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Abstract 

A Machine Learning (ML) methodology was exploited to predict the aerodynamic performances of a 2D vertical 

tail section (VTS) of an airplane with an Active Flow control (AFC) device installed near the hinge of the rudder. 

In the 2D section, this AFC device, similar to a Sweeping Jet, is modelled by a set of local boundary conditions 

applied to the URANS solver. In particular, the ejected velocities are modelled as square wave function of time 

for different frequencies f (50,100,150 Hz), at several maximum values 𝑣𝑀𝐴𝑋 (0, 10, 25, 50, 75, 100 m/s). 

Computational Fluid Dynamics (CFD) runs have been accomplished for sideslip angles β of 0°, 5°, 10° and 

rudder deflections δ of 0°, 10° and 20°, for each square wave profile of the SJ velocity, at Reynolds’ number 

(Re) 15 million and Mach number (M) 0.15. The aerodynamic coefficients (Cl, Cd, Cm) gathered by the CFD 

were then exploited to train a feed-forward Neural Network (NN) of 4 inputs (β, δ, 𝑣𝑀𝐴𝑋,f), one level of 10 

neurons, and 3 outputs (Cl, Cd, Cm). The network was then able to correctly match the CFD prediction values. 

Moreover, the trained NN was employed for retrieving intermediate flow conditions not covered by the previous 

CFD analysis with the aim to get either a sideforce enhancement of 20%, for selected sideslip and rudder 

deflection angles, or a target lift coefficient of 1.5 at minimum drag. The advantages of this machine learning 

methodology were twofold: to obtain the aerodynamic coefficients within the entire flight envelope of an 

airplane (i.e. Pressure Altitude vs. Outside Ambient Temperature, Mach vs Reynolds Number) once the 

boundary and some few inner points have been calculated by CFD, to predict the optima SJ parameters as 

needed for the Lift enhancement in the flight spectrum. The negligible CPU time, with respect to a pure-CFD 

approach is an added value of this approach. 

Keywords: Artificial Intelligence, Machine-Learning, Neural-Network, Active-Flow-Control, Sweeping-Jet, 
Fluidic-Oscillator, Computational-Fluid-Dynamics, Tail-Vertical-Surface 

 

Nomenclature 

CFD = Computational Fluid Dynamics 

AI = Artificial Intelligence 

ML = Machine Learing 

SJ = Sweeping Jet 

AFC = Active Flow Control 

NN = Neural Network 

OEI = One Engine Inoperative 

URANS = Unsteady Reynolds Averaged Navier-Stokes 

MSE = Mean Square Error  

f = sweeping frequency [Hz] 

𝑣𝑀𝐴𝑋= maximum ejection velocity [m/sec] 

β = sideslip angle [deg]



A CFD study of an AFC system on a VTS, with the aid of AI. 

2 

 

 

  

δ = rudder deflection [deg] 

Cl = lift coefficient 

Cd = drag coefficient 

Cm = moment coefficient 

 Δ𝐶𝑦 = sideforce enhancement 

α = angle of attack [deg] 

Re = Reynolds number 

M = Mach number 

OAT = Outside Air Temperature [K] 

SST = Shear Stress Transport 

k = Turbulent Kinetic Energy [m2/sec2] 

ω = Specific Turbulent Dissipation Rate [1/sec] 

%𝑡 = time of ejection over the ejection period, in percentage 

𝑃 = power of the ejected jet 

𝐶𝜋 = power coefficient of P 

𝐸 = energy of the ejected jet over one period 

𝐶𝐸 = energy coefficient of E 

 

