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Abstract 

The free-play-induced complex nonlinear dynamic behavior has been an important topic in the aeroelasticity 

study of aircraft for nearly half a century. In this paper, a piecewise optimization describing function (PODF) 

method is proposed to investigate the characteristics and mechanisms of the free-play-induced complex 

aeroelastic response. The piecewise expressions of the time history and phase portrait of the limit cycle 

oscillation are derived by the PODF method, which is helpful to understand the mechanism of the free-play-

induced limit cycle oscillation. Another advantage of the PODF method is the ability to predict the higher-order 

harmonics, which is not possible with the traditional describing function method. In order to verify the validity 

of the PODF method, a three-dimensional all-movable horizontal tail model with torsion free-play was designed 

and wind tunnel tests were conducted. The wind tunnel test results are in very good agreement with the 

calculation results, which proves the effectiveness of the PODF method. In addition, the effect of initial 

parameters on the dynamic response characteristics is also analyzed using the PODF method. The 

methodology and conclusions of this paper can provide a reference for the study of nonlinear aeroelasticity 

and the design of all-movable horizontal tails. 
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1. Introduction 

Structural nonlinearity has been one of the most important topics of aeroelastic research in recent 

decades [1-3]. In many aircraft structures, the drive mechanisms inevitably contain friction 

nonlinearities, bilinear nonlinearities, especially free-play nonlinearities due to gear clearances and 

loose bearings. Previous studies have shown that aeroelastic system with free-play nonlinearity may 

exhibit various complex dynamic behaviors, such as bifurcation, chaos, high-order harmonics and 

limit cycle oscillation, which has a negative impact on handling quality and structural fatigue life [4-

8]. 

Extensive researches have been conducted on the mechanism and characteristics of the free-play-

induced limit cycle oscillation [9-12]. Various methods have been developed to study nonlinear 

aeroelastic behaviors induced by free-play [13-16]. The advantages and disadvantages of these 

methods are summarized in Table 1. 

From Table 1, it is clear that existing methods should be improved to rapidly and accurately predict 

the complex aeroelastic response caused by free-play. The improved method should have at least 

the following capabilities: predicting high-order harmonics; reflecting the mechanism of limit cycle 

oscillation induced by free-play; no iterative computation; no guessing of the initial solution; 

applicable to three-dimensional models with complex structures; and low computational cost [17-19]. 
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In this paper, the piecewise optimization describing function (PODF) method is proposed to predict 

the aeroelastic behaviors induced by free-play. The piecewise expressions for the time history and 

phase portrait of the limit cycle oscillation are derived by the PODF method, and a three-dimensional 

experimental model with free-play device is designed to verify the PODF method. In addition, the 

effect of initial parameters on limit cycle oscillation behaviors is investigated. 

Table 1 – Characteristics of the main methods for solving free-play nonlinear. 

Method Advantages Disadvantages 

--Describing function 

method 

High computational 

efficiency 
Inability to predict high-order harmonics 

--Higher-order 

harmonic balance 

method 

Ability to predict high-

order harmonics 

The expression becomes more complex as 

the number of harmonics increases 

--High-dimensional 

harmonic balance 

method 

Ability to predict high-

order harmonics 

Requires 2n harmonics to achieve similar 

accuracy as HOHB method with n harmonics 

--Numerical 

continuation method 

Ability to perform 

bifurcation analysis 
Not easily suitable for high-DOF systems 

--Point transformation 

method 

Ability to perform chaos 

analysis 
Only for piecewise linear systems 

--Hénon’s technique High accuracy Time-consuming 

--Precise integration 

method 
High accuracy Time-consuming 

2. The Piecewise Optimization Describing Function Method 

In this paper, by optimizing the traditional describing function method, the piecewise expressions for 

the time history and phase portrait of the free-play nonlinear system are derived, and an efficient 

prediction method for the high-order harmonics is proposed. The PODF method described in this 

paper includes two steps: 1) Pre-solution based on the traditional describing function method. The 

traditional describing function method is used to solve the equivalent linearized stiffness of the free-

play nonlinear system, and the amplitude and frequency of the limit cycle oscillation at different wind 

speeds are determined by frequency domain methods such as the PK method; 2) Piecewise 

optimization of the pre-solution results. The piecewise optimization method is used to solve the time 

history and phase portrait of limit cycle oscillation, and a fast Fourier transform (FFT) is performed 

on the time history results to solve the high-order harmonics in the limit cycle oscillation. 

The displacement-restoring moment curve of the centrosymmetric free-play is shown in Figure 1. 

