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Abstract

This paper presents a controller for the motion of a flying wing embedded in an airborne wind energy sys-
tem. In order to safely operate such a flying wing for dynamic flight maneuvers and with varying tether loads
acting, a comprehensive control concept based on an incremental nonlinear dynamic inversion (INDI) with an
incremental formulation of the control effectiveness is presented. A feature of this approach is its universal
applicability, allowing unconventional maneuvers such as a multi-axial yaw-roll transition from hover to aerody-
namic wing-borne flight. In addition to a detailed derivation of the effectiveness matrix, this paper presents the
general architecture of the translational INDI controller, including a necessary quaternion-based attitude filter.
Based on the presented controller implementation, the performance and limitations of this control approach
are investigated. Results from nonlinear model-in-the-loop simulations and flight tests demonstrate the func-
tionality of this control concept.

Keywords: motion controller, incremental nonlinear dynamic inversion (INDI), multi-axial yaw-roll transition,
flying wing, quaternion based attitude filter

1. Introduction
The development of new technologies for using renewable energy sources, such as wind energy, has
become increasingly important. Alongside established wind turbines, a new field of application for
wind energy systems has been discovered through airborne wind energy (AWE). In these innovative
energy systems, a flight system is operated in energy-rich winds while tethered to a winch on the
ground to harvest electrical energy [1]. Figure 1 depicts one of these airborne wind energy systems
(AWES) in the ground power generation (ground-gen) configuration. In such ground-gen AWES,
the flight system applies a load to the tether during the so-called generation phase, which causes
the tether to unwind from a drum on the winch and generates energy with a connected electrical
generator. The airborne flight system exits the generation phase when the maximum tether length is
reached. During the subsequent recovery phase, it flies back to its starting position, and the power
generation phase begins again. An alternative airborne wind energy system configuration that is also
intensively tested in this field is the flying power generation (fly-gen) AWES. Unlike the ground-gen
AWES, the fly-gen system generates power directly through specialized onboard turbines installed
along the wing as it flies in the wind field. As with ground-gen AWES, a tether binds the flying system
to the ground; however, because a cable is integrated into the tether, it also transmits the generated
electricity to the ground. A detailed description of this and other classifications of AWES can be
found in [2]. A unique flight system configuration with the aerodynamic characteristics to optimize the
power output for either configuration is the so-called flying wing. Here, the flight system is reduced to
a single wing without horizontal stabilizers [3, 4, 5]. In addition, to allow vertical takeoff and landing
directly at the ground station, independent of runways, this flying wing can be designed as tailsitter.
As shown on the right side in Fig. 1, this configuration enables the flight system to take off and land
sitting on its tail with its nose pointing upward [6, 7]. During takeoff and landing, the thrust of the
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Figure 1 – General working principle of a flying wing AWES (shown for ground-gen configuration)
and launching, including multi-axial yaw-roll transition from prop-borne flight states after vertical

takeoff to wing-borne flight states with a tensioned tether.

propellers provides the complete lift. Within this phase, the flying wing adjusts the thrust direction
to accelerate until the airflow around the wing generates lift. As airspeed and aerodynamic (wing)
lift continue to increase, the flying wing can transition to an aerodynamic wing-borne flight and enter
the energy-harvesting flight. For the transition from propeller-borne flight (hereafter abbreviated as
prop-borne) to wing-borne flight, a multi-axial yaw-roll transition can be selected (see Fig. 1). In the
context of airborne wind energy, an additional challenge for such an operation is that it must consider
the tether acting on the so-called tether attachment point (TAP) of the flying wing as an additional
constraint in force and geometry.

Within this contribution, we address the challenge of controlling the translational motion of such a fly-
ing wing during different flight phases. We focus on the launching, especially the dynamic multi-axial
yaw-roll transition from prop-borne to wing-borne flight. In our recent work [8], we examine the chal-
lenges inherent in controlling the translational motion during a transition from a prop-borne flight to a
wing-borne flight along a straight line without wind and tether interaction. A linear-quadratic controller
based on specific operating states and model linearizations is used for the transition. Nevertheless,
the required operational space is to be minimized when considering AWE wind farms. Consequently,
a curved transition to and from energy harvesting flight becomes increasingly necessary. However,
this expands the control problem, so the controller design architecture becomes very hard to handle
with more state parameters while keeping a linear-quadratic control approach. In addition, the under-
lying model uncertainties and uncertainties related to changes in wind direction and intensity must
be considered. Therefore, we have developed an approach to control the translational motion based
on incremental nonlinear dynamic inversion (INDI). This approach requires less precise information
about the system and can be designed comprehensively for the entire flight operation of the flying
wing. In its basic form, this control approach is based solely on a formulation of control effectiveness.

When considering a translational motion INDI controller, the commanded attitude and thrust are con-
sidered virtual controls, while the translational acceleration is the controlled variable. In our previous
work [9, 10], we have extensively dealt with controller architecture and control effectiveness for trans-
lational control of tiltwing flight systems. There, we consider only a longitudinal transition with control
effectiveness formulated for a horizontal frame of reference. However, since the transition in our
case is multi-axial, the control effectiveness formulation for a horizontal frame of reference cannot
be applied here. In the following Sec. 2., an alternative approach using the body coordinate system
as a reference frame with incremental attitude changes is presented. Based on this formulation of
the control effectiveness, an introduction to the corresponding controller design is given. Since this
sensor-based controller requires a filter of the acceleration signal, a corresponding filter of the con-
trol and, thus, of the attitude is necessary and introduced. The underlying guidance and rotational
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controller are presented to complete the design of the entire flight controller. Within an analysis
of the control concept for the translational motion in Sec. 3., a demonstrator and the corresponding
model are introduced first. An analysis of the developed control effectiveness for a dynamic transition
maneuver follows this. Based on this, results for a model-in-the-loop nonlinear analysis with the de-
signed controller are presented and discussed. Finally, results of a first flight test with the proposed
controller are presented before a conclusion, and the outlook of this work is given in Sec. 4..