1. Introduction 
The vertical tail surface of an airplane is commonly designed in order to guarantee controllability and 
operability even when emergency conditions (i.e. One Engine Inoperative, OEI, at the take-off, Figure 
1.1 ) occur, so that safety  certification or qualification rules are satisfied. Consequently, the tail unit 
has to 'passively' counteract any possible induced flight drawbacks to guarantee the required 
aerodynamic performance to sustain the flight or the recovery manoeuvres. This drives the geometric 
size of the vertical tail unit, with associated large surfaces that impacts on weight and drag, translating 
in higher fuel consumption. One possible way to overcome this issue, thereby having a smaller 
surface, is the application of Sweeping Jets (SJ) devices [1], that allow to manage the effectiveness 
of the vertical tail surface by guarantying the necessary side force by means of delaying separation. 
These devices have an internal shape that creates a periodic plane sweeping jet as an output, Figure 
1.2. Although they do need a compressed steady supply of air at high pressure, the advantages are 
their applicability to high Reynolds number regimes and the lower mass flow rates with respect to 
continuous blowing devices [2]; in addition, these objects are robust, as they have no moving parts, 
being the sweeping effect created by the internal geometry itself.  
Sweeping jets were successfully tested on full-scale wind tunnel tail model of a Boeing 757 airplane 
[3] and their effectiveness was proved by the Boeing 757 eco-Demonstrator flight in 2015 [4]. 
Extensive studies have been performed in the last decade to assess the flow behaviours and 
performance of those devices [8], [9], [10], [11], [13], [14], [15], [16], [18], [19], [20], [21], while an 
interesting review of both passive and active flow control tecnhique can be find in [12].   
In this work, the application of the Active Flow Control to the vertical tail of an airplane was modelled 
by a simplified 2D methodology: in particular, the final goal was to investigate a procedure for 
exploiting Machine Learning (ML) to predict the aerodynamic performances of a modified NACA 0012 
airfoil with a AFC device applied at the hinge of the rudder. The mean aerodynamic chord (𝑐𝑀𝐴𝐶 =
4.5 𝑚) was been set as that of the Boeing 757. The sweeping jet modulus of the velocity of ejection 
was modelled, on the 2D section, by a square wave as a function of time, and its direction was parallel 
to the chord of the airfoil: the exhaust flow was imposed as a boundary condition perpendicular to a 
step of 0.9 cm at the hinge of the rudder (see the line in bold red in Figure 1.3). The frequency f of 
this wave was studied in a range between 50 Hz and 150 Hz and its maximum velocity 𝑣𝑀𝐴𝑋 between 
0 m/s and 100 m/s.  
CFD simulations were run with ANSYS FLUENT© for three sideslip angles β (0°, 5°, 10°) and for 
three rudder deflections δ (0°,10°, 20°), at different actuation regimes (𝑣𝑀𝐴𝑋, f). CFD aerodynamic 
coefficients were collected in a dataset to feed a machine learning MATLAB© tool for training a Neural 
Network (NN).  
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Figure 1.1 - Balance around the yaw axes, OEI condition at the take-off 

 
 
 

 
Figure 1.2 - Sweeping jet scheme, top view 

 
 
Once the NN was validated by matching the CFD database, the NN was then successfully used to 
predict, at the same Re and Mach of the CFD database, the aerodynamic performances (frequency 
and exit velocity) of the SJ for two aims: firstly, to increment the lift coefficient of the tail section of 
20%, for sideslip angles β from 0° to 10°, and for rudder deflections δ from 10° to 20°; secondly, to 
obtain as a target Cl=1.5 with the lowest drag. This paper is based on a Master thesis [22] of the 
corresponding author (section 6). 
 
The structure of the paper is as follows: in section 2 the base theory of the Neural Network is reviewed, 
a summary on the numerical procedures is shown in section 3, the main results are reported in section 
4, conclusions and follow-on are presented in section 5. 
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Figure 1.3 - 2D simplified modeling of the SJ action in a plane perpendicular to the vertical tail 

surface 

 

 

2. Neural Network 

A feed-forward neural network (NN) is a simplified imitation of what happens in the brain: inputs 𝑥𝑖 

are connected to a layer of neurons, Figure 2.1, and each subsequent layer has a connection from 

the previous layer, until the layer of the outputs. 