Here: 𝜃  denotes the angular displacement; 𝐹  denotes the restoring moment; 𝐴  denotes the 

amplitude; 𝛿 denotes the free-play angle; and 𝑘0 is the stiffness of stiffness region. 

 

 

Figure 1 – Symmetric free-play stiffness curve. 

 

The relationship between the angular displacement 𝜃 and the restoring moment 𝐹 in Figure 1 can 

be expressed as a piecewise function: 
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𝐹(𝜃) = {

𝑘0(𝜃 + 𝛿) 𝜃 < −𝛿
0 −𝛿 ≤ 𝜃 ≤ 𝛿

𝑘0(𝜃 − 𝛿) 𝜃 > 𝛿

 (1) 

Related studies have derived the equivalent linearization stiffness 𝑘𝑒𝑞, and the 𝑘𝑒𝑞 can be expressed 

as: 

𝑘𝑒𝑞 = {
0 𝐴 ≤ 𝛿

𝑘0 [
2

𝜋
(𝜑 − sin𝜑cos𝜑)] 𝐴 > 𝛿

 (2) 

𝜑 = cos−1
𝛿

𝐴

 (3) 

It follows that 𝑘𝑒𝑞 is a constant for any given limit cycle oscillation amplitude and free-play angle. 

Thus, the free-play nonlinear system can be reduced to a linear system. 

When the damping is not taken into account, the aeroelastic equation can be written as: 

𝑴𝒒̈ +𝑲𝒒 = 𝑸 (4) 

Where: 𝑴  denotes the generalized mass matrix, 𝒒 = [𝑞1  ⋯ 𝑞𝑛  ⋯ 𝑞𝑚]
T  denotes the generalized 

coordinates, 𝑲 = diag(𝑘11,⋯ , 𝑘𝑛𝑛
𝑒𝑞
,⋯ , 𝑘𝑚𝑚) denotes the equivalent linearized stiffness matrix, and 

𝑸 = [𝑄1  ⋯ 𝑄𝑛  ⋯ 𝑄𝑚]
T denotes the generalized aerodynamic force matrix. 

Solving the aerodynamic forces using the subsonic doublet lattice method requires a reasonable 

aerodynamic mesh of the lifting surface, as shown in Figure 2. 

 
 

 j 

Y 

X  

Figure 2 – Schematic of aerodynamic mesh. 

 

Assuming that the lifting surface is divided into n grids and the pressure dipoles are arranged at the 

pressure points of each grid, the following integral equations are satisfied at the downwash control 

points under each grid: 

𝑤𝑖 =
1

8π
∑ ∆𝑐𝑝𝑗∆𝑥𝑗cos𝜑𝑗 ∫ 𝐾𝑖𝑗𝑑𝑙𝑗

 

𝑙𝑗

𝑛
𝑗=1   (𝑖 = 1,2,⋯ , 𝑛;  𝑗 = 1,2,⋯ , 𝑛) (5) 

Where: 𝑤𝑖 denotes the downwash speed at the downwash control point of the ith grid, ∆𝑐𝑝𝑗 denotes 

the pressure coefficient on the jth grid, ∆𝑥𝑗 denotes the mid-profile length of the jth grid, 𝜑𝑗 denotes 

the backward swept angle of the jth grid, 𝑙𝑗 denotes the length of span passing through the pressure 

point of the jth grid, and 𝐾𝑖𝑗 denotes the kernel function. 

The above equation can be written in matrix form: 

∆𝒑 =
1

2
𝜌𝑉2𝑫−1𝒘 (6) 

Where: ∆𝒑 = [∆𝑝1 ∆𝑝2  ⋯ ∆𝑝n]  denotes the pressure distribution array at the pressure point, 𝜌 

denotes the fluid density, 𝑉 denotes the relative airflow speed, 𝑫 denotes the matrix of aerodynamic 

influence coefficients, and 𝒘 denotes the downwash speed array at the downwash control point. And 

there are: 
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∆𝑝𝑗 =
1

2
𝜌𝑉2∆𝑐𝑝𝑗

 (7) 

𝐷𝑖𝑗 =
∆𝑥𝑗

8π
cos𝜑𝑗 ∫ 𝐾𝑖𝑗𝑑𝑙𝑗

 

𝑗
  (𝑖 = 1,2,⋯ , 𝑛;  𝑗 = 1,2,⋯ , 𝑛) (8) 

The following relationship exists between the downwash speed at the downwash control point and 

the vibration modes: 

𝒘 = (
𝜕𝑭

𝜕𝑥
+ i

𝑘

𝑏
𝑭)𝒒 (9) 

Where: 𝑭 = [𝒇𝟏 𝒇𝟐  ⋯ 𝒇𝒏] denotes the modal matrix at the downwash control point, 𝑘 denotes the 

reduced frequency, and b denotes the reference semi-chord. 

