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Abstract

Air cargo networks are an important part of aircraft operations, used for the on-time delivery of time-sensitive
cargo or servicing isolated communities with no or limited road access. This research proposes a demand
model for air cargo, focusing on regional feeder networks. To develop the model, multi-year historical Automatic
Dependent Surveillance-Broadcast (ADS-B) data is processed and aggregated to estimate demand with a-
priori knowledge of cargo network operations. The demand model then builds upon the gravity model typically
used for passenger demand, adjusting it to account for the geographic and socio-economic parameters that
affect the demand for air cargo. Canada and the United States were chosen as the test cases to assess the
model’'s performance in two culturally similar countries, with possible large and sparsely populated regions for
which air cargo operations are essential. The model is first applied to the lower-population markets of Canada
before scaling the model to a larger market such as the United States. The impact of different factors on
the test cases’ demand is explored. In the Canadian context, the developed model achieves a high level of
prediction accuracy with a coefficient of determination larger than 0.88. For the United States test case, a
lower prediction accuracy is achieved where regional factors play a more significant role.

Keywords: Demand Model, Air Cargo, Gravity Model, System of Systems, Regional Aircraft

Nomenclature
ADS — B Automatic Dependent Surveillance-Broadcast

Al Artificial Intelligence

B Distance to Nearest Body of Water (Great Lake or Ocean [nmi])
B1900D Beechcraft 1900D

C Catchment Area Population Size

C208B Cessna 208B Cargomaster

D Greater Circle Distance [nmi]

F Sate FRASE Index

FRASE Federal Regulations and State Enterprise Index

H Distance to Nearest Highway [nmi]
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I Average After-Tax Income [CAD or USD]
IATA International Air Transport Association
ICAO International Civil Aviation Organization
KM  K-Means Clustering Algorithm

No.  Number

P Population Size

R? Coefficient of determination

S State Sales Tax

T Average Travel Time [Hrs]

US  United States

Vv Cargo Demand [Ibs]

a attractive factors of demand

ac Aircraft

f Cargo Density factor

g generative factors demand

i Origin Airport

J Destination Airport

k, a, B, ¥y weighting propotional coefficients for factors of demand
r resistance factors of demand

% Aircraft Max Payload

1. Introduction

Air transportation systems comprise both cargo and passenger demand. Previous studies have
primarily concentrated on modeling the allocation of passenger demand between origin-destination
pairs. However, the aging cargo fleet in North America presents new challenges, particularly at the
regional level. By 2030, most of North America’s regional aircraft cargo fleet is projected to phase
out [11 12, 13, 14, [5] 16]. The emergence of pilotless flight technologies offers an opportunity to replace
the aging North American regional cargo fleet, such as reducing operational and personnel costs,
expanding flight schedule flexibility, and exploring new regional flight routes.

Studies related to air transportation systems typically involve modeling demand for passengers or
cargo for the allocation of aircraft or routes [7, 1, [8, 9] [4] [2] [3 [10] [11], [12]. A demand model predicts
the need for a particular service based on various factors, which can be modeled using numerical
or artificial intelligence (Al) methods [13]. Using numerical forecasting methods, geographical and
socio-economic factors that affect passenger and cargo demand are typically used to predict de-
mand between origin-destination pairs [14]. A gravity model is often used to assess the impact of
these factors on demand, providing a straightforward method to represent a demand model while
assessing the direct effects of each input parameter [7, 1,18, (9, 4, 12, |3}, [10} 11} [12].
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Previous studies on air cargo operations have primarily focused on examining a single hub-and-spoke
cargo network’s on global or national route network structures [15,/16, 117]. For instance,Hwang and
Shiao [15] conducted research on international air cargo traffic through Taiwan Taoyuan International
Airport, where they used various factors such as total weight, Gross domestic products per capita,
the product of populations, distance, annual flight frequency, and freight rate per unit of weight of
each origin-destination pair to determine the coefficient of determination found to be 0.995. Although
these studies have demonstrated a strong correlation between socioeconomic factors and demand
prediction for a sole hub airport, they do not consider how other factors impact cargo demand in a
network consisting of multi-hub airports.

This research aims to modify the commonly used gravity model methodology for passenger demand
modeling of multi-hub networks and adapt the model for air cargo network demand, using the regional
feeder networks in Canada and the United States (US) as test cases. The model uses multi-year his-
torical Automatic Dependent Surveillance-Broadcast (ADS-B) data in combination with prior knowl-
edge of cargo networks to determine the current state of each country’s regional feeder network and
estimate demand. The study aims to identify the impact of new and currently used socio-economic
and geographical factors on demand to create an accurate demand model that can be applied to
various regional markets. The data acquisition process for the route network and the gravity de-
mand model formulation is detailed in Section 2. Section [3.applies the methodology to test cases
of Canada’s and the United States air cargo regional networks. The results of applying the demand
model, developed in the methodology, to both markets are presented in Section [4.and the drawn
conclusions and future works drawn from the results are discussed in Section 5.

2. Methodology

The methodology delineates the approach for collecting air flight data and inputting the data into a
generated predictive demand model to quantify the allocation of air cargo. Canada and the United
States were chosen as the test cases for the methodology to assess the performance of the demand
model in a comparable, lower-population market, like Canada, before scaling the model for a larger
market such as the United States.