2. Concept and architecture of translational control for a flying wing in AWE
Based on the work from [10, 11, 12, 13], the INDI control law can be formulated as given in Eq. (1).
Here, u⃗c is the control variable sought, which can be composed of u⃗ f , the measured control, and an
incremental control δ u⃗. As shown, this incremental control can be formulated as the product of B̂−1,
the Moore–Penrose inverse of the control effectiveness matrix B̂, and the deviation between ν⃗ , the
virtual command variable, and x⃗ f , the filtered state variable.

u⃗c = u⃗ f +δ u⃗ = u⃗ f + B̂−1 (⃗
ν −⃗̇x f

)
(1)

In order to formulate the effectiveness matrix B̂, it is first necessary to define the controls for the
translational controller and a corresponding reference frame in which the translational motion is to
be controlled. We propose considering the commanded throttle as the first entry for the translational
control vector. It corresponds to an average thrust generated by the propulsion units of the flying
wing. The remaining entries of this control vector can consider the flying wing’s attitude. A change in
attitude alters the direction of thrust and affects the airflow conditions. Consequently, the lift and drag
forces acting on the flying wing change, resulting in a translational motion. One approach to include
attitude as part of the control vector is to use Euler angles concerning a fixed reference frame, e.g.,
a fixed ground or horizontal coordinate system. However, the Euler angles vary significantly and in a
nonlinear manner for any fixed reference frame for dynamic maneuvers such as the considered yaw-
roll transition. Furthermore, singularity problems arise due to the wide range of attitude variations.

An alternative approach is to decouple the system into a reference frame fixed to the current body
coordinate system and a control frame. In the control frame, the emerging forces are considered
after the control has been applied, and thus, an incremental attitude change has occurred out of
the current body coordinate system. At each time step, the current body frame and, thus, the refer-
ence frame are updated. The transformation between this reference frame and the control frame is
described by incremental Euler rotation angles [δφ ,δθ ,δψ]. Figure 2 illustrates this transformation
relation between the reference frame [ ]b and the control frame [ ]b+ . This allows the control vector to
be defined as δ u⃗ = [δ f ,δφ ,δθ ,δψ]. Therefore, the effect of each control in δ u⃗ on the translational
motion in the reference frame must be determined. In the following, the identification of this so-called
control effectiveness matrix B̂ is presented.

Figure 2 – Illustration of reference frame, control frame, and the corresponding incremental controls
used to control the translational motion.
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2.1 Derivation of control effectiveness matrix
The true effectiveness matrix B can be found by considering the product of the mass m of the flying
wing and the difference of the external forces F⃗ acting on the center of mass of the flying wing before
and after (+) the application of the incremental control δ u⃗. By excluding the control vector from this
product, the control effectiveness matrix B can be found (see Eq. (2)).

B ·δ u⃗ =
1
m

(
F⃗+

b − F⃗b

)
(2)

In this paper, this control effectiveness matrix B is modeled for the controller design as B̂. Since the
change in direction and magnitude of the weight force within the reference frame is not affected by the
control δ u⃗, the weight force can be disregarded in formulating the control effectiveness. Furthermore,
if the tether is aligned approximately perpendicular to the wing, the tether force is also not directly
affected by a change in the control δ u⃗. Consequently, only the aerodynamic and thrust forces are
considered in formulating the effectiveness matrix B for the INDI controller ((see Eq. 3)).

B̂ = B̂T + B̂A (3)

A detailed derivation of the thrust and aerodynamic effectiveness matrix (B̂T, B̂A) is given in the fol-
lowing.

2.1.1 Thrust control effectiveness
To determine the effectiveness of the control vector regarding the thrust force T⃗b, Eq. (2) can be
specified and extended to the following form:

B̂T ·δ u⃗ =
1
m

(
Mbb+ T⃗+

b+ − T⃗b

)
=

1
m

(
Mbb+

(
T⃗b + δ⃗T b

)
− T⃗b

)
(4)

Since the control δ u⃗ respects an incremental change of attitude, it has to be considered that the thrust
vector is rotated by a rotation matrix Mbb+ (Euler angles δφ , δθ , δψ) as follows:

Mbb+ =

 1 −δψ δθ

δψ 1 −δφ

−δθ δφ 1

 (5)

This rotation matrix considers the incremental rotation with the rotation order ’ZYX’ (see Eq. (5)).
Moreover, it is assumed that the incremental change in thrust δ⃗Tb is the product of the derivative
∂⃗Tb/∂ f = [ ∂T

∂ f , 0, 0]T and δ f . Considering that the mean thrust T is aligned with the four propeller
axes, which are tilted by a small angle θp with respect to the wing (T⃗b = [cos(θp)T, 0, sin(θp)T ]T ),
Eq. (4) can be reformulated as:

B̂T ·δ u⃗ =
1
m

 cos(θp)
∂T
∂ f δ f − sin(θp)T δθ

cos(θp)T δψ + sin(θp)T δφ

−sin(θp)
∂T
∂ f δ f − cos(θp)T δθ

 (6)

Here, the incremental products (e.g., δφ ·δ f ≈ 0) are neglected, which allows for determining a linear
relationship between the control vector and the resulting acceleration from the change in thrust. Thus,
the effectiveness matrix considering the thrust can be determined:

B̂T =


cos(θp)

m
∂T
∂ f 0 − sin(θp)

m T 0

0 sin(θp)
m T 0 cos(θp)

m T
− sin(θp)

m
∂T
∂ f 0 − cos(θp)

m T 0

 (7)

As shown, B̂T depends only on the fixed geometric parameter θp as well as on the estimated thrust
and the derivative of the thrust with respect to the throttle. These can be derived using a propulsion
model.
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2.1.2 Aerodynamic control effectiveness
Similar to identifying the thrust control effectiveness, the aerodynamic effectiveness can be deter-
mined as follows:

B̂A ·δ u⃗ =
1
m

(
Mba+

(
A⃗a + δ⃗Aa

)
−MbaA⃗a

)
(8)

Contrary to the thrust force, the aerodynamic force A⃗a cannot be described in a fixed orientation with
respect to the body frame. Instead, it must be considered in an aerodynamic frame. As shown in
Eq. (8), the transformation Mba from the aerodynamic frame (a) to the body frame (b) is required. It is
assumed that the airflow state can be estimated using a pitot tube and airflow vanes. This allows us
to determine Mba and to identify the state of the airflow in body coordinates as:

