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Abstract

Structural fatigue poses a significant concern for flight safety, particularly during the later stages of service.
The Airframe Digital Twin plays a pivotal role in facilitating structural damage diagnosis and prognosis by es-
tablishing a multiphysics, multiscale, and probabilistic virtual model of an as-built system. This paper presents
a comprehensive and integrated framework for constructing the digital twin of an Unmanned Aerial Vehicle,
incorporating load tracking, multi-level structural analysis, and probabilistic diagnosis and prognosis. Flight
tests of the UAV are utilized to validate the proposed method. Results demonstrate that the digital twin can ef-
fectively predict fatigue crack growth in real-time using flight parameters as input. Furthermore, with inspection
data available, the digital twin model can be updated to provide a more accurate prediction of future damage
evolution. These insights offer valuable guidance for optimizing aircraft fleet maintenance strategies, thereby
enhancing safety and cost-effectiveness.
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1. Introduction
The global challenge posed by the structural aging of aircraft fleets constitutes a critical issue, signif-
icantly impacting the readiness and availability of military aircraft [1] and compromising the safety of
civil aviation worldwide [2]. Structural fatigue emerges as the predominant concern associated with
aging, becoming increasingly severe as aircraft progress into their later service stages.
Over the past decades, the evolution of aircraft structural safety assurance has encompassed prin-
ciples such as safe life, damage safety, and damage tolerance. Recently, the Individual Aircraft
Tracking (IAT) program has been widely implemented across various aircraft types [3, 4]. Utilizing
recorded flight data from installed data acquisition units [5], the IAT program aims to monitor potential
fatigue damage growth and life consumption for each aircraft within a fleet. However, many IAT sys-
tems in engineering practice primarily focus on monitoring load data, such as aircraft overload, while
often neglecting epistemic uncertainties. These uncertainties, including variations in geometric and
material parameters, contribute to discrepancies in the damage states of aircraft.
To address this limitation, the U.S. Air Force has funded research on the airframe digital twin (ADT),
an extension of IAT, also referred to as Probabilistic and Prognostic Individual Aircraft Tracking (P2IAT)
in Spiral 1 of the project. ADT facilitates structural damage diagnosis and prognosis by establishing
a multiphysics, multiscale, and probabilistic virtual model [6, 7] of an as-built system. This model
integrates uncertainties from multiple sources to support proactive fleet maintenance [8]. The Royal
Canadian Air Force has also adopted this framework [9].
For small aircraft, Willcox and her colleagues have developed a data-driven digital twin for the as-
sessment of structural degradation in unmanned aerial vehicles (UAVs). They combined a library of
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component-based reduced-order models with Bayesian inference, enabling dynamic mission plan-
ning. This approach was demonstrated on an unmanned aircraft with a wingspan of approximately
3.6 meters [10, 11].
Despite these advancements, several challenges remain in developing a comprehensive airframe
digital twin at the aircraft level. These include accurately tracking individual flight loads, obtaining local
stress data that affects damage growth, predicting fatigue crack growth in real-time, and ensuring the
digital twin’s damage state remains consistent with the physical part under uncertainties [8, 12].
This paper presents a comprehensive and integrated framework for constructing the digital twin of
a UAV by incorporating load tracking, multi-level structural analysis, and probabilistic diagnosis and
prognosis. Building on the flight load tracking method introduced in [13], this study employs submod-
eling to dynamically track and transfer full-field loads to the structural details in real-time. Then, a
novel reduced-order fatigue crack growth modeling method, leveraging principal component analysis
and neural network fitting, is introduced. This method effectively addresses the crack growth issue
within the boundary conditions of the submodel, providing a streamlined solution. Finally, utilizing the
constructed reduced-order model, this study facilitates the probabilistic diagnosis and prognosis of
fatigue crack growth in structural details based on the overall aerodynamic loading of the aircraft.

2. The Unmanned Aerial Vehicle
In this study, a small UAV, as depicted in [14, 15, 16] and shown in Fig. 1, serves as an exemplary
subject for research in structural digital twin development. This UAV exhibits complicated structural
configurations and loading conditions, introducing considerable uncertainty into both test data and
simulation models. Moreover, the UAV shares significant similarities with large military and civil air-
craft, albeit with lower complexity. This makes it an optimal platform for testing the applicability of
methods on authentic structures and facilitates the generalization to larger aircraft.

(b) In flight(a) Launching

Figure 1 – The Unmanned Aerial Vehicle

The UAV’s flight test lasted approximately 15 minutes. For the purposes of this investigation, only the
dynamic forces during flight maneuvers were considered. Table 1 presents the 13 flight parameters
documented during the flight test. FBG strain data collected during the flight test was utilized in this
study. A total of 26 strain sensors were installed on the UAV, as illustrated in Fig. 2. Among these,
20 strain sensors were used to construct the load tracking model, while 6 FBG strain sensors were
employed to test the prediction performance of the corresponding models.