No open-source database provides all the required information to picture each country’s route net-
works. The data gathering challenge of air freight networks is subjected to the following challenges.
The first challenge is determining who the air freight carriers within the region of interest are. Once
the air freight carriers of a region are determined, the challenge becomes identifying their fleet com-
position. After identifying the fleet’s composition, the next level of the challenge becomes determining
the fleet’s hub airports and flight routes. Finally, the task is to determine the quantity of cargo, mea-
sured in weight, handled on each route.

2.1 Regional Air Cargo Carriers

Regional air cargo networks predominately consist of smaller operators contracted by large freight
carriers. Current Canadian airfreight liners were established using prior knowledge of cargo network
operations. Air Freightliners in the United States were specified from Jordan, Nadezhda, and Husni’s
research on Preliminary Characterization of Unmanned Air Cargo Routes Using Current Cargo Op-
erations Survey [5]. Primary operators of regional air cargo networks in both countries are included
in Table[T] and Table [2|
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The fleet of each Air Cargo Carrier was derived from FlightRadar24’s open-source database of air-
lines, including their respective fleet, aircraft types, and tail numbers. Using prior knowledge of air
cargo operations, regional routes are typically flown using small, turboprop utility aircraft. The two
leading aircraft that regional cargo networks are predominately represented by are the Cessna 208B
Cargomaster (C208B) and Beechcraft 1900D (B1900D). As such, only aircraft of similar size to a
C208B or B1900D were considered to be a part of the regional network. Concerning the test cases
of Canada and the United States, an aircraft considered part of each country’s regional air cargo
network must have flown only within Canada or the United States. Table [3|notes all the aircraft types
considered for the test cases’ regional air cargo networks.

Table 1 — Regional Canadian air cargo carriers included in this re-

search.
Air Cargo Carriers | ICAQ Designator | No. of Aircraft Tracked
Fedex FDX 8
RiseAir WEW 23
Skylink Express SLQ 5

Table 2 — Regional American air cargo carriers included in this research.

Air Cargo Carriers | ICAQ Designator | No. of Aircraft Tracked
Alpine Air Express AIP 61
Ameriflight AMF 112
Castle Aviation CSJ 21
Corporate Air CPT 3
FedEx FDX 243
Freight Runners Express FRG 21
IFL Group IFL 5
Key Lime Air LYM 20
Martinaire MRA 26
Wiggins Airways WIG 18
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Table 3 — Regional air cargo aircraft included in this research.

Aircraft Name \ Aircraft Abbreviation
Cessna 208 Cargomaster C208
Dassault Falcon 20 FA20
Piper PA-31 Navajo PA31
Saab 340 SF34
Swearingen Merlin SW(3)(4)
Beechcraft 1900 B190
Beechcraft Super King Air 200 B200
Beechcraft Model 99 B99
Cessna 560X Citation Excel C56X
Cessna 750X Citation 10 C750
Gulfsteam Aerospace G650 GLF6
Embraer Bandeirante 110 E110
Embraer Brasilia 120 E120
Embraer ERJ-135 E135
airchild Dornier 328JET J328
Aerostar (1) 600 AEST
Beech 400 beechjet BE40
Beechcraft T-34 Mentor T34P
Cessna 408 SkyCourier C408
ATR-42-300/320 AT43

2.2 Initial Cargo Estimation

Due to the lack of publicly available information concerning the cargo weight an aircraft holds during
a given flight, cargo is treated as a resource allocation problem such that it is allocated to maximize
utility. The cargo demand on each route is assumed to be limited by volume such that Air Cargo
Carrier companies estimate that the payload of each route has a cargo density of 100 kg/m3. The
demand is also considered asymmetric between origin-destination city pairs such that returning and
connecting flights are assumed to have a cargo density of 50 kg/m?®. Weekly cargo-by-weight [lbs]
(V), between an origin (i) - destination () pair (i, j), is estimated as the sum of the products of cargo
density factor (f) and max payload of a given aircraft flying the given route (v) as shown in Equation
(n) denotes a particular aircraft, where (ac) is the total number of aircraft in the route network.

Nac

Viji= Zfi,j,n*vi,j.,n (1)
n=1

2.3 Demand Model

A gravity demand model was chosen to model cargo-by-weight demand as it provides a simple nu-
merical method to quantify the effects of each geographic and socio-economic factor. A gravity model
follows Newton’s Law of gravitational force such that demand is a function of the generative factors
(g) of the origin airport (i), the attractive factors (a) of the destination airport (), obstructed by any
resistance factors (r) between the origin-destination pair (i, j) weighted by proportional coefficients
(k, o, B,7), shown in Equation

V=kly (2)
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The first gravity model is a baseline consisting of commonly used geographical and socio-economic
factors in passenger models cited in Tobias, Franz, Armin’s research on Gravity Models for Airline
Passenger Volume Estimation [14], as shown in Equation[3]

ki ~ky ~k3 k.
Vij=Phch DT )

Each parameter in Equation (3| above is specified in Table

Table 4 — Variable definitions for Baseline Gravity
Demand Model.