The NN of this paper has one layer of 10 neurons, 4 inputs (β, δ, 𝑣𝑀𝐴𝑋,f), and 3 outputs, (Cl, Cd, Cm). 
Each neuron sums up the inputs and it generates a signal 𝐹𝑗 through a sigmoid activation function, 

(1). Finally, the outputs to the net are obtained as a linear combination of 𝐹𝑗,(2). 

𝐹𝑗(𝑥1, … ) = 𝜎(∑ 𝑤𝑗𝑖𝑥𝑖𝑖 + 𝑏𝑗) (1) 

 

𝑜𝑧 = ∑ 𝑤𝑧𝑗𝐹𝑗𝑗 + 𝑏𝑧
 (2) 

 

2.1 Training algorithm 

It is defined a quantity 𝑉(𝒙), (3), as the sum of the errors between the predicted outputs by the net 

and the target outputs of the dataset. It follows ▽ 𝑉(𝒙) = 𝐉𝐓(𝒙) 𝒆(𝒙), being J the Jacobian of the 

errors 𝒆(𝒙) with respect to some vector 𝒙. 

𝑉(𝒙) = ∑ 𝑒𝑙
2

𝑙 (𝒙) (3) 

 

The training of the neural network is based on the Levenberg-Marquardt algorithm [5], (4). 

𝒙𝒕+𝟏 = 𝒙𝒕 − (𝐉𝐓𝐉 + τ𝐈)
−𝟏

 𝐉𝐓𝒆 (4) 

 

Where 𝒙𝒕 is the vector of weights and offsets of the net at the time step t, and τ is a parameter.
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Figure 2.1 - layer of neurons 

 

The value of τ is updated each iteration: if 𝑉(𝒙) increases, τ increases as well; if 𝑉(𝒙) decreases, τ is 

reduced. 𝑉(𝒙), (3), is a measure of the goodness of the network: the lower it becomes, the lower the 
associate error between predictions and target outputs. The back-propagation algorithm [5] is used 
to compute the matrix 𝐉. 

It is useful to define a performance index of the network as the mean squared error (MSE), (5). 

𝑀𝑆𝐸 =
1

2𝑁
𝑉(𝒙) (5) 

 

Where N is the total number of outputs of the training dataset. 

The training stops when the MSE does not decrease anymore. 

 

3. CFD settings 

Within the ANSYS FLUENT © environment, the chosen numerical method for this study was based 

on U-RANS equations. The fluid is an ideal gas which follows the Sutherland's law for viscosity. The 

turbulence is modelled with the K-ω SST model [17].  The formulation is pressure based and the 

energy equation is on. The second order Roe upwind scheme is used in space. The time stepping 

is second order implicit. Boundary conditions of the entire domain are reported in Table 1, and the 

Active Flow Control (AFC) Device velocity profile was imposed at the step close to the hinge, Figure 

3.1. 

The red velocity profile of Figure 3.1 is a square wave function of time, Figure 3.2: on the x axes, the 
time is in seconds; on the y axes, the jet velocity is dimensionless with respect to the 𝑣𝑀𝐴𝑋 of the 
current simulation. 

The chosen flight condition for analysis is a take-off at sea level, OAT=300 K, M=0.15, Re (Fin chord 
based) =15million. 
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Table 1 

Domain INLET 1 atm, 300 K, M = 0.15, β 

Domain OUTLET 1 atm, 300 K, M = 0.15, β 

AIRFOIL Adiabatic, no slip 

Flow-Control-Device Velocity profile perpendicular to the 
step, 300K 

 

 

Figure 3.1 - Fluidic Actuator, Velocity Boundary condition 

 

 

Figure 3.2 - AFC with a frequency of 100 Hz 

 

The numerical procedures were validated both against experimental data [6] and through grid 
convergence procedures.  