V⃗a =

ua

va

wa

 (9)

Moreover, the airflow in the x− z-plane can be considered as:

V⃗ā =

ua

0
wa

 (10)

For the sake of simplicity, the norm of V⃗a is abbreviated as Va and the norm of V⃗ā as Vā. If the current
aerodynamic state of the airflow is known, the transformation Mba can be formulated as:

Mba =


ua
Va

− ua va
Va Vā

−wa
Vā

va
Va

Vā
Va

0
w
Va

− va wa
Va Vā

ua
Vā

 (11)

In addition to Mba, the corresponding transformation Mba+ , which takes into account the transforma-
tion of the aerodynamic frame after the control is applied (a+), is required in Eq. (8). This transfor-
mation can be computed as the product of the transformation Mba and a transformation between the
aerodynamic frames from before and after the control is applied (Maa+). To identify this transformation
between the aerodynamic frames, it can be assumed that the airflow does not change with respect
to the reference body frame due to the control δ u⃗. However, since the aerodynamic frame is defined
by the orientation of the wing with respect to the airflow and the control δ u⃗ considers a change in
attitude, a transformation between the aerodynamic frames must be considered. This means that
only the changing orientation of the wing has to be considered, which can be approximated by the in-
cremental roll angle δφ of the control δ u⃗. Thus, the transformation between the aerodynamic frames
can be considered as:

Maa+ =

1 0 0
0 1 −δφ

0 δφ 1

 (12)

This allows us to determine the transformation between the aerodynamic frames (Mba+ = MbaMaa+).
To extract the control vector from the left side of Eq. (8), the couplings of the incremental aerodynamic
force δ⃗Aa and the control δ u⃗ must be identified. Here, another assumption is made. Since the
aerodynamic load depends on the change of the angle of attack, it can be extended to a formulation
that considers the derivatives of the angle of attack and the control δ u⃗:

δ⃗Aa =
∂⃗Aa

∂α+

∂α+

∂ u⃗
δ u⃗ (13)

Thus, a relation between the angle of attack and the control vector is required. The angle of attack
considering the aerodynamic frame after the control is applied can be defined as:

α
+ = tan−1

(
w+

a

u+a

)
(14)
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Here, u+ and w+ can be determined using the measured airflow conditions in the body frame and the
incremental coordinate transformation ( Mb+b = Mbb+

−1). This allows the differentiation of Eq. (14)
for the control vector. After simplifications, the derivative of the angle of attack can be formulated as:

∂α+

∂ u⃗
=


0

−ua va
|⃗Vā|22
1

ua wa
|⃗Vā|2

 (15)

The aerodynamic force derivatives required in Eq. (13) can be obtained as the product of the dynamic
pressure, the wing area S, the drag derivative coefficients CDα

and the lift derivative coefficients CLα
:

∂ A⃗
∂α+

=
∂ A⃗
∂α

=

Dα

0
Lα

=
ρ|Vā|22

2
S

CDα

0
CLα

 (16)

Similar to our work in [9], the aerodynamic force A⃗ required in Eq. (8) can be estimated based on
a force equilibrium of the translational motion, including the inertia loads from the measured accel-
erations, the measured tether force, and the estimated thrust computed by the propulsion model.
With this, it is possible to determine all variables in Eq. (8), exclude the control δ u⃗, and formulate the
aerodynamic effectiveness B̂A as:

B̂A =


0 −

Ay wa
Va

− Az u2
a va

Va Vā2 +
Dα u2

a va
Va Vā2 − Lα ua va wa

Vā3 + Ax va wa
Va Vā

− Ax ua va wa
Va2 Vā

+
Ay ua v2

a wa
Va2 Vā2

m

Dα ua
Va

− Lα wa
Vā

m − va wa (Vā Dα ua−Va Lα wa)

Va Vā
3 m

0 −
Az ua

Va
+

Ax Vā wa
Va2 − Ay va wa

Va2 +
Dα ua v2

a
Va u2a+Va w2

m
Dα v
Va m −Dα v2

a wa

Va Vā
2 m

0
Ay ua

Va
− Lα u2

a va
Vā3 +

Ax va w2
a

Va2 Vā
− Ay v2

a w2
a

Va2 Vā2 + Ax ua va
Va Vā

+ Az ua va wa
Va Vā2 −Dα ua va wa

Va Vā2

m

Lα ua
Vā

+Dα wa
Va

m − va wa (Va Lα ua+Vā Dα wa)

Va Vā
3 m

(17)

Again, products of small increments (e.g., δφ · δψ ≈ 0) are neglected to obtain a linear relationship
between the control vector and the change in aerodynamic force. This allows us to complete the
effectiveness matrix B̂ using Eq. (3).

2.2 Control allocation problem formulation
In the proposed form of the INDI translational controller with a four-dimensional control vector δ u⃗ ∈ IR4

and three translational accelerations fixed to the body frame as controlled variables ⃗̇x ∈ IR3, the con-
trolled system is overdetermined. Thus, extending the control problem of Eq is possible. (1) by an
allocation. This allocation also allows for suitable desired incremental controls δ u⃗d by using weight-
ing terms. Furthermore, it is possible to assign weighting terms to consider rates of change of the
control δ u⃗. Within the allocation, this allows to formulate a cost function I that is minimized for the
sought control δ u⃗:

I = ||Wy
[(⃗

ν −⃗̇x f
)
− B̂δ u⃗

]
||22 + ||Wrδ u⃗||22

+||Wd (δ u⃗−δ u⃗d) ||22 (18)