Variable Description
P, j=PP; Population Size

i=GCi/C; Population Catchment Area
D; Greater Circle Distance [nmi]
T; Travel Time [Hrs]

The gravity model presented in this research builds upon the baseline model, introducing additional
unique parameters which enable better prediction to the modelling of cargo demand, shown in Equa-
tion [4 Distance to the nearest highway is included in the proposed model, as cargo demand is
influenced by road networks that freight trucks use for last-mile delivery. Lastly, median income was
chosen as an additional parameter to develop the baseline model, as an individual’s purchasing
power to buy goods is influenced by their income, thereby influencing cargo demand.

ki ~ko k3 ks ks pk
V _PI}C121D13JT1;H13113 (4)

Each parameter in Equation 4/ above is specified in Table

Table 5 — Variable definitions new proposed factors.

Variable Description
H;j=H;+H; Distance to Nearest Highway [nmi]
I, =11, Median Income [CAD or USD]

3. Regional Air Cargo Flight Networks of Canada and The United States

This section presents the current Canadian and United States Regional air cargo networks used to
evaluate the cargo demand model. Two years of historical ADS-B data of Origin-Destination flight
paths of each airline’s regional fleet were allocated between October 14, 2021, and October 14,
2023, to establish each country’s current state of regional air cargo network. Dates a year after 2020
were chosen to mitigate effects that increased cargo demand during the COVID-19 pandemic might
have had on the air cargo industry. The air cargo network for each market was simplified to a weekly
basis to remove any one-off routes. As such, for a route to be considered a part of the network, it
must have been operated at least once a week.
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3.1 Canadian Network

During the above-mentioned period, the Canadian regional air cargo network had 36 planes that flew
28783 flights to 28 cities on 39 weekly routes. Every half-hour, a regional air cargo flight occurs in
Canada. A view of Canada’s regional air cargo flight network is shown in Figure (1} with a close-up of
different regions shown in Figure

(a) West Coast (b) Prairies

(c) Central

Figure 2 — Close-up of Canada’s regional air cargo network in different regions.
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Canada generally follows the traditional Hub-Spoke route networks with minor changes to its structure
in different regions. The West Coast only flies short-distance to Vancouver Island, which originates
from Vancouver. In the Prairies, most routes originate from Saskatoon and spoke northwards on
long-distance flights to remote communities. The Prairies hub and spoke network has routes that
connect from Saskatoon, heading east to Winnipeg in Manitoba, then Thunder Bay in Northern On-
tario. Central Canada Consists of two nearby hub cities, Hamilton and Toronto. Both these hub
cities spoke out to span across the Great Lakes into Montreal in Quebec and as north as Timmins
in Ontario, predominately using connecting routes. Most hub airports in the Canadian network are
near the United States border, suggesting that road networks distribute time-sensitive trade with the
United States by utilizing air cargo networks to span into Canada.

3.2 United States Network

Throughout the two years mentioned above, the United States Regional Air cargo network had 530
aircraft that flew 449652 times to 329 cities, creating 521 weekly routes. In this network, 13 flights
occur every half-hour. That is 13 times more flights every half-hour compared to the Canadian mar-
ket. The United States regional air cargo network is depicted in Figure [3} filtered to different regions
based on the origin airport shown in Figure [4]

N N

——

Figure 3 — US regional air cargo network from October 14, 2021 to October 14, 2023

Route patterns in the United States can be categorized into two main behaviours: coastal and land-
locked. States that line the coasts or the Great Lakes have short-distanced routes concentrated
along the coastline while also having routes that spoke out from the coastline to nearby states. Con-
centrated routes near the coastlines can be attributed to the time-sensitive nature of air cargo. The
coastal behaviour is noted in Figure [4| a and d. Intra-state versions of a typical Hub-Spoke route
network are observed for landlocked states, shown in Figure |4/ b and c. The intra-state hub-spoke
networks in landlocked states typically have a hub airport that borders another state and spokes to-
wards the other side of the state longitudinally and laterally. Feeding into these intra-state hub-spoke
routes are tails that move towards neighbouring states, closer to the nearest coastline. A hypothesis
for the behaviours seen in landlocked states is that time-sensitive cargo arriving at ports on the United
States coast uses air cargo route networks for on-time regional demand rather than less timely road
networks.
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\

(a) Pacific Coast (b) Mountain

l ¥

AN

(c) Central (d) East Coast

Figure 4 — Close-up of different regions in US regional air cargo network.

4. Results and Discussion

This section first applies the baseline and proposed demand model to the Canadian test case and
further expands on understanding and improving its performance. The findings from the Canadian
test case were then applied to the United States test case to validate the demand model performance
with a different market.

4.1 Determination of Hub Airports

By generating a contour density agglomeration of initial weekly cargo-by-weight demand plotted
against all theoretical origin-destination pairs, hub airports of a given network can be observed. Fig-
ure [B] below describes a method for identifying hub airports within a route network based on the
number of route pairs with other airports applied to the Canadian network.