According to the generalized aerodynamic definition, there are: 

𝑸 = 𝑭𝑃
T𝑺∆𝒑 (10) 

Where: 𝑭𝑝 denotes the modal matrix at the pressure point and 𝑺 = diag(∆𝑆1, ∆𝑆2,⋯ , ∆𝑆𝑛) denotes 

the area weighted array. 

Combining the above equations has: 

𝑸 =
1

2
𝜌𝑉2𝑨𝒒 (11) 

where 𝑨 denotes the matrix of generalized aerodynamic influence coefficient: 

𝑨 = 𝑭𝑃
T𝑺𝑫−1 (

𝜕𝑭

𝜕𝑥
+ i

𝑘

𝑏
𝑭) (12) 

Associate equation 4 and equation 11: 

𝑴𝒒̈ + 𝑲𝒒 =
1

2
𝜌𝑉2𝑨𝒒 (13) 

The above equation can be solved by PK method by setting the free vibration equation of motion as: 

𝒒 = 𝒒𝟎𝑒
𝑝𝑡 (14) 

𝑝 = 𝜔(𝛾 + 𝑖) (15) 

Where 𝒒𝟎  denotes the initial moment coordinates, 𝑡  denotes the time, 𝜔  denotes the circular 

frequency, and 𝛾  denotes the transient decay rate coefficient. 𝜔  versus the frequency 𝑓  and 𝛾 

versus the structural damping coefficient 𝑔 can be expressed as follows: 

𝜔 = 2𝜋𝑓 (16) 

𝑔 = 2𝛾 (17) 

In the vicinity of the critical speed of flutter, the free vibration is close to the simple harmonic vibration, 

so in the calculation of the aerodynamic force, the non-constant aerodynamic force expression for 

the simple harmonic vibration is still used. 

The expression for the reduced frequency is: 

𝑘 =
𝜔𝑏

𝑉

 (18) 

The reduced frequency can also be expressed as: 

𝑘 =
𝑏

𝑉
Im(𝑝) (19) 

When the system undergoes simple harmonic vibration: 

𝒒̈ = −𝜔2𝒒 (20) 
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From equation 14, there is: 

𝒒̈ = 𝑝2𝒒 (21) 

The equation of PK method is: 

(𝑝2𝑴−
𝑝𝜌𝑏𝑉𝐼𝑚[𝑨]

2𝑘
+𝑲−

1

2
𝜌𝑉2𝑅𝑒[𝑨]) 𝒒𝟎 = 𝟎

 (22) 

Equation 22 can be expressed as: 

[𝑹 − 𝑝𝑰]𝒒̅𝟎 = 𝟎
 (23) 

𝑹 = [
𝟎 𝑰

−𝑀−1 (𝑲 −
1

2
𝜌𝑉2Re[𝑨])

𝜌𝑏𝑉𝑴−1𝐼𝑚[𝑨]

2𝑘

] (24) 

Thus, solving Equation 24 can be translated into solving for the eigenvalues of 𝑹. For a given fluid 

density, Mach number, and a range of wind speeds, the PK method solves by iterative means for 𝑔 

and 𝑓 at each wind speed. Thus, the critical wind speed and frequency of the equivalent linearization 

system can be identified from the V-g diagram and V-f diagram, which can be regarded as the limit 

cycle oscillation critical values. 

Figure 3 show the time history of limit cycle oscillation of the nonlinear system with free-play, 

including the free-play region (red line) and two stiffness regions (blue line). 

 

 

Figure 3 – The time history of PODF method. 

 

The potential energy of the system is 0 at the free-play region and the speed of motion is constant 

without considering the aerodynamic work. The combination of two stiffness regions can be regarded 

as a linear system undergoing simple harmonic oscillation (the amplitude is 𝐴 − 𝛿; the frequency is 

temporarily set to 𝑓0) [20]. The displacement 𝜃0 as a function of time t is given by: 

𝜃0(𝑡) = (𝐴 − 𝛿) × sin 2𝜋𝑓0𝑡
 (25) 

The derivative of the above equation has: 

𝜃̇0(𝑡) = 2𝜋𝑓0(𝐴 − 𝛿) × cos 2𝜋𝑓0𝑡
 (26) 

Then: 

𝑣𝑡1 = 𝜃̇0(0) = 2𝜋𝑓0(𝐴 − 𝛿)
 (27) 

𝑣𝑡1 = −𝑣𝑡2 = −𝑣𝑡3 = 𝑣𝑡4
 (28) 

Where 𝑣𝑡𝑖 denotes the speed of motion at 𝑡𝑖. 

