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Abstract

Optimizing performance in aircraft heat exchangers is crucial, especially for future electrified aircraft where
effectively managing the heat produced by high-power electronics stands out as one of the most significant
challenges. This study proposes leveraging advanced diagnostic techniques based on Artificial Intelligence
(Al) algorithms to enhance efficiency and safety in heat exchangers. These techniques are proficient in as-
sessing their state of health, thereby enabling the implementation of a Condition-Based Maintenance (CBM)
approach. As fouling constitutes a primary failure mode for heat exchangers, this paper presents a comparative
analysis of Machine Learning (ML) algorithms aimed at evaluating the severity of this specific failure mecha-
nism. Due to the limited availability of data from flight operations related to the behavior of this device, the data
for training and testing the data-driven algorithms was generated using a high-fidelity model of an aircraft’s
Thermal Management System (TMS), capable of simulating its behavior under both healthy and degraded
conditions.
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1. Introduction

The aviation sector has long been a contributor to greenhouse gas emissions. In recent years it has
produced approximately 2% of global energy-related CO, emissions, and as global air travel contin-
ues to expand, so does its carbon footprint [1]. The climate neutrality target within 2050 compels the
transition towards cleaner and more sustainable aviation technologies. Electrification of aircraft, by re-
placing traditional combustion engines with electric propulsion systems, has emerged as a promising
avenue to reduce aviation’s environmental footprint. Electric propulsion systems, whether powered
by batteries, fuel cells, or hybrid configurations, on one side have the potential to drastically reduce
carbon emissions by eliminating or significantly minimizing the use of fossil fuels. On the opposing
side, the transition to electric propulsion introduces a unique set of challenges, with one of the most
critical being the management of heat generated by the high power electronic devices. The Thermal
Management System (TMS) in electrified aircraft plays a crucial role in maintaining the correct op-
erating temperatures of various systems, ensuring safety, and optimizing performance. Challenges
include the need to dissipate high power heat, especially during take-off and climb phases, while
maintaining aircraft efficiency [2].

A safe and efficient TMS is paramount for the success of electrified aircraft where overheating can
compromise the safety of the aircraft, leading to catastrophic failures. To ensure TMS reliability and
performance, advanced diagnostic techniques can play key role. While traditional diagnostic meth-
ods heavily rely on manual inspection and rule-based approaches, modern strategies progressively
exploit sensor data, real-time monitoring, and analytical tools. These approaches can be catego-
rized into three main classes: data-driven, model-based, and hybrid [3]. Data-driven techniques
do not require system knowledge but only historical data of the system behaviour. The main ad-
vantage of this approach is associated with ease and speed of implementation as well as reduced
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computation cost compared to other techniques. While the drawbacks are mainly related to the avail-
ability of sufficient amounts of data and to the explainability of the results returned. Model-based or
physics-based approaches necessitate understanding both the system and its failure mechanisms.
In model-based methods, the behaviour of the healthy and faulty system is described through math-
ematical equations. This approach allows early fault detection and complete comprehension of the
output. Conversely, developing accurate physics-based models require a deep understanding of the
system’s physics leading to a complex and time-consuming modelling. Hybrid or fusion techniques
are based on the combination of the two previous approaches. Hybrid solutions aim to limit both
data-driven and physics-based disadvantages overtaking the need of large quantity of historical data
and accurate mathematical models [4].

Fault diagnosis in complex systems has undergone a significant evolution with the emergence of
data-driven algorithms [5] allowing a comprehensive and proactive approach to identifying faults and
abnormalities. By analyzing large volumes of sensor data and operational parameters, data-driven
algorithms can detect subtle patterns indicative of impending issues, contributing to early diagnosis.
The main objective of this study is to assess the efficacy of different data-driven algorithms, utilizing
Machine Learning (ML) techniques, in diagnosing fouling in heat exchangers. Given the scarcity of
flight operation data concerning the behavior of heat exchangers in both healthy and degraded condi-
tions, synthetic data was generated using a high-fidelity model of the TMS implemented in Simcenter
Amesim software.

The remainder of this paper is structured as follows: section 2 elucidates the functioning of the air-
craft’'s thermal management system, explores the fouling phenomena in the heat exchanger, and
details the methodology for generating and analyzing synthetic data. In section 3, we conduct a thor-
ough comparison of the performance of the algorithms under examination. Finally, section 4 presents
the conclusions drawn from our study.

2. Thermal Management System

The transition towards electric propulsion systems presents significant challenges concerning the
effective management of heat generated by high-power electronics. The establishment of a safe and
efficient thermal management system is of utmost importance in ensuring optimal performance and
reliability. Integrating advanced diagnostic techniques emerges as a promising approach to address
these challenges. Figure [1|presents a simplified schematic of a TMS utilized in aviation applications,
with the primary components detailed in the following.

* Electric pump: Mainly comprising an inverter, an electric motor, and a pump, it is responsible
for the circulation of coolant through the system, enabling the fluid to transport heat from the
heat source to the heat exchanger.

» Heat source: The device or set of devices that generate heat and require temperature regula-
tion.

+ Expansion tank with pressure cap: Designed to open when the pressure exceeds a target
limit, it serves as safety and regulating device, maintaining the target pressure and reducing the
risk of overheating.

« Overflow tank: A container that accommodate the expansion of coolant fluid when the system
heats up.

* Heat exchanger: Design to transfer heat from the hot coolant to the ram air.

» Piping: The network of conduits that connect all the components in the TMS, allowing the
coolant flow between them.

To assess the reliability of the thermal management system and its constituent elements, an exhaus-
tive Fault Tree Analysis (FTA) was conducted. The highest level of the FTA, illustrated in Figure
highlights that the electric pump and heat exchanger exhibit the highest fault ratios among the system
components under consideration. Given the relative ease of implementing redundancy in the electric
pump, the focus has been directed toward mitigating potential vulnerabilities in the heat exchanger.
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Figure 2 — First level of the TMS fault tree analysis.