Dots that create vertical lines in Figure [5] denote the hub airport as the index with its spoke airports.
Horizontal lines on the graph represent the same hub airports as the vertical lines. This artifact oc-
curs because the contour densities are reflected about the diagonal due to plotting airport indices
against themselves. The specks that form zigzags on the contour are due to the connecting flight
loops from a hub city in Central Canada, visualized on a map in Figure [2l Hub airports of Canada’s
regional air cargo network, determined from Figure [5| are shown in Table [6]

9
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Demand Estimate Between I-] pairs in Canadian Network

F 54000

- 48000

42000

36000

[ 30000

F 24000

Airports Used in Route Network

18000

12000

6000

SEQOEDONS VD W L 07U S2>n P00 0= ¥ x
FE0o2BNErEC o PES T EERFEESELE
Airports Used in Route Network

Figure 5 — Initial weekly estimated demand contoured between origin-destination pairs in Canada’s
network.

Table 6 — Hub airports within Canada’s regional
air cargo network.

Airport IATA Code | Airport City
YVR Vancouver
YXE Saskatoon
YYZ Toronto
YHM Hamilton

Figure [6] applies the same concept shown in the Canadian market, shown in Figure [5] to the United
States market, but sectioned using the same sections shown in Figure [4] for visualization purposes.
As the total US routes were divided into sections based on the origin airport, some asymmetry ap-
peared across the diagonals of the plots. As such, hub airports were determined by vertical and
horizontal lines. Table[7|denotes the hub airports in the United States market.

10
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Figure 6 — Initial weekly estimated demand contoured between origin-destination pairs in the US
network.
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Table 7 — Hub airports within the US regional air cargo network.
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Airport IATA Code | Airport City

\ Airport IATA Code | Airport City

IAH
CAK
MSP
PKB
MOT
FAR
APN
GRR
MEM
ESC

IMT
MKE
LAN
DFW
PLN
ClU
OMA
AFW

IND
CWA

ICT
FSD
DUA
SDF
RDU
MEO
BWI
EWR
FLL
PVD
MHT
ALB

PWM
BUF
WVL
SYR
ROC
MDT

ILM
CAE
EDE
LAA
FAT

Houston
Akron-Canton
Minneapolis—Saint Paul
Williamstown
Minot

Fargo

Alpena

Grand Rapids
Memphis
Escanaba

Iron Mountain
Milwaukee
Lansing

Dallas Fort Worth
Pellston
Kincheloe
Omaha

Fort Worth
Indianapolis
Mosinee
Wichita

Sioux Falls
Durant
Louisville
Raleigh-Durham
Manteo
Baltimore
Newark

Fort Lauderdale
Warwick
Manchester-Boston
Albany

Portland
Buffalo
Waterville
Syracuse
Rochester
Middletown
Wilmington
West Columbia
Edenton

Lamar

Fresno

12

MLS
DEN
MSO
CPR
BIL
AUS
GTF
WWR
PHX
SLC
LBB
MAF
SAT
SJT
EAR
ABQ
ABI
DRO
MTJ
WDG
HNL
ANC
OAK
SMF
LAS
SMX
VIS
BFL
YK
BUR
ONT
SEA
PSC
GEG
PDX
LGD
EUG
OTH
CEC
SBP
IPL
ESD
SGU

Miles City
Denver
Missoula
Casper
Billings
Austin—Bergstrom
Great Falls
Woodward
Phoenix

Salt Lake City
Lubbock
Midland

San Antonio
San Angelo
Kearney
Albuquerque
Abilene
Durango
Montrose
Enid
Honolulu
Anchorage
Oakland
Sacramento
Las Vegas
Santa Maria
Visalia
Bakersfield
Inyokern
Burbank
Ontario
Seattle-Tacoma
Pasco
Spokane
Portland

La Grande
Eugene
North Bend
Crescent City
San Luis Obispo
Imperial
Eastsound
St. George



Modeling Cargo Demand for Regional Air Transport Networks in Canada and the United States

4.2 Demand Model Results

The objective of the proposed demand model is to generate a model that can be applied to complete
air cargo regional markets. Concerning the test cases of Canada and the US, the objective is that the
demand model improves upon the baseline model, and the model can explain a majority of variation
within the route network. In other words, the demand model can quantitatively explain the variation
by a coefficient of determination (R?) greater than 0.5. A summary of the results for the baseline and
proposed model on Canada and the US regional air cargo networks is shown in Table [8|and Table 9]
respectively.

Table 8 — Summarized results of baseline and proposed demand model
applied to the Canadian regional air cargo network.

K! K? K3 K* K K° R?
Baseline 0.682 0.396 -2.002 -1.169 - - 0.857
+ H; 0.575 0.439 -1.368 -1.609 -0.538 - 0.874
+1; 0.851 0.613 -22.952 -18.986 - 4763 0.865

H;;+I; 0400 0324 13.971 -16.464 -0.761 -3.427 0.882

Table 9 — Summarized results of baseline and proposed demand model
applied to the US regional air cargo network.

