully in MATLAB © for the
training of a Neural Network (NN) of 4 inputs, 10 neurons and 3 outputs. The MSE, between the NN
outputs and the target CFD outputs, was of the order of e-04, and regression plots proved that the
network can accurately predict the aerodynamic coefficients as required for covering the entire flight
envelope, in a well-defined range of the input parameters, and within the boundaries previously
defined by standard CFD methods.

The NN was applied, at Re 15 million and M 0.15, firstly to obtain SJ parametres suitable to
guarantee a target sideforce increment of +20%, and secondly, it was exploited to find the most
suitable set of SJ function parameters able to reach a target Cl=1.5.

This work proved the immediate advantage that a Neural Network, if properly trained, allows to
estimate aerodynamic coefficients with a very less computational effort and in a considerably
smaller amount of time with respect to a pure-CFD approach.

14
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The natural development of this research is to extend the present analysis at the 3D environment,
with the final aim to set not only the exit flow parameters of each SJ device but, above all, to identify
the spanwise number and their relative position to maximize efficiency of the entire vertical surface.
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