In Table 2, lift and drag coefficients from CFD are compared to data from experiments [6], where the 
angle of attack is α (deg). Lift results are about 1% error; drag coefficient is well computed as well.  

CFD results capture both the correct slope of the curve, when linear behaviour happens, and the stall 
condition at about angle of attack α=16°, Figure 3.3, where the different maximum value of lift 
coefficient is the same of experimental uncertainties, as mentioned in [7]. In Figure 4.1, the Cd-Cl 
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curve shows that the Cd behaviour is matched as well.  

 

Table 2 

α Cl Cd Ladson Cl Ladson Cd 

0° -6.730e-7 0.802e-2 1.150e-2 0.803e-2 

10° 1.092 1.248e-2 1.080 1.165e-2 

15° 1.523 2.335e-2 1.517 1.870e-2 

 

To train the NN, the total number of data points which were simulated for Re= 15 million and M= 0.15 
is 162, as follows: 

 

• 3 angles of sideslip β 0°,5°,10°, 

• 3 angles of deflection δ 0°,10°,20° 

• 6 values of the 𝑣𝑀𝐴𝑋 of the AFC system 0 m/s, 10 m/s, 25 m/s, 50 m/s, 75 m/s, 100 m/s  

• 3 values of the frequency of the AFC system 50 Hz, 100 Hz, 150 Hz 

 

CFD aerodynamic coefficients were used to build the dataset for the training of the neural network. 

 

 

Figure 3.3 – Cl vs α plot, NACA 0012 

 

4. Results 

4.1 CFD analysis 

In Figure 4.2 it is showed that the actuator becomes effective in the reduction of separation if sufficient 
momentum is conveyed to the flow: the first row of the picture represents two conditions where 
separation is present on the rudder. On the upper right, 𝑣𝑀𝐴𝑋 is 50 m/s but no differences are obtained 

with respect to AFC-off condition (upper left). At the bottom, on the left, 𝑣𝑀𝐴𝑋 of 75 m/s is able to 
reduce separation but not to eliminate it; the flow is completely attached for 𝑣𝑀𝐴𝑋 of 100 m/s, at the 
bottom on the right.  

In (6), it is defined the increment in sideforce coefficient,  Δ𝐶𝑦, as a measure of the lift enhancement 

that the actuator provides to the tail section. 

 



A CFD study of an AFC system on a VTS, with the aid of AI. 

8 

 

 

 

Figure 4.1 – Cd vs Cl plot, NACA 0012 

 

 

 
Figure 4.2 - velocity magnitude contours, β=0°, δ=20°, f=100 Hz; left to right, top to bottom, 𝑣𝑀𝐴𝑋 is 

0, 50, 75, 100 m/s respectively 

 

𝛥𝐶𝑦 =
(𝐶𝑦

𝐴𝐹𝐶−𝑂𝑛−𝐶𝑦
𝐴𝐹𝐶−𝑂𝑓𝑓

)

|𝐶𝑦
𝐴𝐹𝐶−𝑂𝑓𝑓

|

 (6) 

 

Where 𝐶𝑦
𝐴𝐹𝐶−𝑂𝑛 is the lift coefficient when the AFC is active, and 𝐶𝑦

𝐴𝐹𝐶−𝑂𝑓𝑓
 when it is switched off. 

In Figure 4.3, the sideforce enhancement  Δ𝐶𝑦 is represented as a function of the output maximum 

velocity 𝑣𝑀𝐴𝑋 of the actuator, for a rudder deflection δ of 20° and f=100 Hz: in blue the results when 
β  is 0°, in red when it is 10°. For a fixed deflection angle of 20°, the bigger the sideslip angle, the 
more important the separation, the more is the effort (𝑣𝑀𝐴𝑋) needed to improve effectiveness of the 
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surface. Considerable increment in the lifting force is reached as 𝑣𝑀𝐴𝑋 increases: when 𝑣𝑀𝐴𝑋 =
100 𝑚/𝑠,   Δ𝐶𝑦 =+100 % for the blue line,   Δ𝐶𝑦 =+30% for the red line, Figure 4.3. 

