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Abstract

The free-play-induced complex nonlinear dynamic behavior has been an important topic in the aeroelasticity
study of aircraft for nearly half a century. In this paper, a piecewise optimization describing function (PODF)
method is proposed to investigate the characteristics and mechanisms of the free-play-induced complex
aeroelastic response. The piecewise expressions of the time history and phase portrait of the limit cycle
oscillation are derived by the PODF method, which is helpful to understand the mechanism of the free-play-
induced limit cycle oscillation. Another advantage of the PODF method is the ability to predict the higher-order
harmonics, which is not possible with the traditional describing function method. In order to verify the validity
of the PODF method, a three-dimensional all-movable horizontal tail model with torsion free-play was designed
and wind tunnel tests were conducted. The wind tunnel test results are in very good agreement with the
calculation results, which proves the effectiveness of the PODF method. In addition, the effect of initial
parameters on the dynamic response characteristics is also analyzed using the PODF method. The
methodology and conclusions of this paper can provide a reference for the study of nonlinear aeroelasticity
and the design of all-movable horizontal tails.
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1. Introduction

Structural nonlinearity has been one of the most important topics of aeroelastic research in recent
decades [1-3]. In many aircraft structures, the drive mechanisms inevitably contain friction
nonlinearities, bilinear nonlinearities, especially free-play nonlinearities due to gear clearances and
loose bearings. Previous studies have shown that aeroelastic system with free-play nonlinearity may
exhibit various complex dynamic behaviors, such as bifurcation, chaos, high-order harmonics and
limit cycle oscillation, which has a negative impact on handling quality and structural fatigue life [4-
8].

Extensive researches have been conducted on the mechanism and characteristics of the free-play-
induced limit cycle oscillation [9-12]. Various methods have been developed to study nonlinear
aeroelastic behaviors induced by free-play [13-16]. The advantages and disadvantages of these
methods are summarized in Table 1.

From Table 1, it is clear that existing methods should be improved to rapidly and accurately predict
the complex aeroelastic response caused by free-play. The improved method should have at least
the following capabilities: predicting high-order harmonics; reflecting the mechanism of limit cycle
oscillation induced by free-play; no iterative computation; no guessing of the initial solution;
applicable to three-dimensional models with complex structures; and low computational cost [17-19].
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In this paper, the piecewise optimization describing function (PODF) method is proposed to predict
the aeroelastic behaviors induced by free-play. The piecewise expressions for the time history and
phase portrait of the limit cycle oscillation are derived by the PODF method, and a three-dimensional
experimental model with free-play device is designed to verify the PODF method. In addition, the
effect of initial parameters on limit cycle oscillation behaviors is investigated.

Table 1 — Characteristics of the main methods for solving free-play nonlinear.

Method Advantages Disadvantages

--Describing function  High computational
method efficiency
--Higher-order
harmonic balance
method
--High-dimensional
harmonic balance
method

--Numerical Ability to perform
continuation method bifurcation analysis
--Point transformation  Ability to perform chaos

Inability to predict high-order harmonics

Ability to predict high- The expression becomes more complex as
order harmonics the number of harmonics increases

Ability to predict high- Requires 2n harmonics to achieve similar
order harmonics accuracy as HOHB method with n harmonics

Not easily suitable for high-DOF systems

Only for piecewise linear systems

method analysis

--Hénon'’s technique High accuracy Time-consuming
—Precise integration High accuracy Time-consuming
method

2. The Piecewise Optimization Describing Function Method

In this paper, by optimizing the traditional describing function method, the piecewise expressions for
the time history and phase portrait of the free-play nonlinear system are derived, and an efficient
prediction method for the high-order harmonics is proposed. The PODF method described in this
paper includes two steps: 1) Pre-solution based on the traditional describing function method. The
traditional describing function method is used to solve the equivalent linearized stiffness of the free-
play nonlinear system, and the amplitude and frequency of the limit cycle oscillation at different wind
speeds are determined by frequency domain methods such as the PK method; 2) Piecewise
optimization of the pre-solution results. The piecewise optimization method is used to solve the time
history and phase portrait of limit cycle oscillation, and a fast Fourier transform (FFT) is performed
on the time history results to solve the high-order harmonics in the limit cycle oscillation.