K! K? K3 K* K> K° R?
Baseline 0.070 -0.028 1.443 -1.452 - - 0.034
+H;; 0.070 -0.026 1.430 -1.434 0.075 - 0.036
+1; 0.065 -0.025 0.233 -0.212 - 0.283 0.049

Hi;+1,; 0065 -0.024 0.258 -0.237 -0.030 0.275 0.049

Evaluating the baseline demand model for the Canadian regional air cargo network, shown in Table
correlates well with an R? value of 0.857. Changing the demand model to the proposed new cargo
model increases R” by 3% to 0.882. Comparing the demand model results to those of the US market,
shown in Table @] the baseline model performance is 0.034, an increase of 44% to 0.049 when using
the proposed model. When only including median income on top of the baseline model in the US,
the R? increases by the same percentage, suggesting that the route’s accessibility to a highway is
not as important in the US route network relative to the Canadian network. The Canadian network
baseline and proposed model generally perform well and surpass the target R> of 0.5 by 76%, while
both US models shortfall the criteria by 90%, which signifies that different factors drive the US air
cargo regional network.

4.3 Demand Model Improvements

Although the initial results of the proposed demand model on both networks suggest that the Cana-
dian and US networks rely on different variables, it does not signify that improvements can be made
to both models by filtering routes by the same parameter. Passenger demand models are typically
filtered by distance into a set of ranges [12]]. Figure [/| applies the method of filtering by distance to
both test cases using a K-Means Clustering Algorithm (KM). A K-Means Clustering Algorithm is an
unsupervised machine learning algorithm that divides the data points of specified dimensions into
several clusters to minimize the sum of squares within a cluster [18].

13
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K-Means Clustering in Canadian Regional Air Cargo Network
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Figure 7 — K-Means clustering results with respect to distance in both test cases.

Filtering initial demand estimates by city pair distance using a K-means clustering algorithm in both
test cases of the Canadian and US air cargo regional networks does not create ranges of distance
based on demand; instead, it creates ranges of demand based on distance. Hence, city pair dis-
tance cannot be used for a systematic approach to creating filtering ranges to apply the proposed
cargo demand model. However, using a K-Means clustering algorithm on the median income in both
networks provides explicit ranges to which the proposed demand model can be applied, as shown in
Figure[8] Results of using the plots in Figure 8| as a reference to filter the Canadian and US markets
by median income in their respective currencies are found in Table [T0]and Table [T} respectively.

City Pair Initial Cargo Demand Estimate [Ibs]

K-Means Clustering in Canadian Regional Air Cargo Network
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103

City Pair Initial Cargo Demand Estimate [lbs]

K-Means Clustering in US Regional Air Cargo Network
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Figure 8 — K-Means clustering results with respect to product median income between city pairs in

both test cases.
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Table 10 — Proposed demand model applied to product median income filtered Canadian

network.
KT K? K3 K* K° K© R>
Baseline 0.682 0.396 -2.002 -1.169 - - 0.857
Hij+1; 0.400 0.324 13.971 -16.464 -0.761 -3.427 0.882
L <1.4x10° 0.024 0.034 -31.320 31.214 -0.063 8.001 0.997
14x10° <1 ;<1.75x10° 0.147 -0.060 -5.670 5.282 -0.345 1.617 0.826
;> 1.75x 10° 1.020 1.146 -18.863 10.954 6.822 3.238 0.993

Table 11 — Proposed demand model applied to product median income filtered

US network.
K! K> K3 K* K> K©° R?
Baseline 0.070 -0.028 1.443 -1.452 - - 0.034
Hij+1; 0.065 -0.024 0.258 -0.237 -0.030 0.275 0.049

[,;<0.65x 10 0.063 0.034 -1.878 1.927 0.095 0.768 0.068
I,;>065x10" 0.046 -0.019 2.008 -1.967 -0.114 -0.090 0.020

Filtering initial demand estimate by median income for the Canadian market shows a significant im-
provement to the proposed model R? of 13% and 12.6% to 0.997 and 0.993 of the lower and upper
median income brackets, respectively. In contrast, Canada’s middle median income group saw a
decrease of -6% to R?> when the model was applied. Negatively proportional factors within the middle
median income bracket in the Canadian market were city pair distance and highway distance, infer-
ring that these factors either deter or are not considered a factor for demand. The US network saw
an R? increase of 39% to its lower median income bracket but still under the criteria of 0.5 R?, while
its upper median income bracket denotes no correlation to the model. The discrepancies between
the R? in both test cases further suggest different factors further affect the US network.

4.4 Improving Proposed Demand Model for US Test Case

Observing the varying network behaviour depicted in Figure 4 and described in Section [3.Rthe spar-
sity of the network hints that intra-state and nearby inter-state route behaviour is independent of the
overall US network. Thus, breaking down the US network from coast to coast, nearby inter-state and
intra-state routes could improve the model’'s performance.

4.4.1 Coast to Coast Breakdown
Results of breaking down the US network into four sections based on time zones, shown in Figure [4]

starting from the East Coast to the Pacific Coast, and applying the proposed demand model along
with filtering using median income are shown in Table[12] [13} [14]and

15
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Table 12 — Proposed demand model, with filtering by median income applied to East Coast
routes of the US.