 

 
Figure 4.3 - side force enhancement as a function of 𝑣𝑀𝐴𝑋, δ = 20° 

 

The energy consumption of the active flow control (AFC) system is dependent not only on the velocity 
of ejection 𝑣𝑀𝐴𝑋, but also on the percentage of time over a period of sweeping %𝑡 which the AFC is 
turned on. As an example, here it is considered a flight condition at Mach number (M) 0.15 and 
Reynolds’ number (Re) 15 million, angle of sideslip β of 10°, deflection angle of the rudder δ of 20°. 
The frequency of sweeping f, i.e. a measure of the period of sweeping of the SJ device, is 100 Hz. 
The values of maximum velocity of ejection 𝑣𝑀𝐴𝑋 are 50 m/s, 75 m/s, 100 m/s.  

The percentage of time of ejection across the time period of sweeping is defined as follows: 

%𝑡 =
𝑡𝑜𝑛

𝑇
% (7) 

 

Where 𝑡𝑜𝑛  is the time that the AFC is on, and T is the period of oscillation of the jet. 

Figure 4.4 shows the velocity of ejection as a function of time in seconds for %𝑡 = 25% and %𝑡 =
75%, on the left and on the right respectively.  

The power of a jet is proportional to the cube of the velocity; and for this 2D case of study it can be 
referred to a unit length in meters and calculated as follows: 

𝑃 =
1

2
𝜌𝑣3𝑙𝑆𝑇𝐸𝑃

 (8) 

 

Where 𝜌 is the density and 𝑣 is the velocity of ejection at the nozzle, and 𝑙𝑆𝑇𝐸𝑃 is the heigth of the 
step. The power per unit length is measured in [W/m].  

The power coefficient can be defined as:  

𝐶𝜋 =
2𝑃

𝜌∞𝑣∞
3 𝑐𝑀𝐴𝐶

 (9) 

 

Where 𝑣∞ is the farfield velocity, 𝜌∞ the farfield density and 𝑐𝑀𝐴𝐶 is the mean aerodynamic chord of 
the airfoil. 

The energy is the integral of the instantaneous power in time. For this specific case 𝑣𝑀𝐴𝑋 is fixed and 
the power is either constant, if the system is on, or null, when the device is off. 
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(10) 

(11) 

 
 

Figure 4.4 - the velocity of ejection as a function of time (seconds) for %t=25% (left), and %t=75% 
(right) 

 

Therefore, the energy 𝐸 per unit length ([J/m]) consumed during the sweeping cycle is the product 
between the power and the total time the device is active during one cycle: 

𝐸 = 𝑃 ∗ 𝑡𝑜𝑛  

 

By considering the way that 𝑡𝑜𝑛 and 𝑃 are non dimensionalized in (7) and (9) respectively, then the 

non-dimensional energy coefficient 𝐶𝐸 can be obtained from (10) as follows: 

𝐶𝐸 =  %𝑡 ∗  𝐶𝜋  

 

In Figure 4.5, it is displayed the behaviour of 𝐶𝑦 with respect to the energy coefficient 𝐶𝐸, for 𝑣𝑀𝐴𝑋 of 

50, 75 and 100 m/s and for %𝑡 from 0% to 100% . It is observed the effect of %𝑡: the blue line (50 
m/s) does not cross any different line, the red line (75 m/s) intersects the black line (100 m/s) when 
𝐶𝐸 is about 0.005. Over this value, with the same energy consuming the velocity of ejection of 75 m/s 

at high %𝑡, produces higher 𝐶𝑦 then 𝑣𝑀𝐴𝑋 of 100 m/s at low %𝑡. 