Thus there is: 
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1

𝑓
= 4

𝛿

𝑣𝑡1
+

1

𝑓0

 (29) 

Combined equations 27 and 29: 

𝑓0 =
2𝛿+𝐴𝜋−𝛿𝜋

𝐴𝜋−𝛿𝜋
𝑓 (30) 

𝑣𝑡1 = (4𝛿 + 2𝐴𝜋 − 2𝛿𝜋)𝑓
 (31) 

Thus, the piecewise expressions of the time history can be represented as: 

𝜃(𝑡) =

{
 
 
 

 
 
 

      (4𝛿 + 2𝐴𝜋 − 2𝛿𝜋)𝑓𝑡         0 ≤ 𝑡 ≤ 𝑡1

(𝐴 − 𝛿) × sin [
2𝜋𝑓(2𝛿+𝐴𝜋−𝛿𝜋)(𝑡−𝑡1)

𝐴𝜋−𝛿𝜋
] + 𝛿  𝑡1 ≤ 𝑡 ≤ 𝑡2

  −(4𝛿 + 2𝐴𝜋 − 2𝛿𝜋)𝑓 (𝑡 −
1

2𝑓
)       𝑡2 ≤ 𝑡 ≤ 𝑡3

−(𝐴 − 𝛿) × sin [
2𝜋𝑓(2𝛿+𝐴𝜋−𝛿𝜋)(𝑡−𝑡3)

𝐴𝜋−𝛿𝜋
] − 𝛿 𝑡3 ≤ 𝑡 ≤ 𝑡4

     (4𝛿 + 2𝐴𝜋 − 2𝛿𝜋)𝑓 (𝑡 −
1

𝑓
)      𝑡4 ≤ 𝑡 ≤

1

𝑓

 (32) 

𝑡1 =
𝛿

(4𝛿+2𝐴𝜋−2𝛿𝜋)𝑓

𝑡2 =
1

2𝑓
−

𝛿

(4𝛿+2𝐴𝜋−2𝛿𝜋)𝑓

𝑡3 =
1

2𝑓
+

𝛿

(4𝛿+2𝐴𝜋−2𝛿𝜋)𝑓

𝑡4 =
1

𝑓
−

𝛿

(4𝛿+2𝐴𝜋−2𝛿𝜋)𝑓

 (33) 

According to the calculated time histories, the high order harmonics can be computed rapidly by the 

FFT. 

In the same way, the phase portrait of PODF method is illustrated in Figure 4 and can be represented 

as: 

𝑣(𝜃) =

{
 

 ±√[(𝐴 − 𝛿)
2 − (𝜃 + 𝛿)2] ×

2𝜋𝑓(2𝛿+𝐴𝜋−𝛿𝜋)

𝐴𝜋−𝛿𝜋
𝜃 < −𝛿

±(4𝛿 + 2𝐴𝜋 − 2𝛿𝜋)𝑓 −𝛿 ≤ 𝜃 ≤ 𝛿

±√[(𝐴 − 𝛿)2 − (𝜃 − 𝛿)2] ×
2𝜋𝑓(2𝛿+𝐴𝜋−𝛿𝜋)

𝐴𝜋−𝛿𝜋
𝜃 > 𝛿

 (34) 

 

 

Figure 4 – The phase portrait of PODF method. 

 

3. Calculations and Discussion 

All-movable horizontal tail systems have complex transmissions. Bearing machining errors, gear 

clearance, and hinge wear result in the inevitable presence of free-plays in transmissions. Previous 

studies have shown that the existence of free-play nonlinearity in all-movable horizontal tail leads to 
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the occurrence of limit cycle oscillation at a speed lower than the critical flutter speed of a linear 

system, causing problems such as structural fatigue, degradation of maneuvering capability, 

reduction of aiming accuracy, and structural damage [2]. Therefore, in this section, an all-movable 

horizontal tail model with torsion free-play is constructed, and the PODF method is used to analyze 

the effect of free-play nonlinearity on the aeroelastic response of all-movable horizontal tail. 

A finite element (FE) model of the all-movable horizontal tail was developed, as shown in Figure 5. 

Therefore, equation (24) can be solved directly by the FE method, and the time histories and phase 

portrait can be derived from equations (32) and (34). Thus, the PODF method can be effectively 

applied to any complex three-dimensional model in conjunction with the FE method [20]. 
 