Here, Wy, Wr, Wd are the weighting matrices of the control deviation, rate, and desired control. The
desired control vector δ u⃗d consists of the four incremental desired control states [δ fd ,δφd ,δθd ,δψd ].
For example, during the yaw-roll transition from a prop-borne to a wing-borne flight state, the actual
roll motion must be commanded using an incremental desired command δφd ̸= 0. Otherwise, the
flying wing could remain in a prop-borne flight state with a high sliding angle. Within the controller
design, Eq. (18) is reformulated as a quadratic optimization problem and solved according to [14]
using the active set method for each time step.
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2.3 Control architecture
Following Binz [10] and Smeur [15], the general architecture of the translational INDI control ap-
proach without considering an allocation is shown in Fig. 3. For the translational INDI controller, x⃗
considers the body velocity vector, and ⃗̇x is the corresponding acceleration. As shown in Fig. 3 and
given in Eq. (1), the measured acceleration is filtered by H(s) before the deviation to the commanded
acceleration ⃗̇xc is determined. Using the inverse of the control effectiveness B̂, the incremental con-
trol δ u⃗ can be determined. To avoid manipulation of the overall transfer behavior by this filter, it must
also be considered in the inner accumulation loop of the control. Within this inner loop, G(s)actuator

considers the actuator’s dynamics. In this linear formulation, the plant is represented by the system
matrix A and the input matrix B. For an ideal transfer behavior of the INDI controller, i.e., the effec-
tiveness of the plant and that modeled for the control are equal (B = B̂)), the transfer behavior from
the commanded acceleration ⃗̇xc to the acceleration ⃗̇x is equal to the transfer behavior of the actuator
G(s)actuator (see [15]).

Figure 3 – General architecture of the translational INDI control loop.

The entire translational INDI control architecture is implemented in the overall flight controller illus-
trated in Fig. 4. Similar to the control architecture in [9], this flight controller has a cascaded structure
with a guidance controller on the highest level. This guidance controller determines the acceleration
command required to keep the flying wing on a given trajectory, with the option to also control the

Figure 4 – Cascaded control architecture similar to [9] and structure of the translational INDI
controller.
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tether force in a wing-borne tethered flight. In addition, it outputs the desired δ u⃗d , depending on the
current operation state. To ensure a curve coordinated flight, the guidance also outputs the required
angular rate. The rotational controller is at the lowest level of the cascaded controller. As shown in
Fig. 4, for the given flying wing, this rotational controller outputs four elevons (κ1−4) and four throttle
commands for the four propulsion units ( f 1−4). The prescribed mean thrust and attitude commands
that compose the control vector u⃗c of the translational INDI controller serve as inputs to the rotational
controller. In addition, the angular rate commanded by the guidance is considered an input. In this
work, the rotational controller comprises a rotational INDI controller and an LQR controller. Based on
the commanded and measured attitude and the commanded and measured angular rate, the LQR
controller determines a rotational acceleration command. Within the rotational INDI controller, this
command and the measured rotational acceleration are used to determine the elevons and throttle
commands using their control effectiveness. This rotational controller and validating flight tests are
detailed in [16].

The translational controller is on the intermediate level between the guidance and the rotational con-
troller. Its structure is detailed in Fig. 4. In contrast to the illustration in Fig. 3, the translational INDI
controller is presented in a time-discrete formulation. As shown, the filtered acceleration from the
IMU-Sensor is subtracted from the acceleration command from the guidance. In contrast to the gen-
eral architecture shown in Fig. 3, an additional damping compensation is considered here. According
to [10], such damping compensation can be formulated as:

G(z)damp.comp. =
(1−Zw∆T )z−1

z−1
(19)

Due to the large wing area, the damping Zw in zb-direction is the most dominant damping and is
therefore compensated for the current flight state. It considers the airflow conditions and the previ-
ously (z−1) commanded mean throttle. The current flight state is also used to determine the overall
effectiveness matrix B̂ using Eq. (3). The compensated command deviation, the effectiveness matrix
B̂, and the incremental desired control command δ u⃗d (output from the guidance) are inputs for the
allocator. In addition, weighing parameters Wd, Wr and Wy are considered. Within the allocator,
the optimization problem Eq. (18) is solved allowing to obtain the incremental control δ u⃗. Following
the illustration of the general INDI control structure in Fig. 3, this incremental control is added on
a measured or estimated previous control vector u⃗c,k−1. As the actual throttle control is difficult to
measure, an inner accumulation loop with the modeled actuator dynamics G(z)acutator is considered.
Regarding the attitude command, a gyro sensor can measure the current flight attitude. Both the
estimated throttle and measured attitude are also filtered. Following Binz [10], the filter implemented
here is considered as PT2 transmission element with damping D and cut-off frequency ω f .

H(s) =
ω2

f

s2 +2Dω f +ω2
f

(20)

This filter is translated into time-discrete formulation using, for example, the Tustin approximation
s = 2

∆t
z−1
z+1 . The time-discrete formulation of this filter H(z) is used for the acceleration and the throttle

signal. However, the filtering of the attitude cannot be accomplished this way. The difficulty here
is to achieve a suitable interpolation between different attitudes. One approach to achieve such an
interpolation is the spherical linear interpolation introduced by Shoemake [17]:

q⃗slerp,01 =
sin[(1−αslerp)Ωslerp]

sinΩslerp
q⃗0 +

sin[αslerpΩslerp]

sinΩslerp
q⃗1 (21)

Here, q⃗slerp,01 considers the quaternion of the spherical linear interpolation between the normalized
quaternions q⃗0 and q⃗1 with the interpolation factor 0 ≤ αslerp ≤ 1. Ωslerp denotes the angle subtended
by the arc, so that cos(Ωslerp) = q⃗0 · q⃗1 is the dot product of the origin attitude q0 and the final attitude
q⃗1. If the subtended angle Ωslerp is close to zero, a linear interpolation can be used:

q⃗lerp,01 = (1−αslerp)⃗q0 +αsler p⃗q1 (22)
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This slerp algorithm can also be formulated where q⃗0 is the previously computed spherical interpo-
lation and q⃗1 is the current input at time step k. If the interpolation factor αslerp is to characterize
the dynamic interpolation between these two attitudes as α f ilter, then Eq. (21) and Eq. (22) can be
formulated as:

q⃗k,y =
sin[(1−α f ilter)Ωslerp]

sinΩslerp
q⃗k−1,y +

sin[α f ilterΩslerp]
sinΩslerp

q⃗k,u |Ωslerp > 1◦

q⃗k,y = (1−α f ilter) q⃗k−1,y +α f ilter q⃗k,u |Ωslerp ≤ 1◦ (23)