KT K? K3 K* K> K° R?
Baseline 0.050 -0.019 1529 -1.511 - - 0.035
Hij+1; 0.074 0.017 0.964 -0.853 0.250 0.098 0.078
I; < 0.4x10" 0.065 0.231 -5.854 6.319 0460 1.680 0.365
04x10° <[ ;<0.7x10° 0.076 -0.049 2422 -2696 -0.019 -0.228 0.104
I;>0.7x10" 14,982 -2.578 -30.220 -28.329 17.353 -11.855 0.986

Table 13 — Proposed demand model, with filtering by median income applied to the Central
routes of the US.

K! K? K3 K* K> K° R?
Baseline -0.003 -0.034 1.727 -1.772 - - 0.010
Hij+1; 2.850x10> -0.035 2.544 -2.605 -0.183 -0.189 0.023
L <2.7x10° -0.052 -0.070 -2.860 -2.825 -0.375 -0.206 0.150
27%x10° <1 ; <3.8%x10° 0.053 -0.070 2.158 -2.240 -0.423 -0.164 0.076
I >3.8x10° -0.097 0.171 -7595 8295 2811 2.101 0.201

Table 14 — Proposed demand model, with filtering by median income applied to the Moun-
tain routes of the US.

K! K? K3 K* K> K® R’
Baseline 0.103 0.006 1.299 -1.316 - - 0.057
Hij+1;; 0.116 0.005 -0.291 0.267 -0.249 0.362 0.079
;< 4.0x10° 0.117 -0.042 -6.094 6.018 -0.288 1.697 0.145
40%x10° <1;;<545x10° 0.080 0.044 -4.318 4.554 -0.139 1.328 0.097
I >5.45x10° 0.150 0.036 -5.212 5.189 -0.780 1.443 0.381

Table 15 — Proposed demand model, with filtering by median income applied to the Pacific
Coast routes of the US.

K! K? K’ K* K’ K® R?
Baseline 0.098 -0.062 1.378 -1.146 - 0.110
Hij+1;; 0.101 -0.067 0.258 1.173 -0.887 0.023 0.147
I;; < 0.65 x 10'0 0.100 -0.018 -1.372 1.681 0.413 0.610 0.178
0.65x 101 <[ ;<09x10° 0.183 -0.167 -6.815 7.363 1.187 1.699 0.277
I;>0.9x10" -0.706 -0.266 34.869 -31.152 6.993 -6.752 0.885

Applying the demand model when breaking the US market down from coast to coast generally im-
proves the model’'s performance relative to the entire US network shown in Table The improve-
ment in the model performance further hints towards the hypothesis that different regions and states
within the US market are affected by different sets of variables.
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Moreover, the model performance improves further when the median income is used to filter the data.
The greatest improvement seen in the model performance was in the upper median income ranges
of both the East and Pacific coasts, with an R? of 0.986 and 0.885, respectively, passing the criteria
of an R? value greater than 0.5. In contrast, the landlocked Central and Mountain regions behaved
similarly in each median income range, with no model version passing the target R>. Observing that
the model behaves similarly in coastal and landlock regions further confirms that bodies of water play
a factor in demand mentioned in Section 3.2

4.4.2 Inter-State Level Breakdown

Results from Section suggest that rather than the whole US market working together, behaving
the same, different states have different relations in the market. Two test cases within the US network
of neighbouring states determine whether inter-state relations behave differently in different regions.
Figure [9] presents routes from California, Nevada, Oregon and Washington, and Figure [10] displays
routes from Michigan and Wisconsin. Their respective results are in Table [16/and Table

Figure 9 — Regional air cargo routes originating from California, Nevada, Oregon and Washington.

Table 16 — Proposed demand model, with filtering by median income applied to California, Nevada,
Oregon and Washington routes.

K' K? K3 K* K’ K° R?
Baseline 0.083 -0.033 1.448 -1.186 - - 0.088
Hij+1i 0.082 -0.035 1.210 -0.931 0.259 0.0461 0.097
I;;<0.65x 10'° 0.088 0.022 -4.195 4.457 0.048 1.277 0.177
0.65x10"° <[ ;<09x10° 0.017 -0.106 0.826 -0.327 0512 0.195 0.151
I ;> 0.9 x 1010 -0.706 -0.266 34.869 -31.152 6.993 -6.752 0.885
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Figure 10 — Regional air cargo routes originating from Wisconsin and Michigan.

Table 17 — Proposed demand model, with filtering by median income applied to Wisconsin and
Michigan routes.

K! K? K3 K* K> K° R?
Baseline -0.029 -0.123  1.849 -1.731 - - 0.123
H;j+1; -0.084 -0.079  1.750 -1.520 -0.502 0.087 0.237
L <28x10° -0.081 -0.077 2.867 -2.594 -0.486 -0.180 0.195
28%x10° <[ ;<3.6x10° -0.296 -0.316 -135.810 138.847 -1.284 32.114 0.943
;> 3.6x10° -0.274 0.108 -117.909 120.886 5.020 2.747 0.989