 

Figure 5 – The finite element model. 

 

Four different torsion free-play angles (0.2°, 0.4°, 0.6°, and 0.8°) were selected, and the time 

histories, phase portraits, and frequency spectra of the limit cycle oscillations occurring at 30 m/s 

and 40 m/s were calculated. 

The time histories at different free-play angles and wind speeds are shown in Figure 6. From the 

figure, it can be seen that the limit cycle oscillation amplitude increases with the free-play value at 

the same wind speed, and the limit cycle oscillation amplitude increases with the wind speed at the 

same free-play value. The frequency of the limit cycle oscillation increases with increasing wind 

speed, independent of the free-play value. 
 

 

Figure 6 – Time histories at different free-play angles and wind speeds. 

 

The speed-displacement phase diagrams for different initial conditions are shown in Figure 7. From 

the figure, it can be seen that the vibration angular speed reaches an extreme value in the free-play 

section, which increases with the free-play value at the same wind speed, and increases with the 

wind speed at the same free-play value. 
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Figure 7 – Phase diagrams at different free-play angles and wind speeds. 

 

The frequency spectra of the limit cycle oscillation for different initial conditions are shown in Figure 

8. The high-order harmonics are observed in all eight sets of calculations, and the frequencies of the 

high-order harmonics are all three times the main frequency. The frequencies of the main frequency 

and the high-order harmonics increase with increasing wind speed, independent of the free-play 

value. The peak amplitude of the main and high-order harmonics at the same wind speed increases 

with the free-play value, and the peak amplitude of the main and high-order harmonics at the same 

free-play value increases with the wind speed. 
 

 

Figure 8 – Frequency spectra at different free-play angles and wind speeds. 

 

4. Correlation Between Theory and Experiment 

In this section, the PODF method is experimentally validated by wind tunnel tests. The computational 

results are compared with the wind tunnel test measurements to verify the effectiveness of the PODF 

method for solving the time history, phase portrait and high-order harmonics of complex three-

dimensional structures. 

The structure of the wind tunnel test model is consistent with the finite element model. In addition, 

the fairing and support structure were constructed, as shown in Figure 9. The torsion free-play angle 

of the wind tunnel test model was measured as 0.243° [20]. 
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Figure 9 – The wind tunnel test model [20]. 

 

4.1 Time history 

The time history of limit cycle oscillation is shown in Figure 10 (i.e. V = 33 m/s is taken as an example). 

Consistent experimental and computational results demonstrate the effectiveness of the PODF 

method. 
 

 

Figure 10 – Time history of torsion angle [20]. 

 

4.2 Phase portrait 

Figure 11 show the phase portrait of limit cycle oscillation. It can be seen that the results of the 

consistency between the calculations and the wind tunnel tests reconfirm the accuracy of the PODF 

method. 
 

 

Figure 11 – The phase portrait of the torsion angle and torsion speed [20]. 

 

4.3 High-order Harmonics 

The FFT frequency spectrum is shown in Figure 12. The wind tunnel test results and the 

computational results show good agreement both in terms of frequency values and the 

corresponding amplitude response. The 3rd harmonics are observed in both wind tunnel test results 

and computational results. The PODF method has an advantage over the traditional describing 
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function method in accurately predicting higher order harmonics. 
 

 

Figure 12 – Frequency spectrum of limit cycle oscillation [20]. 

 

5. Conclusions 

In this paper, a piecewise optimization describing function (PODF) method is proposed to solve the 

problem that the traditional describing function method cannot predict the high-order harmonics. The 

PODF method can give the piecewise expressions of the time history and phase portrait of the free play 

nonlinear system in the limit cycle oscillation process. In the paper, a FE model of all-movable horizontal 

tail with torsion free play is constructed, and the dynamic behavior of nonlinear aeroelastic systems is 

studied by the PODF method. In order to verify the effectiveness of the PODF method, a wind tunnel 

test model with torsion free play is also designed. The results of the wind tunnel test are in good 

agreement with the simulation results, which proves that the proposed PODF method can accurately 

predict the time history and phase portrait of the limit cycle oscillation, and the PODF method can also 

effectively predict the high-order harmonics of limit cycle oscillation. The accuracy of the PODF method 

is better than that of traditional describing function method. The PODF method improves the 

shortcomings of traditional describing function method which cannot predict high order harmonics and 

cannot directly reflect the mechanism of nonlinear aeroelastic behavior induced by free play. In addition, 

the PODF method has the advantages of the traditional describing function method, such as high 

computational efficiency, strong applicability and convenient formula derivation. 
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