Here, q⃗k,y and q⃗k−1,y consider the current and previous output, whereas q⃗k,u considers the current
input. This formulation is similar to the time-discrete difference equation of a PT1 element:

yk = yk−1 +(uk − yk−1)
∆t

Tf ilter +∆t︸ ︷︷ ︸
α f ilter

(24)

where yk considers a linear interpolation between the input value uk and the previously calculated
output state yk−1 with the interpolation factor α f ilter. The interpolation factor α f ilter comprises the time
constant Tf ilter and the sampling time ∆t. This allows the time-discrete slerp formulation from Eq. (23)
to be assigned the transfer characteristic of a PT1 element. The cut-off frequency is considered within
the interpolation factor as ω f ,slerp = ωPT 1 = 1/TPT 1. Since two equal PT1 elements connected in se-
ries form a PT2 element, a serial combination of two of these PT1 slerp filters corresponds to a filter
with a PT2 transfer characteristic:

GPT 2 = GPT 1 ·GPT 1 =
KPT 1

1+TPT 1 s
· KPT 1

1+TPT 1 s
=

KPT 1 ·
(

1
TPT 2

)2

s2 +2 1
TPT 1

+
(

1
TPT 2

)2 =
KPT 2 ·

(
1

TPT 2

)2

s2 +2D 1
TPT 2

+
(

1
TPT 2

)2 (25)

However, as Eq. (25) shows, the damping D of such slerp-based PT2 filter is restricted to D = 1.
The developed attitude slerp-based filter is implemented in Matlab Simulink. In the following, the
functionality of the slerp-based attitude filter is presented for a representative test case shown in
Fig. 5a. It is assumed that the flying wing is in a hovering flight state with the nose pointing upward. As
shown in Fig. 5b, the initial pitch angle is θ = 85°, while the roll and yaw angles are zero (φ = ψ = 0°).
Assuming a pitch step of +∆θ = 10° and considering the rotation order ’ZYX’, the roll and yaw angles

(a) Illustration of attitude before and after ∆θ
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(b) Euler angles for pitch step in hover flight.

Figure 5 – Pitch attitude change in hover flight. The index f considers the filtered euler signals using
a regular PT2 filter, whereas the index q, f considers the filtered euler angles using the slerp-based

filter (ω f = 40 rad/s, D = 1).
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jump to φ = ψ = 180°, while the pitch angle remains at θ = 85°. The resulting attitude is shown in
the Fig. 5a. Once the attitude angles (φ , θ , ψ) are filtered independently, the flying wing performs
a coupled roll and yaw motion instead of a simple pitch motion. Due to the attitude step, φ and
ψ increase from 0° to 180°. The implemented slerp-based attitude filter allows filtering the attitude
independent of the Euler angles. As shown in Fig. 5b, the filtered attitude considers a pitch motion
up to 90°. From there, the roll and yaw angles jump to 180°, and the pitch angle decreases to 85°,
resulting in the attitude shown in Fig. 5b. Thus, the slerp filter results in a simple pitch motion. This
shows that the developed slerp filter is, in principle, suitable for attitude filtering. To verify that the
transfer behavior is equivalent to that of a PT2, the response behavior for a pitch angle step of 1° in
θ is considered. In contrast, the initial Euler angles are all set to zero. Below, Fig. 6 shows the step
responses for both a PT1 and a PT2 as conventional and slerp-based elements. As can be seen,
the slerp-based and conventional PT1 and PT2 show the same response behavior. For both, the
damping is set to 1, and in the given test case, the cut-off frequency is set to ω f = 40 rad/s. This
proves that the developed slerp filter can be used for the translational INDI controller.
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(a) PT1 step response (ω f = 40 rad/s)
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Figure 6 – Step response of conventional and slerp based PT1 and PT2

3. Analysis of translational controller
A flying wing demonstrator and the corresponding model are presented below. Based on this, an im-
plementation of the presented control effectiveness considered in the controller design is compared
with one obtained from model linearization. Then, the control concept is analyzed using a nonlinear
model-in-the-loop simulation. In addition to analyzing the simulation results, the results of a flight test
are presented and analyzed.

3.1 Demonstrator
The flying wing under consideration is shown in Fig. 7. Configured as tailsitter it can take off and land
standing on its wiglets. This demonstrator has a mass of 3.5 kg, spans about 2 m, and is equipped
with four elevons and propulsion units - two on each side of the wing. Each propulsion unit can gener-
ate a maximum thrust of about 18 N. The elevons are designed with a relatively large surface and can
deflect almost 30° in each direction. In contrast to other tailsitters studied by academia [18, 19, 20],
the aspect ratio of this flying wing demonstrator is up to two times higher in order to reduce induced

(a) Demonstrator in flight test. (b) Sketch with descriptions and dimensions.

Figure 7 – Demonstrator.
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drag, enhance the aerodynamic performance, and improve the potential performance in an AWE
context. Overall, this small-scale demonstrator is intended to be comparable to future demonstrators
designed primarily for energy-harvesting flight and is thus driven by aerodynamic efficiency. How-
ever, this comes with control limitations as shown in [16], where an upscale of this demonstrator is
presented.

The flight controller is a specially developed circuit board with a clock rate of 200 Hz. Most of the
sensors used on the flying wing measure the current state of motion. The angular rate and acceler-
ation sensors are integrated into an Inven Sense MPU-6000 micromechanical system, also known
as an inertial measurement unit (IMU). In addition, a satellite navigation receiver of the type Novatel
OEM-618D is used and operated differentially to a base station. The receiver uses the Real-Time-
Kinematic (RTK) method, which allows positions to be measured with an accuracy of a few centime-
ters. It is also possible to estimate the azimuth using two antennas, one on each side of the wing and
positioned close to the leading edge. In addition, an onboard magnetometer can be used to obtain
the azimuth. Aggregating the measured variables into an estimate of the current inertial motion state
follows the description in [21] in the sense of a loosely coupled system. See also[22] for a detailed
description.