 

 

 
Figure 4.5 -  𝐶𝑦 vs 𝐶𝐸 
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This result leads to the conclusion that it is possible to obtain the same lift coefficient for different 
values of 𝑣𝑀𝐴𝑋 when %𝑡 is changed. For a fixed flight condition, the best AFC-on solution among 
the others is the most efficient in terms of energy coefficient. 

4.2 Neural Network quality 

The network was trained and its quality in predicting the aerodynamic coefficients is demonstrated by 
the plots in Figure 4.6 and Figure 4.7. 

In Figure 4.6, the behaviour of the MSE, (5),  versus the iterations (epochs) of the training algorithm 
is plotted in logarithmic scale: the training set, the validation set, and the testing set are in blue, green 
and red respectively. At epoch 36, it is obtained the lowest MSE on the validation set: the group of 
weights and biases of this specific iteration are chosen as final values for the network. The value of 
the MSE is of the order of e-04, and this means that the CFD target output values are captured quite 
well by the network outputs.  

 

 
Figure 4.6 - MSE behaviour in log scale during the training 

 

In Figure 4.7, regression lines are represented between the network outputs and the target 
aerodynamic coefficients from CFD: the training set, the validation set, and the testing set colours are 
coherent with Figure 4.6. In black, all the up-mentioned data are collected in a single plot. Regression 
slopes are 1 and offsets are almost null, in every plot: the network can predict well the aerodynamic 
coefficients.  

Consistently with the boundary values of the CFD database, the possible ranges of inputs that can be 
simulated are (as described in section 3): 

 

• Flap deflections δ from 0° to 20° 

• Sideslip angles β from 0° to 10° 

• Maximum exit SJ velocities from 0 m/s to 100 m/s 

• SJ Frequences between 50 Hz and 150 Hz 

4.3 Neural Network applications 

The NN was first applied to obtain a sideforce enhancement,   Δ𝐶𝑦 , of +20%, in a flight condition of 

Re 15 million and M 0.15, for sideslip angles from 0° to 10°, and for deflection angles from 10° to 20°. 

This value of   Δ𝐶𝑦 has been chosen as an example for studying the entire process. Other targets can 

be obviously taken according to a deeply flight mechanics investigation of the manoeuver. The 
frequency of sweeping was fixed at 100 Hz and a 3D surface of 𝑣𝑀𝐴𝑋 was obtained as a function of δ 
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and β, Figure 4.8. The yellow peak shows a region where the highest effort is needed to obtain the 
+20% enhancement because the flow is not separated for that combination of the two x-y coordinated 
of the plot. On the other hand, the dark blue valley represents combinations of angles (β, δ) where 
the 𝑣𝑀𝐴𝑋 demand is the lowest. For deflections angles between 18° and 20°, the dark blue becomes 
lighter as β is more and more high: separation is growing, and more power is needed to keep the flow 
attached. 

 

 
Figure 4.7 - regression plots of the values predicted by the network against the CFD target values 

 

In Figure 4.9, the data from the 3D surface are represented on 2D plots: the ejection speed is showed 
as a function of δ, and the fixed parameter is the sideslip angle β. For rudder deflections from 10° to 
16°, separation is not present when sideslip angle is low: at β =0°, 𝑣𝑀𝐴𝑋 = 100 m/s is needed to 
provide 20% side force increment. For sideslip angles from 2° to 4°, a progressive reduction in the 
needed speed is visible when δ is between 10° and 18°. Over β = 6°, separation on the rudder 
becomes important even when δ is 10° and it grows as the rudder angle does: 𝑣𝑀𝐴𝑋 shows a rise with 
δ as well. Overall, for sideslip angles up to 4°, the effort to increment the lift becomes smaller as the 
rudder angle δ increases; on the other hand, for β higher than 6°, the effort (𝑣𝑀𝐴𝑋) increases with δ: 
violet curve, β =6°, and green curve, β =10°, in Figure 4.9, clearly show a monotonically increase in 
supplied flow to counter act separation. 
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Figure 4.8 - 𝑣𝑀𝐴𝑋  3D surface to obtain   Δ𝐶𝑦 = 20% 