Table |16| shows that the improved model does not achieve the acceptance criteria of an R? greater
than 0.5 in all but high median income. Model performance in Wisconsin and Michigan, shown in
Table display results better than in California, Nevada, Oregon and Washington, with middle and
high median income achieving the test criteria with R? values of 0.943 and 0.989, respectively. Re-
sults of the two inter-state test cases indicate that although improvements are made to the model’'s
performance when observing routes originating from neighbouring states, the variability in prediction
levels demonstrates that additional factors are not considered in the proposed model that are key
contributors to the US route network.
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4.4.3 Additional Factors

As mentioned in Section [4.3implementing factors inferred from US network observations could po-
tentially increase the proposed demand model performance within the market. Coastal routes in the
US span close to the coastal line and are short distances compared to routes near the centre of the
US expanded upon in Section Moreover, hub airports near the coast cannot span radially like
landlocked hubs. As in passenger demand, incorporating a factor considering an airport’s distance to
a body of water (W) into the proposed cargo demand model could show performance improvements.
Moreover, due to varying sales taxes within each state, an individual’s purchase and operation cost
motivation could influence route patterns between states. A sales tax factor (S) could increase the
model’s fidelity. Finally, the impact of regulations from state to state varies. With 50 states in the US,
the effect of these regulations can influence the ability of air cargo to flow through different states.
The Federal Regulations and State Enterprise Index (FRASE, F) measures the impact of federal
regulation on each state [19]. The relation between different state FRASE indices could present an
opportunity for inter-country politics to have a role in route network distributions within the US market.
Table [18| below summarizes the additional proposed factors to the model, and Table [{9 summarizes
the respective results on the US route network.

Table 18 — Proposed variables for US network.

Variable Description

Sij=98i+S; State Sales Tax

B;j=B;+B; Distance to Nearest Body of Water (Geat Lake or Ocean) [nmi]
F,j=F;xF; State FRASE Index

The revised proposed model for the US is shown in Equation [5|below.
Vi, = Pick Db Th s kst gis FR (5)

L] L] L) L] L) L)L) L] L]

Table 19 — Summarized results of revised proposed demand model for the US regional air cargo network.

K! K? K3 K* K’ K° K’ K8 K° R?
Baseline 0.070 -0.028 1.443 -1.452 - - - - - 0.034
Hij+1; 0.065 -0.024 0.258 -0.237 -0.030 0.275 - - - 0.049
+8; 0.073 -0.026 0.206 -0.153 0.064 0.288 -0.102 - - 0.064
+ B 0.063 -0.024 0.446 -0.407 0.074 4.763 - 0.241 - 0.052
+Fj 0.065 -0.024 0.159 -0.143 0.038 0.297 - - 0.111 0.050

S;j+Bij+F; 0078 -0.029 0.209 -0.143 0.092 0.295 -0.114 -0.057 0.260 0.073
1,;<0.65x 10 0.081 -0.019 -1.103 1.178 0.099 0.591 -0.112 -0.045 0.204 0.092
I,;>0.65x10% 0016 -0.033 4.385 -4.155 0.081 -0.581 0.122 -0.152 0.213 0.103

Table 20 — Revised demand model, with filtering by median income applied to East Coast routes
of the US.

K! K? K3 K* K> K°® K’ KB K° R?
Baseline 0.050 -0.019 1.529 -1.511 - - - - - 0.035
Hij+1ij 0.074 0.017 0964 -0.853  0.250 0.09 - - - 0.078
Sij+Bij+F 0.091 0.035 2.647 -2.357 0.398 -0.212 -0.848 -0.026 -0.589 0.124
I; < 0.4x 10 0.131  0.109  -1.361 1.776 0.461 0.639 -0.896 0.157 -1.585 0.469
04x10<7;<06x10° -0.040 -0.140 27.389 -27.792 -0.161 -5.378 -3.968 0.310  0.448 0.492
I;>0.6x 10" 0559 0.186 60.155 -64.219 3.947 -14260 5763 1581 27.350 0.475
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Table 21 — Revised demand model, with filtering by median income applied to the Central routes of the
us.

K! KZ K3 K* K> K° K7 K?® K° R?
Baseline -0.003 -0.034 1.727 1.772 - - - - - 0.010
Hij+1; 2.850x10~°>  -0.035 2.544 -2.605 -0.183 -0.189 - - - 0.023
Sij+Bij+F 0.009 -0.041 3.247 -3.359 -0.106  -0.341 0.081 -0.057 -0.252 0.027
Iy <27 x 10° [-0.015 -0.070 3.918 -4. 006 -0.304 -0.406 -0.855 0.076 -0.157 0.175
2.7x10° <[, ; < 3.8 x 10° -0.187 -0.755 103.696 -108.990 -3.376 -24.123 -1.926 3.862 -27.785 0.256
I >38x10’ -0.096 0.0545  -9.537 10.050 1.658 2685 -0.148 -0.376 3.532 0.325

Table 22 — Revised demand model, with filtering by median income applied to the Mountain
routes of the US.