For flight control, it is essential to determine the adequate aerodynamic airflow conditions during
flight. However, since the flying wing is expected to operate at high sideslip angles during the multi-
axial yaw-roll transition, more than a conventional fixed pitot system aligned with the flying wing’s
longitudinal axis is insufficient. These pitot tubes only allow an angular airflow offset of less than 10°.
However, sideslip angles close to 90° are expected during the yaw-roll transition. Therefore, our flying
wing is equipped with a wind vane that measures the airflow’s direction within the wing’s plane (see
Fig 8). A servo that controls the alignment of a pitot tube can then be actively guided to the measured
wind vane position and thus to the expected main direction of airflow (assuming an operation with a
low angle of attack). Since the wind vane and pitot tube measurements require an airflow of at least
5-6 m/s to provide meaningful results, a wind measurement at the winch is also included in estimating
the aerodynamic airflow condition.

Figure 8 – Estimation of aerodynamic airflow using servo-controlled pitot tube and a vane.

The tether used has a diameter of 2 mm, a length of 75 m, and is of Dyneema type, known for its
high strength and low weight. In the context of this paper, the focus is on the dynamic transition
maneuver during launching. It is assumed that during this maneuver, the flying wing operates without
an actively controlled winch so that the winch can be considered as an anchor point of the tether on
the ground, and the tether length is considered fixed.

3.2 Model of demonstrator
According to the assumptions made for the controller design, the flying wing is modeled as a rigid
body with mass m and six degrees of freedom. The translational motion is described by Eq. (26). u̇
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ẇ


b

= Mba

 D
m
De
m
L
m


a

+

 cos(θp)T
m
0

sin(θp)T
m


b

+Mbg

 0
0
g


g

+Mbt

 0
0
Ft
m


t

+

 p
q
r


b

×

 u
v
w


b

(26)

11



INDI controller for a flying wing operated in an airborne wind energy system

Here, [u v w]T denotes the translational velocity and [p q r]T the rotational velocity. In addition to
the inertia loads, the thrust is represented by T and tilted by a small offset angle θp with respect
to the wing-plane. As in the formulation of the aerodynamic effectiveness (see Sec. 2.1.2 ), the
aerodynamic loads are represented in the aerodynamic frame [ ]a by lift L and drag D and De. They are
transformed to the body frame using the coordinate transformation M[ba]. Similarly, gravity and tether
force are transformed to the body-fixed frame using M[bg] and M[bt]. In addition to the translational
motion, the angular motion can be described by Eq. (27), where [ṗ q̇ ṙ]T are the body-fixed rotational
accelerations, I is the inertia tensor, and [Mx My Mz]

T includes all external moments. The external
moments are those generated by thrust, by the deflection of the elevons, and by the airflow on
the wing. Since the tether force is assumed to act on the center of mass, the tether generates no
additional moment.  ṗ

q̇
ṙ


b

= I−1

 Mx

My
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b

−
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b

×

I ·
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
b

 (27)

The aerodynamic model of the flying wing is based on the semi-analytical element approach, accord-
ing to Hartmann [22]. In this approach, the wing is decomposed into a discrete number of elements,
considering each element’s airflow. The aerodynamic forces and moments are computed at each
element based on the given airfoil and airflow conditions. For those elements that also consider a
propulsion unit (propulsion elements i = 1...4), the generated thrust (Ti = Ti( f ,u)), depending on the
current throttle and airflow, is determined. The resulting aerodynamic, thrust, and gravitational forces
and moments are summed for all wing elements. In order to adequately model the dynamics of the
tether and to keep it suitable for online model-in-the-loop simulations, the model from [23] is used.
In this work, it is assumed that the length of the tether remains constant throughout the considered
operational phases, allowing it to neglect any winch dynamics.

3.3 Analysis of control effectiveness matrix
To prove that the effectiveness matrix B̂ developed for the INDI controller is implemented with suf-
ficient accuracy, it is compared with the effectiveness matrix obtained from a model linearization B
(compare Fig. 9b). The linearization performed here is similar to Hartmann [22]. The Jacobian ma-
trix is determined by varying the throttle and attitude for a given operating point and identifying the
resulting motion in the body frame of the operating point. Again, regarding the change in attitude, the
rotation order is kept to ’ZYX’. This allows us to determine the change in the acceleration in the body
frame due to these controls (incremental change in throttle (δ f ) and attitude (δφ , δθ ,δψ)). Here,
20 operating points are considered along a straight yaw-roll transition (visualization in Fig. 9a) from
propeller-borne hover flight with an airflow of 0 m/s to a wing-borne flight with an airflow of 13.5 m/s.
These operating points are derived in our work in [8]. The derivatives respecting the same body axis
are shown in the same subplot for illustration reasons. This allows us to better compare the effective-
ness of the different controls on the considered motion.

As the thrust has a considerable impact on the xb-motion, the corresponding derivative B̂x,δ f is the
dominant derivative throughout the entire transition. However, an increase in the effectiveness of
the other controls can be identified for airspeed greater than 6 m/s. Regarding the yb-motion, the
incremental yaw control B̂y,δψ is the most dominant control for the first 6 m/s. For airflows above
6 m/s, the roll control B̂y,δφ becomes more dominant. Regarding the zb-motion, the roll B̂z,δφ and pitch
control B̂z,δθ dominate throughout a large part of the transition. However, for increasing airspeed
above 12 m/s, the pitch motion dominates especially. When considering the dominant controls for
each axis, the relative deviation between the computed derivatives from the plant and the one from
the INDI controller is below 20% for most parts of the transition. According to a linear robustness
analysis of the INDI control concept in [10], such a deviation is within the stability limits. This proves
that the presented method for calculating the effectiveness is suitable. A better match between the
control effectiveness from the linearization B and the one from the INDI control B̂ could be achieved
by extending the aerodynamic effectiveness calculation. So far, it has not been considered that the
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wake flow significantly changes the local airflow conditions. For example, at low airspeed in a prop-
borne hovering flight, the wing elements with propulsion units experience a relevant airflow due to the
wake flow of the propeller so that local lift forces are generated locally. A differentiated consideration
of the wing in areas where a propeller wake flow occurs and in areas where only the free airflow
is considered could improve the formulation of the control effectiveness but may lead to significant
challenges in the linearization and extraction of the control effectiveness matrix B̂.