The displacement-restoring moment curve of the centrosymmetric free-play is shown in Figure 1.
Here: 6 denotes the angular displacement; F denotes the restoring moment; A denotes the
amplitude; § denotes the free-play angle; and k, is the stiffness of stiffness region.
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Stiffness | Free-play ! Stiffness
region | region Pregion

Figure 1 — Symmetric free-play stiffness curve.
The relationship between the angular displacement 8 and the restoring moment F in Figure 1 can

be expressed as a piecewise function:
2
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ko(@+8) 6<—6

F(9)={ 0 —§<0<6 1)
ko(0—8) 0>6

Related studies have derived the equivalent linearization stiffness k¢4, and the kY can be expressed
as:

cq 0 A<S
et = {ko E (p — sin(pCOS(p)] A>6 @)
_ -18
@ =cos™ -~ 3

It follows that k€7 is a constant for any given limit cycle oscillation amplitude and free-play angle.
Thus, the free-play nonlinear system can be reduced to a linear system.

When the damping is not taken into account, the aeroelastic equation can be written as:
Mg+ Kq=20Q (4)

Where: M denotes the generalized mass matrix, q = [q; - g, - )T denotes the generalized
coordinates, K = diag(kyy, -, ks, -, kmm ) denotes the equivalent linearized stiffness matrix, and
Q=1[0Q, - Q, -+ Q,,]T denotes the generalized aerodynamic force matrix.

Solving the aerodynamic forces using the subsonic doublet lattice method requires a reasonable
aerodynamic mesh of the lifting surface, as shown in Figure 2.

Y

\

\

y X

Figure 2 — Schematic of aerodynamic mesh.

Assuming that the lifting surface is divided into n grids and the pressure dipoles are arranged at the
pressure points of each grid, the following integral equations are satisfied at the downwash control
points under each grid:

1 . .
wi = j=1Acy Axjcosp; fz,- Kijdl; (i=12,-,n;j=12,--,n) (5)

Where: w; denotes the downwash speed at the downwash control point of the ith grid, Acy, denotes
the pressure coefficient on the jth grid, Ax; denotes the mid-profile length of the jth grid, ¢; denotes
the backward swept angle of the jth grid, [; denotes the length of span passing through the pressure
point of the jth grid, and K;; denotes the kernel function.

The above equation can be written in matrix form:
Ap =3 pV2D lw (6)

Where: Ap = [Ap; Ap, -+ Ap,]| denotes the pressure distribution array at the pressure point, p
denotes the fluid density, VV denotes the relative airflow speed, D denotes the matrix of aerodynamic
influence coefficients, and w denotes the downwash speed array at the downwash control point. And
there are:
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1
Apj = EpVZAcpj (7

Ax . .
Dy = S_T:COS(pjijijdlj (i=12-,mj=12-,n) (8)

The following relationship exists between the downwash speed at the downwash control point and
the vibration modes:

w=(S+iiF)q ©)

Where: F = [f{ f2 - fn] denotes the modal matrix at the downwash control point, k denotes the
reduced frequency, and b denotes the reference semi-chord.

According to the generalized aerodynamic definition, there are:
Q =F}SAp (10)

Where: F,, denotes the modal matrix at the pressure point and § = diag(AS;,AS,, -+, AS,,) denotes
the area weighted array.
Combining the above equations has:

Q= % pV2Aq (11)
where A denotes the matrix of generalized aerodynamic influence coefficient:
A=FsD™' (S +ilF) (12)
Associate equation 4 and equation 11:
Mg+ Kq= %pVZAq (13)
The above equation can be solved by PK method by setting the free vibration equation of motion as:
q = qoe’* (14)

p=wly+i) (15)

Where q, denotes the initial moment coordinates, t denotes the time, w denotes the circular
frequency, and y denotes the transient decay rate coefficient. w versus the frequency f and y
versus the structural damping coefficient g can be expressed as follows:

w =2nf (16)
g=2y (17)

In the vicinity of the critical speed of flutter, the free vibration is close to the simple harmonic vibration,
so in the calculation of the aerodynamic force, the non-constant aerodynamic force expression for
the simple harmonic vibration is still used.

The expression for the reduced frequency is:

wb
k=" (18)

The reduced frequency can also be expressed as:
k = ZIm(p) (19)
When the system undergoes simple harmonic vibration:

4 =-w’q (20)
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From equation 14, there is:

q=p’q (21)
The equation of PK method is:

(p?m — 2222 4 2 py2Rel4]) qo = 0 (22)

Equation 22 can be expressed as:
[R—pIlgy =0 (23)

[ 0 I
R=| , —i(w 1 1,2 prM—llm[A]] (24)
M (K ~pV Re[A]) et s

Thus, solving Equation 24 can be translated into solving for the eigenvalues of R. For a given fluid
density, Mach number, and a range of wind speeds, the PK method solves by iterative means for g
and f at each wind speed. Thus, the critical wind speed and frequency of the equivalent linearization
system can be identified from the V-g diagram and V-f diagram, which can be regarded as the limit
cycle oscillation critical values.