3. Flight Load Tracking
In this study, the flight load tracking method introduced in [13] is adopted, offering a significant ad-
vantage by enabling full-field deformation prediction of the aircraft structure during the service phase
using only flight parameters, thus eliminating the need for additional sensors. This is achieved by
leveraging strain data collected during the flight test phase as the database. The fundamental flow of
the proposed framework in this paper is illustrated in Fig. 3 and comprises two phases.
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Table 1 – Recorded Flight Parameters

Parameter Meaning Unit Frequency
GyrX, GyrY, GyrZ X, Y, Z-axis angular velocity deg/s 50 Hz
AccX, AccY, AccZ X, Y, Z-axis linear acceleration m/s2 50 Hz
IAS Indicated Airspeed m/s 10 Hz
AOA Angle of Attack deg 10 Hz
SSA Sideslip Angle deg 10 Hz
PRESSURE Atmospheric Pressure MPa 10 Hz
Alt Altitude m 10 Hz
δl Left Aileron Deflection rad 10 Hz
δr Right Aileron Deflection rad 10 Hz

Strain Sensors (Training)

Temperature Sensors

Strain Sensors (Testing)

Figure 2 – Schematic Layout of FBG Sensors

Flight testFlight data

Flight Test Phase

In-Service Phase

Real-time 
Flight data

Predicted strain
Load Tracking

Inverse-direct
load monitoring

Flight-Strain Prediction Model

Strain data

Figure 3 – In-Service Flight Load Tracking Combining the Flight Test Data and Inverse-Direct Load
Monitoring
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During the flight test phase, a designated set of strain sensors is installed on the aircraft, and flight pa-
rameters along with corresponding strain measurements are systematically collected. A local strain
prediction model, designed to capture time series dependencies, is trained using a CNN-based deep
learning approach. Concurrently, the inverse-direct load monitoring model is trained using a simula-
tion database constructed through the batch simulation of full-order models.
In the service phase, real-time flight parameters of the aircraft are acquired and fed into the data-
driven local strain prediction model to generate strain predictions at the respective sensor locations.
Subsequently, these predicted strain values serve as inputs for the inverse-direct load monitoring
model, which produces flight load tracking results at full-field and any specified position.
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Figure 4 – In-service Load Tracking at the Sixth Test Sensor Location [13]

Fig. 4 depicts the results of the flight load tracking derived from the predictive strain using a convolu-
tional neural network, coupled with an improved inverse-direct load monitoring method. It is evident
that the load tracking method yields results comparable to the original strain-based load monitoring
method, thus affirming the efficacy of the proposed approach.

4. Multi-level Load Transfer
In this section, to address the scale difference between the overall aerodynamic load and the local
stress at the detail, the submodeling method is utilized, significantly enhancing efficiency in simulating
fatigue damage at critical locations. The workflow of the submodeling approach is shown in Fig. 5.

Global Model 

Loaded

FEA Results of 

Global Model 

Extracting a local region from the global 

model and obtaining the boundary 

conditions for the local region

Calculating the perturbation 

field and surface force field for 

the case of pure bending

Local Precise 

Mechanical Response

Global Model
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Figure 5 – Flow of the Submodeling for the Load Transfer
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The UAV’s selected fatigue-critical location is highlighted in Fig. 6. In the submodel, the overall mesh
is intentionally sparse, with finer meshes concentrated at critical locations such as the area of interest
for damage simulation.

(a) Location in the UAV (b) Geometric shape

Figure 6 – Position and Geometry of the Connecting Aluminum Tube

The validation of the aluminium tube sub-model was conducted in ABAQUS. The displacement cloud
results are depicted in Fig. 7. It is evident that the displacement contour map of the submodel align
closely with those of the global model. This alignment suggests an accurate transfer of displacement
boundary conditions to the sub-model.

(a) Displacement Contour Map (Global Model)

(b) Displacement Contour Map (connecting tube) 

(c) Displacement Contour Map (submodel of the connecting tube )

Figure 7 – Comparison of Displacement Contour Maps between the Connected Aluminium Tube
Sub-model and the Original Model (ABAQUS Simulation)

5. Probabilistic Crack Growth
With the load at the local position acquired through load tracking and transfer, damage growth can be
predicted. However, for digital twin applications, conducting full-order fracture mechanics simulations
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online is challenging. In this section, a novel reduced-order fatigue crack growth modeling method
is introduced, leveraging principal component analysis and neural network fitting. This method ef-
fectively addresses the crack growth issue within the boundary conditions of the submodel, enabling
real-time prediction of fatigue crack growth at critical locations under external aerodynamic loading.
To elaborate, in conjunction with the employed principal component analysis method, the boundary
conditions are reduced to derive a set of linearly independent loading cases. Subsequently, several
reduced-order models (ROMs) of fracture mechanics are constructed for each loading case individu-
ally.