(a) Untethered straight yaw-roll transition.
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Figure 9 – Analysis of control effectiveness for a representative dynamic maneuver.
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3.4 Analysis of INDI controller via model-in-the-loop simulations
The complete translational controller, the presented underlying guidance, and the rotational controller
have been implemented and integrated in a model-in-the-loop environment in MATLAB-Simulink. The
complete set of equations of motion given in Eq. (26) and Eq. (27) is solved for each simulation step.
In the following, the control performance is analyzed for two scenarios. In the first one, the focus is
placed on the dynamic transition maneuver from a propeller-borne hover flight to a wing-borne flight
along a straight line, as shown in Fig. 9a, whereas the second one considers the tethered transition
from prop- to wing-borne flight on a curved path in a wind field with a subsequent tether force control
phase (see Fig. 11a).

For the first scenario, the results of the model-in-the-loop simulation are given in Fig. 10. The first
three plots in Fig.10 show the indicated airspeed (IAS), the Euler angles Φ⃗ in rotation order ’ZXY’,
and the transition ratio tr meaning the ratio of lift and gravitational load. These three plots help to
identify the flight state throughout the simulation. During the first 25 s, the flying wing accelerates to
an airspeed of 16 m/s while the pitch angle decreases from about 90° to 6°. It is during the accelera-
tion phase that the actual transition begins. Here, the state of the transition can be estimated by the
transition ratio tr, which goes from values close to 0 during the prop-borne hovering phase at lower
airspeed to values close to 1, indicating an aerodynamic wing-borne flight at airspeed above 15 m/s.
With a focus on the performance of the translational INDI controller, the estimated translational accel-
erations (est) and the corresponding measured accelerations ( f ) are also observed (see the last three
plots in Fig.10). Here, the estimated acceleration takes into account a filtering of the commanded ac-
celeration using the actuator dynamics G(z)actuator and the filter H(z) according to Eq. (28), while the
measured acceleration considers a filtering of the acceleration measured with the IMU sensor and
filtered with H(z) according to Eq. (29) (see Binz [10]). In doing so, the actuator dynamics correspond
to the considered transmission behavior of the closed-loop attitude controller, e.g., the transmission
behavior of the pitch motion (G(z)actuator =

θ(z)
θ(z)cmd

).

⃗̇xest = G(z)actuator ·H(z) ·⃗̇xc (28)
⃗̇x f = H(z) ·⃗̇xmeasured (29)

As shown in Fig. 10, during the actual acceleration phase (0 - 15 s), the acceleration in the yb-
direction is controlled with an error between the estimated and measured acceleration of less than
20%. The error is less than 5 % in the other body axes. Within this analysis, the squared deviation
error between estimated (exp) and measured ( f ) acceleration is integrated over a time frame as shown
in Eq. (30) for all three body axis (index i ∈ [1,2,3]) of the acceleration vector.

J(i) =
∫ tend

tstart

|⃗ẋest(i)−⃗̇x f (i)|2dt (30)

For the first 15 s, this measure of control quality is 0.02 m2/s3 and 0.24 m2/s3 for the accelerations in
xb- and zb-direction and 0.48 m2/s3 for the one in yb-direction. In the following roll phase (15 s - 34 s),
associated with fast attitude changes and a rapid increase of the transition ratio to 1, the errors
increase in all three axes. However, in contrast to the previous acceleration phase, the errors in
xb- and zb-direction are higher than the ones in yb-direction. The integrated error in yb-direction is
only 0.73 m2/s3, while the integrated error in xb-direction is 1.12 m2/s3 and the one in zb-direction
is 4.52 m2/s3. Since damping compensation is considered in the controller design, this increase in
error can be explained mainly by the error in the formulation of the effectiveness matrix presented
in the previous section. It is noticeable that, especially in zb-direction, the error is higher than in
xb-direction. Since the aerodynamic force is dominant in zb-direction and the thrust is dominant in xb-
direction, this indicates that the estimation of the aerodynamic effectiveness is less accurate than that
of the thrust. On the other hand, since the implemented damping compensation only considers the
dominant damping in zb-direction and is determined based on discrete interpolation points, an error
resulting from the damping cannot be eliminated. Nevertheless, the overall estimated and measured
accelerations strongly correlate. This indicates the functionality of the translational INDI controller.
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ÿ b
in

m
/s

2

estimated
measured

0 5 10 15 20 25 30 35
−2

0

2

time in s

z̈ b
in

m
/s

2

estimated
measured

Figure 10 – Simulation results for the dynamic straight yaw-roll transition from prop- to wing-borne
flight. tr takes into account the transition ratio, which is the fraction of lift to gravitational load. For a

prop-borne flight, tr is close to 0, while for a wing-borne flight it is approximately 1.

The second scenario depicted in Fig. 11a is a tethered curved flight in a wind field. After a vertical
takeoff, the flying wing hovers to the transition height, which is 30 m above the VTOL zone. It then
accelerates upwind to an airflow of 16 m/s while performing a curved yaw-roll transition. Afterward,
the tether is stretched, and a control of the tether force is activated. This is possible because the
implemented translational INDI controller allows an acceleration command as an input. To focus on
the performance of the translational controller for this second scenario, a constant wind speed of
4 m/s with no gusts is assumed. Figure 11b shows a visualization of this simulation.
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(a) Guidance path (b) Visualization of the simulation

Figure 11 – Circular guidance path for dynamic transition from prop- to wing-borne flight followed by
a tether control phase. The entire flight is performed under the influence of a constant wind field.

As shown in Fig. 12, the yaw-roll transition can also be performed on a curved path in a wind
field. Again, a wing-borne flight can be achieved. In contrast to the straight yaw-roll transition, the
transition ratio reaches values greater than 1 because the lift must compensate for the tether load
and increased gravitational loads from a curved flight. During this transition, the magnitude of the
accelerations is about four times greater than for the straight yaw-roll transition.
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Figure 12 – Simulation results for curved yaw-roll transition
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In addition, for this curved flight, the estimated and measured yb-accelerations decrease to a constant
offset. This offset correlates to the centrifugal acceleration for the curved flight under consideration.
Again, there is a strong correlation between the estimated and the measured acceleration. For the
transition time frame of (20 s - 40 s), the integrated squared error is 0.33 m2/s3 and 1.60 m2/s3 for xb-
and yb-direction and 5.92 m2/s3 for zb-direction. As for the straight transition, the error in zb-direction is
the most significant. Nevertheless, a clear correlation between estimated and measured acceleration
can be identified for the presented maneuver.