Figure 3 show the time history of limit cycle oscillation of the nonlinear system with free-play,
including the free-play region (red line) and two stiffness regions (blue line).

v 0,
| A= |-
Stiffness
region Lif,

ol 0

Free-play 0
region 1, t

AdiAt=v,,

Stiffness L
region _

Figure 3 — The time history of PODF method.

The potential energy of the system is 0 at the free-play region and the speed of motion is constant
without considering the aerodynamic work. The combination of two stiffness regions can be regarded
as a linear system undergoing simple harmonic oscillation (the amplitude is A — §; the frequency is
temporarily set to f,,) [20]. The displacement 6, as a function of time t is given by:

0y(t) = (A —6) X sin2nfyt (25)

The derivative of the above equation has:

0o(t) = 2mfy(A — 8) X cos 2mfyt (26)

Then:
Vi1 = 0,(0) = 21y (A — 8) (27)
Vi1 = —Vpp = —Vp3 = Upa (28)

Where v;; denotes the speed of motion at ¢;.
Thus there is:
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L_48 .1
o 4”t1 + fo (29)
Combined equations 27 and 29:
26+AT—6
fo=" 200 (30)
Vi = (46 + 24 — 26m)f (31)

Thus, the piecewise expressions of the time history can be represented as:

( (46 + 2Am — 26m)ft 0<t<ty
. [2nf(26+An—-6m)(t—tq)
(A—6)><s1n[ o ]+6 t1<t<t,
1
0(t) = —(46 + 24m — 26m)f (£ - E) t, <t <t (32)
. [2rnf(26+An—6m)(t—t3)
—(A—5)><s1n[ om ]—6 t3<t<t,
1 1
\ (45+2A7r—267r)f(t—?) h<t<s
t, = &
(46+2Am-26n)f
tz = 2f (46+2Aft—257‘r)f
_1 5 (33)
ts = 2f + (46+2Am—2870)f
g,=r_ 8
4+ 7T F  (a8+24n—26m)f

According to the calculated time histories, the high order harmonics can be computed rapidly by the
FFT.

In the same way, the phase portrait of PODF method is illustrated in Figure 4 and can be represented
as:

i\/[(A_g)z_(g_Hg)z]xw 0 < —6

An-6m
v(0) = +(46 + 24m — 26m)f —6<0<6 (34)
+/[(A=8)7 = (6 - 5)7] x L g5 5
I
L | e S S

e

o 0 5 A
d

Stiffness Free-play Stiffness
region region region

Figure 4 — The phase portrait of PODF method.

3. Calculations and Discussion

All-movable horizontal tail systems have complex transmissions. Bearing machining errors, gear
clearance, and hinge wear result in the inevitable presence of free-plays in transmissions. Previous
studies have shown that the existence of free-play nonlinearity in all-movable horizontal tail leads to

6
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the occurrence of limit cycle oscillation at a speed lower than the critical flutter speed of a linear
system, causing problems such as structural fatigue, degradation of maneuvering capability,
reduction of aiming accuracy, and structural damage [2]. Therefore, in this section, an all-movable
horizontal tail model with torsion free-play is constructed, and the PODF method is used to analyze
the effect of free-play nonlinearity on the aeroelastic response of all-movable horizontal tail.

A finite element (FE) model of the all-movable horizontal tail was developed, as shown in Figure 5.
Therefore, equation (24) can be solved directly by the FE method, and the time histories and phase
portrait can be derived from equations (32) and (34). Thus, the PODF method can be effectively
applied to any complex three-dimensional model in conjunction with the FE method [20].

gy “Torsional free-play device

Spherical plain bearing
Bending If;if—spring\

Torsional leaf-spring

Figure 5 — The finite element model.

Four different torsion free-play angles (+0.2°, +0.4°, £0.6°, and +0.8°) were selected, and the time
histories, phase portraits, and frequency spectra of the limit cycle oscillations occurring at 30 m/s
and 40 m/s were calculated.

The time histories at different free-play angles and wind speeds are shown in Figure 6. From the
figure, it can be seen that the limit cycle oscillation amplitude increases with the free-play value at
the same wind speed, and the limit cycle oscillation amplitude increases with the wind speed at the
same free-play value. The frequency of the limit cycle oscillation increases with increasing wind
speed, independent of the free-play value.

|.6 T T T T |-6 T T T T T T
— F=30mfs; §=02° - —— FV=40m/s; §=02° .
. ¢ e
N V=30m's; 8 =04° N V=40 m/s; § = 0.4° /
osk K4 N V= 30m/s; 8 = 0.6° A sl J M V=40mis; §=06° f ]
, : / \
4 N V- 30ms s=08° K4 : W —e=V=40mis 5 =087
7 \ o

- 0.0

-0.8

-1.6 L L -1.6 L I
.00 0.04 0.08 012 0.16 .00 0.04 0.08 012 016
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Figure 6 — Time histories at different free-play angles and wind speeds.