 

 

Figure 4.9 - 𝑣𝑀𝐴𝑋 as a function of δ to obtain  𝛥𝐶𝑦 = 20% 

 

As a second example, the neural network was employed to obtain a target lift coefficient Cl of 1.5, 
Figure 4.10. The value of Cl=1.5 has been chosen as an example for studying the entire process. 
Other targets can be obviously taken according to a deeply flight mechanics investigation of the 
manoeuver. The variable parameters are the sideslip angle, the rudder deflection and the ejection 
velocity. The frequency is kept fixed at 100 Hz. The ejection velocities are 50 m/s, in green, 70 m/s in 
red, and 100 m/s, in black. Among the others, the lowest isolated-airfoil drag solution corresponds to 
null sideslip, rudder deflection of 20°, and velocity of 100 m/s: the airfoil NN drag coefficient is 0.36e-
2.  

Moreover, flying with no sideslip is optimal for the overall drag of the airplane: in Table 3, the CFD 
airfoil drag coefficients are listed, for different flight conditions producing Cl=1.5. In the first two rows 
of Table 3, the AFC device is off: when δ=0°, the β=0° drag is obtained from the polar of Figure 4.1. 
The last row of the table is the above AFC-on condition, which produces an airfoil CFD Cd = 0.830e-
2: this value is considerably lower than the other two. Therefore, the AFC-on null sideslip and δ=20° 
combination guarantees to recover the target performance (Cl = 1.5), without any airplane yaw angle, 
so minimizing the overall drag.  
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Figure 4.10 - δ and β combination to obtain  𝐶𝑦 = 1.5, for variable 𝑣𝑀𝐴𝑋 and fixed f=100 Hz 

 

 

Table 3 [Cl=1.5, M=0.15, Re=15 mil] 

β δ 𝑣𝑀𝐴𝑋 Cd 

15° 0° 0 m/s 2.335e-2 

8° 20° 0 m/s 5.116e-2 

0° 20° 100 m/s 0.830e-02 

 

 

In both the NN applications, results were retrieved in a time of the order of 1 second, each flow 
configuration: AI allowed to save time, with respect to performing CFD simulations for all the 
combinations of parameters. 

5. Conclusions and follow-on 

A new methodology of applying machine learning to a simplified model of an active flow control 
(AFC) system on a 2D flapped airfoil was explored. 

CFD results, obtained by solving 2D U-RANS and k-ω SST equations with ANSYS FLUENT ©, 
demonstrated that this AFC technology produces significant sideforce increments when separation 
is reduced on the rudder section.  

CFD results were collected in a dataset, and they were employed successfully in MATLAB © for the 
training of a Neural Network (NN) of 4 inputs, 10 neurons and 3 outputs. The MSE, between the NN 
outputs and the target CFD outputs, was of the order of e-04, and regression plots proved that the 
network can accurately predict the aerodynamic coefficients as required for covering the entire flight 
envelope, in a well-defined range of the input parameters, and within the boundaries previously 
defined by standard CFD methods. 

The NN was applied, at Re 15 million and M 0.15, firstly to obtain SJ parametres suitable to 
guarantee a target sideforce increment of +20%, and secondly, it was exploited to find the most 
suitable set of SJ function parameters able to reach a target Cl=1.5. 

 

This work proved the immediate advantage that a Neural Network, if properly trained, allows to 
estimate aerodynamic coefficients with a very less computational effort and in a considerably 
smaller amount of time with respect to a pure-CFD approach.  
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The natural development of this research is to extend the present analysis at the 3D environment, 
with the final aim to set not only the exit flow parameters of each SJ device but, above all, to identify 
the spanwise number and their relative position to maximize efficiency of the entire vertical surface.  
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