Figure 13 shows the simulation results for a later time frame, where the tether is stretched, and the
flying wing is in an aerodynamic wing-borne flight. Again, the centrifugal load can be recognized in
the constant offset in the acceleration in yb-direction. A slow oscillation can also be identified since
the observed time frame is larger. This oscillation corresponds to the circulation around the winch.
The ground speed is reduced whenever the flying wing is upwind, resulting in lower centrifugal loads.
However, the flying wing must accelerate in downwind conditions to maintain an airspeed of 16 m/s.
Thus, the ground speed and the centrifugal acceleration increase, resulting in a slow oscillation.

Unlike the previous results, Fig. 13 plots the measured and commanded tether force. As can be
seen, the tether force can be controlled with deviations of less than 5 N for the given scenario. It can
also be seen that the transient oscillation of the measured tether force is slightly reduced for higher
commanded tether loads. The tether force commands can also be identified as small spikes in the
estimated acceleration (filtered commanded acceleration) in the yb- and zb-directions. For a represen-
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Figure 13 – Simulation results for wing borne flight with active tether force control
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tative time frame from 140 s to 160 s, considering a command step from 20 N to 30 N, the integrated
square error in xb- and yb-direction is 0.89 m2/s3 and 2.23 m2/s3, while the one in zb-direction is again
the most significant with 4.10 m2/s3. This means that the order of this quadratic quality criterion is
comparable to that of the curved transition for the same time frame length. In addition, the estimated
and measured accelerations in all three axes show a strong correlation. Thus, this second scenario
also shows that the assumption of neglecting the tether load in the control effectiveness is appropriate
for wing-borne tethered flight and further proves the validity of the translational INDI control concept.

3.5 Analysis of INDI controller via flight tests
The first flight test was recently performed with this controller (see Fig. 7). Only position and velocity
were commanded during this test, while the flying wing remained in a prop-borne hover flight. Again,
the estimated and measured translational accelerations are observed to analyze the performance of
the translational controller. As shown in Fig. 14, the errors are small, and the estimated and mea-
sured signals correlate throughout the flight. Different position and velocity steps were commanded
during the test, leading to spikes in the acceleration signals. For example, a position respectively
velocity command in the wing fixed yb-direction leads to a peak in the yb-acceleration. The veloc-
ity commands during the flight test were below 3 m/s, and the flight was not exposed to high wind
disturbances (measured wind speed below 2 m/s). Therefore, these maneuvers can be considered
less highly dynamic than those shown in the simulations. However, when considering the control
quality criterion for estimated and measured acceleration, the control performance of the flight test is
comparable to that of the simulations. For a time frame from 80 s to 100 s, the integrated quadratic
error is 0.21m2/s3 in xb-direction, 1.06m2/s3 in yb-direction, and 1.46m2/s3 in zb-direction. This shows
that the control quality criteria for all three axes are in the same order as those from the simulations.
As for the simulations, it also shows that the control performance in the xb-axis is better than in the
other two axes. Despite the control deviations observed, this flight proves that the control concept
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Figure 14 – Estimated and measured translational accelerations in body frame from the first flight
test with the translational INDI controller active. During the observed flight phase, the guidance

controller sets the velocity and position commands.
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works for a hover flight. Further tests with higher airspeed and more dynamic maneuvers, such as
the aimed yaw-roll transition, must be performed in future work.

4. Conclusion and Outlook
This research aims to illustrate the design of a translational motion controller applied to a flying
wing embedded in an airborne wind energy system. Given the unique challenges of this operational
context, this study introduces an incremental nonlinear dynamic inversion based controller with an
incremental formulation of control effectiveness. A notable feature of this approach is its universal ap-
plicability, which enables unconventional dynamic maneuvers for such specific flight system. It allows
the execution of multi-axial maneuvers, including the seamless yaw-roll transition from a propeller-
borne hover flight to an aerodynamic wing-borne flight. In addition, this paper investigates the per-
formance and limitations of this approach. The first analysis shows the general correspondence
between the control effectiveness used in the controller and that obtained from model linearization.
However, it was found that the formulated effectiveness for the thrust was more accurate than the
effectiveness for aerodynamics. An explanation for this can be found in the assumptions used to
derive the aerodynamic effectiveness, e.g., the assumption of a constant angle of attack along the
entire wing instead of a locally variable angle of attack. The derivation of the thrust effectiveness does
not require such assumptions, allowing a better match between the effectiveness from controller and
that from model linearization. Moreover, results from nonlinear model-in-the-loop simulations with
the presented translational control are presented, showing that the measured acceleration correlates
well with the estimated acceleration (based on the command). In addition, the results of an initial
flight test with this controller are detailed. The control performance is validated and compared using
the integrated squared error of the estimated and measured accelerations for the simulation and flight
test results. It is shown that the accelerations in the xb-axis, which are mainly affected by the thrust,
show the strongest correlation. Overall, the results prove the functionality of the control concept.

Future work will focus on aspects revealed by the analysis. Some of these involve improving the
controller design, while others involve further validating tests:

• This work already considers the damping effect. However, a more detailed study of the damp-
ing effect for different flight states and a more sophisticated design of the tailored damping
compensation that also considers coupled damping effects can be approached.

• Assumptions are made in the formulation of the aerodynamic effectiveness. An extended for-
mulation of the aerodynamic effectiveness can be developed to include local variations in the
angle of attack due to propeller wake flow. Although such an extension of the effectiveness
matrix is likely to be complex, it can further improve the quality of the controller.

• Future research can evaluate the stability limits for the different weighting parameters using a
linearization of the controlled system with control allocation. In this work, the weighting param-
eters are fixed values. Future work can identify appropriate weighting parameters that will allow
faster attainment of the desired command while maintaining translational control performance.
In this context, an overall stability analysis of the flight controller can be performed. Such a
linear analysis can also analyze the system’s robustness to model uncertainties.

• Flight tests at higher airspeed are required to validate the translational control approach further.
The airflow measurement unit must be progressively validated as part of these tests.

• Based on this work, optimized trajectories for launching, energy-harvesting flight and landing
with strong winds can be used to validate the presented translational control concept further.
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