The speed-displacement phase diagrams for different initial conditions are shown in Figure 7. From
the figure, it can be seen that the vibration angular speed reaches an extreme value in the free-play
section, which increases with the free-play value at the same wind speed, and increases with the
wind speed at the same free-play value.
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Figure 7 — Phase diagrams at different free-play angles and wind speeds.

The frequency spectra of the limit cycle oscillation for different initial conditions are shown in Figure
8. The high-order harmonics are observed in all eight sets of calculations, and the frequencies of the
high-order harmonics are all three times the main frequency. The frequencies of the main frequency
and the high-order harmonics increase with increasing wind speed, independent of the free-play
value. The peak amplitude of the main and high-order harmonics at the same wind speed increases
with the free-play value, and the peak amplitude of the main and high-order harmonics at the same

free-play value increases with the wind speed.
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Figure 8 — Frequency spectra at different free-play angles and wind speeds.

4. Correlation Between Theory and Experiment

In this section, the PODF method is experimentally validated by wind tunnel tests. The computational
results are compared with the wind tunnel test measurements to verify the effectiveness of the PODF
method for solving the time history, phase portrait and high-order harmonics of complex three-
dimensional structures.

The structure of the wind tunnel test model is consistent with the finite element model. In addition,
the fairing and support structure were constructed, as shown in Figure 9. The torsion free-play angle
of the wind tunnel test model was measured as +0.243° [20].
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All-movable horizontal tail

sional free-play device
Spherical plain bearing
Torsional leaf-spring

Fairing

Figure 9 — The wind tunnel test model [20].

4.1 Time history

The time history of limit cycle oscillation is shown in Figure 10 (i.e. V = 33 m/s is taken as an example).
Consistent experimental and computational results demonstrate the effectiveness of the PODF
method.

1 -O T T T
A Experimental —— Numerical |

)
o Stiffness
g region
o Free-play
< region
2 Stiffness
o region
w

—

o

=

Y 12r  uf 3r 2f

Nondimensional time

Figure 10 — Time history of torsion angle [20].

4.2 Phase portrait

Figure 11 show the phase portrait of limit cycle oscillation. It can be seen that the results of the
consistency between the calculations and the wind tunnel tests reconfirm the accuracy of the PODF
method.

20 5 .

o Experimental + Numerical
< 10t : .
;’ 2 i Sparse, unever
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S .20 region - region - region
eis

-0.6 -0.3 0.0 0.3 0.6

Torsional angle, deg

Figure 11 — The phase portrait of the torsion angle and torsion speed [20].

4.3 High-order Harmonics

The FFT frequency spectrum is shown in Figure 12. The wind tunnel test results and the

computational results show good agreement both in terms of frequency values and the

corresponding amplitude response. The 3rd harmonics are observed in both wind tunnel test results

and computational results. The PODF method has an advantage over the traditional describing
9
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function method in accurately predicting higher order harmonics.
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Figure 12 — Frequency spectrum of limit cycle oscillation [20].

5. Conclusions

In this paper, a piecewise optimization describing function (PODF) method is proposed to solve the
problem that the traditional describing function method cannot predict the high-order harmonics. The
PODF method can give the piecewise expressions of the time history and phase portrait of the free play
nonlinear system in the limit cycle oscillation process. In the paper, a FE model of all-movable horizontal
tail with torsion free play is constructed, and the dynamic behavior of nonlinear aeroelastic systems is
studied by the PODF method. In order to verify the effectiveness of the PODF method, a wind tunnel
test model with torsion free play is also designed. The results of the wind tunnel test are in good
agreement with the simulation results, which proves that the proposed PODF method can accurately
predict the time history and phase portrait of the limit cycle oscillation, and the PODF method can also
effectively predict the high-order harmonics of limit cycle oscillation. The accuracy of the PODF method
is better than that of traditional describing function method. The PODF method improves the
shortcomings of traditional describing function method which cannot predict high order harmonics and
cannot directly reflect the mechanism of nonlinear aeroelastic behavior induced by free play. In addition,
the PODF method has the advantages of the traditional describing function method, such as high
computational efficiency, strong applicability and convenient formula derivation.
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