Crack Size 

Total SIF 

Flight Data Full-field
Monitoring Load Transfer

Crack Growth
Prediction

Predict
ROM 

ROM 

PCA Coefficent

Base SIF 

Base SIF 

Load Processing

Update

PCA Projection

Figure 8 – Online Reduced-order Prediction under Submodel Boundary Condition Loading

In this study, we assume the presence of a crack on the lower side of the central cross-section of the
aluminum tube, specifically a tensile crack (Type I crack). Given that the connected aluminum tube is
a thin-walled cylindrical structure and the dimensions of the crack surface in the thickness direction
are small compared to the other directions, the crack can be analyzed as a circular curve containing
the leading edges of the left and right cracks. This crack grows tangentially along the wall of the tube
under an external load. This crack grows tangentially along the wall of the tube under an external
load. As depicted in Fig. 9, the left and right cracks are represented by the angular parameters θl
and θr (in angular degrees), and the crack lengths are denoted, respectively:

al = Rm ·θl

ar = Rm ·θr
(1)

where al and ar represent the left and right lengths of the crack, θl and θr are parametric representa-
tions of the left and right ends of the crack, respectively, and Rm is the average radius of the aluminium
tube.
For the construction of the ROM, a batch simulation is performed on 64 samples generated from
the sampling process. The simulation utilizes the Symmetric Galerkin Boundary Element Method
(SGBEM) super element - Finite Element Method (FEM) coupled program [17]. The SGBEM-FEM
fracture mechanics simulation program requires two input files: a finite element model and a crack
surface model. A total of 384 fracture mechanics simulations are executed to determine the corre-
sponding stress intensity factors. Six fracture mechanics simulation databases are generated, where
the inputs for each sample are the two angular parameters characterizing the crack front. The outputs
consist of the average stress intensity factors for the left and right fronts.
Table 2 provides the prediction errors for two crack samples not included in the crack database. The
prediction error is within acceptable limits.

6. Diagnosis and Prognosis
Finally, leveraging the constructed digital twin model, a particle filter model is developed to facilitate
the probabilistic diagnosis and prognosis of fatigue crack growth at structural details based on the
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left side of the 
crack front

right side of the 
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Figure 9 – Crack Definition and Crack Surface Modelling

Table 2 – Comparison of Prediction and Simulation of Stress Intensity Factors Outside Training Crack
Samples

Sample
Boundary
condition

SGEBM-FEM Simulation ROM Prediction
RMSE

Left side Right side Left side Right side

1
1 48.5268 49.8127 49.6398 49.3985 0.8398
2 15.6753 16.0897 17.0698 16.0979 0.9861

2
1 70.4269 69.6156 69.5878 69.3872 0.6149
2 22.7379 22.4722 22.3970 22.6503 0.2719

overall aerodynamic loading of the aircraft. More details about the particle filter can be found in
[18, 19].
The complete state transfer equation can be formulated as:

al
k

ar
k

logCk
nk

=


al

k−1 + eωk ∆al
k

ar
k−1 + eωk ∆al

k
logCk−1 +ωlogC

nk−1 +ωn

 (2)

where ωk is the crack growth process noise, ωlogC is the process noise of the parameter logC, and ωn

is the process noise of the parameter n.
It is assumed that the total crack length (the sum of the crack lengths on the left and right sides) can
be observed by visual inspection, so the observation process can be expressed as follows:

yk = al
k +ar

k + εa (3)

where εa is the inspection noise.
A crack-growth specimen is assumed for analysis. Fig. 10 illustrates the results of crack diagnosis
and prognosis for the hypothetical case. It can be observed that, with the update using inspection
data, the prediction of crack growth has become more accurate.
Upon further examination of the model parameter updates in particle filtering, Fig. 11 reveals a
trend of narrowing uncertainty parameter distributions with successive inspections. Therefore, it can
be concluded that our digital twin can predict fatigue crack growth using flight parameters as input.
When inspection data is available, the digital twin model can be updated to provide a more accurate
prediction of future damage evolution. These insights can be further utilized to arrange the mainte-
nance of the aircraft fleet, thereby better balancing safety and economy.

7. Conclusion
This study addresses the challenge of scale disparity between overall loading and detailed fatigue
damage in aircraft structures through the development of a digital twin for a UAV. This comprehensive

7



ON THE DEVELOPMENT OF THE STRUCTURAL DIGITAL TWIN OF AN UNMANNED AERIAL VEHICLE

0 0.5 1 1.5 2
Time (s) #104

0

5

10

15

20

25

30
C

ra
ck

 L
en

gt
h 

(m
m

)
data1
Mean
True
Observation
95% Confidence

Figure 10 – Crack Diagnosis and Prognosis for the Hypothetical Case
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Figure 11 – Updating of Uncertain Parameters for the Hypothetical Case
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approach integrates flight load tracking, multilevel load transfer, a novel reduced-order fracture simu-
lation method, and probabilistic diagnosis and prognosis. The proposed methodology contributes to
the advancement of digital twin models for unmanned aircraft, offering adaptability, continuous refine-
ment, and potential extensions to more complex structures. Although the validation currently relies
on hypothetical UAV damage data, future work involves validation with actual datasets to enhance
feasibility. In future research, the aforementioned models will be amalgamated into a comprehensive
simulation model utilizing Simulink, accompanied by the development of a visualization system.
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