K! Kz K3 K* K> K® K7 I K° R?
Baseline 0.103 0.006 1.299 -1.316 - - 0.057- -
Hi;+1I; 0.116 0.005 -0.291 0.267 -0.249 0.362 - - - 0.079
Sij+Bij+Fij 0.167 -0.012 -0933 0851 -0.137 0506 -0.158 -0.158 0593 0.171
I <4.0x 10° 0.179 -0.029 -8.065 7.872 -0.408 2.131 0.100 -0.228 1.067 0.210
40x10° <I;; <545%x10° 0174 0.0319 -2290 2453 -0.215 0.774 -0.162 0.025 0.413 0.223
I >545x 10° 0.172 0.028 -3.590 3450 -0.826 1.059 -0.236 0.065 0.527 0.526

Table 23 — Revised demand model, with filtering by median income applied to the Pacific Coast
routes of the US.

K! KZ K3 K* K> K® K’ K?® K R?
Baseline 0.098 -0.062 1.378 -1.146 - - - - - 0.110
Hij+1;; 0.101  -0.067  0.258 1.173  -0.887 0.023 - - - 0.147
Sij+Bij+F 0.123  -0.064 2.152 -1.724  0.507 -0.182 -0.035 -0.152 0.142 0.185
I < 0.65 x 1010 0.126 -0.018 -0.975 1.483 0.557 0.552 -0.109 -0.192 1.034 0.224
0.65x10" <7 ; <09x10° 0.318 -0.158 -0.282 1.197 1.331  0.164 -0.039 -0.369 -0.786 0.344
I ;> 0.9 x 1010 -0.658 -0.183 28.098 -26.433 9.393 -5507 0.823 0.0318 5.140 1.000

Table 24 — Revised demand model, with filtering by median income applied to California, Nevada,
Oregon and Washington routes.

K! K? K3 K* K> K° K’ K® K° R?
Baseline 0.083 -0.033 1.448 -1.186 - - - - - 0.088
Hij+1i 0.082 -0.035 1.210 -0.931  0.259 0.0461 - - - 0.097
Sij+Bij+Fj 0.143 -0.022 1.974 -1.484 0.285 -0.141 -0.079 -0.200 0.215 0.176
I < 0.65 x 1010 0.161 0.038 -4870 5500 0.155 1.452 -0.348 -0.127 3.786 0.306
0.65 x 1010 < I j <0.9x 101 0.185 -0.120 6.017 -5.123 0.722 -1.077 -0.070 -0.367 -0.525 0.326
I;>0.9x10"° -0.658 -0.183 28.098 -26.433 9.393 -5507 0.823 0.032 5.140 1.000

Table 25 — Revised demand model, with filtering by median income applied to Wisconsin and Michi-
gan routes.

K! K? K3 K4 K> K° K’ K3 K° R?
Baseline -0.029 -0.123 1.849 -1.731 - - 0.123
Hij+1; -0.084 -0.079 1.750 -1.520 -0.502 0.087 - - - 0.237
Sij+Bij+Fij -0.137 -0.078 1.374 -1.277 -0.535 0.048 1.225 0.216 -0.139 0.313
I <2.8x 10° -0.126 -0.157  8.461 -8.580 -0.576 -1.180 -2.405 0.225 7.790 0.313
2.8x10° < I <3.5x% 10° -0.194 -0.456 -54.740 55.266 -0.595 12.590 4.098 0.862 -4.271 1.000
I;>3.5%x10° -0.380 0.231 -23.854 25.267 2.046 6.176 -4.743 -0.939 10.479 1.000
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Incorporating distance to the nearest body of water, sales tax factor, and FRASE index in the pro-
posed demand model increased R?> 49% to 0.073. Although the additional factors improved the
correlation with the US market, it does not surpass the threshold of an R? greater than 0.5. Increas-
ing correlation trends continue when filtering the network by median income and applying the model
to certain areas of the US, but only the upper median income range of Central US routes is improved
to surpass the threshold R? relative to the initially proposed demand model. While the factors initially
proposed and discussed in this section capture a portion of the US regional route network behaviour,
commercial and industrial output in the US might be equally important compared to consumer-driven
air cargo transport, in contrast to the Canadian market. Considering commercial and industrial out-
put within the proposed demand model requires additional analysis of factors such as local GDP and
labour productivity rates.

5. Conclusion

This paper presents a methodology for determining air cargo networks from air flight data. Further-
more, this work proposes a model capable of predicting air cargo demand for a given route network.
The regional air cargo route networks of Canada and the United States were chosen to evaluate
the model’s performance in a comparable, lower-population market, like Canada, before applying
the model to a larger-scale market like the United States. The model's objective was to generate
a demand model capable of being applied to multi-hub regional air cargo networks. The proposed
model is built upon the gravity model typically used in passenger demand, adjusting for geographic
and socio-economic parameters affecting cargo demand. These parameters in the proposed model
include a city pair's summation of distances to the nearest highway and product median income.
Applying the developed model to the Canadian market achieved a coefficient of determination larger
than 0.88, relating to a high level of prediction accuracy. The United States test case achieved a lower
prediction success where local variables contributed to playing more significant roles. Additional geo-
graphical and consumer-economic factors, which include local sales tax, distance to a body of water,
and federal regulations and enterprise index, improved the proposed model's predictability in the
United States market but mainly did not achieve an adequate coefficient of determination, excluding
higher median income ranges. Future work building upon the proposed demand model will examine
additional commercial economic and productivity indicators to improve the correlation with the United
States regional air cargo network.
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