2.1 Thermal management system model

The TMS model was implemented utilizing Simcenter Amesim software, facilitating the development
of multi-domain dynamic models with pre-defined components libraries. Key libraries employed in
model construction include: Electric Motors and Drives for the electric drive system, Thermal Hy-
draulic for various components such as the pump, expansion tank, pressure cap, overflow tank, and
pipes, Thermal for the heat source, Heat for the heat exchanger, and Aerospace and Marine for
modeling aircraft flight missions.

The model comprises several main components. The electric drive system model encompasses a
BrushLess Direct Current (BLDC) motor controlled with a torque command signal, an inverter con-
nected to a high-voltage DC-link, sensors, and a control unit. Notably, the efficiencies of the motor
and inverter, as well as maximum torque, power, and speed, are assumed constant. Mechanical
power delivered by the e-drive is computed by multiplying electrical power at the input of the inverter
by global efficiencies of the inverter and motor. Mechanical power is then transmitted to a fixed
displacement ideal pump, where flow rate is determined solely by shaft speed and inlet pressure,
neglecting flow leakage and mechanical losses. The coolant, whose properties vary with tempera-
ture, proceeds to the heat source, modeled as a thermal mass, where the temperature dynamics is
computed based in response to incoming heat fluxes. The pressure cap allows connection between
the expansion tank and overflow tank to accommodate fluid expansion due to temperature increases.
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Specifically, the expansion tank is modeled as an adiabatic fixed capacity, the pressure cap as a sym-
metric variable orifice adjusting orifice size based on pressure values, and the overflow tank as an
accumulator housing both coolant and pressurized air. Here heat exchange between the liquid and
gas phases is not considered. The heat exchanger, a flat plate finned-tube type, enables heat trans-
fer between the coolant and the ram air. The calculation model for exchanged thermal flux is based
on the epsilon-NTU method, considering a cross-flow architecture. Additionally, akin to the circuit
pipes, the pressure losses in the exchanger are also taken into account using the well-established
Darcy-Weisbach model [6]. Finally, the pipes model enables the consideration of both distributed
and concentrated pressure losses, predominantly attributed to factors such as relative roughness,
Reynolds number, and the layout of the cooling circuit, while disregarding heat exchange with the
surroundings.

The model was developed with an emphasis on minimizing computational costs, enabling the ex-
ecution of a large number of simulations essential for data-driven algorithms. This strategy often
bypasses the need for intricate models of components deemed insignificantly contributory or with
limited impact on the assessment of fouling severity. Hence, a balance between accuracy and com-
putational costs was pursued, with simplifications applied to certain components wherever feasible.

2.2 Heat exchanger fouling model

After carefully selecting the system’s components and setting their parameters, our focus turned to
modelling the effects of fouling in the system. As reported in [7], failure mechanisms in heat ex-
changers culminate in two primary modes: leakage and overheating. While fluid leakages in aircraft
applications are typically verified through visual inspections or specialized sensors [8], diagnosing
overheating is generally more complex due to the absence of external indicators, primarily resulting
from internal degradation mechanisms. In this paper, fouling is considered as a cause of overheating,
recognized as one of the primary failure modes in heat exchangers [7]. Fouling refers to the unde-
sired accumulation of insoluble particles on the inner heat transfer surface, resulting in the formation
of a deposit layer and consequently reducing system efficiency and performance. These deposits
may occur as a result of various phenomena, including precipitation, deposition of particulates, ac-
cumulation of chemical reaction byproducts, formation of corrosion product layers, and biological
fouling. The presence of a deposit layer primarily manifests in several effects, including the introduc-
tion of additional heat transfer resistance, slight enhancement in convective heat transfer, reduction
of cross-sectional area in flow passages, and increase in internal pipe roughness.

The analysis of heat exchange is commonly approached through an electrical analogy, wherein each
convective and conductive heat transfer term represents a thermal resistance to heat flux. When
internal fouling occurs, an additional conductive thermal resistance is introduced compared to pris-
tine operational conditions (Figure [3). Consequently, the overall thermal resistance (R;,) is defined
by Equation [1| [9], being it the reciprocal of the product between the overall heat exchange coeffi-
cient and the exchange area. This resistance encompasses the internal convective term, the fouling
conductive term, the wall conductive term, and the external convective term, respectively.

D,
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Here, h; and h, denote the convective heat transfer coefficients inside and outside the tube, respec-

tively, while A;, Ar, and A, represent the internal, fouling, and external heat exchange areas. The

fouling factor, denoted by k/, is calculated as the ratio of the thickness of the layer to its thermal

conductivity. D, and D stand for the outer and inner tube diameters, and A2 and L denote the thermal
conductivity coefficient and the length of the tube, respectively.

This phenomena leads to higher outlet temperatures of the refrigerant fluid, potentially resulting in

overheating issues. Conversely, fouling-induced reduction in passage area necessitates higher ve-

locities to maintain flow rates, these elevated velocities intensify the rate of convective heat transfer

between coolant and fouled surface. However, this enhancement is insufficient to compensate the

diminished heat transfer attributed to the increased thermal resistance from fouling. Furthermore,

the decrease in cross-sectional area within flow passages resulting from sedimentation of deposits

(1)
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on the exchange surface influences the pressure drop between the heat exchanger’s inlet and outlet.
According to the Darcy-Weisbach equation provided below, it becomes evident that the pressure drop
is inversely proportional to the fifth power of the hydraulic diameter.

1 L
Ap = —pv2— 2
p=5pY thD (2)

Here, Ap represents the drop of pressure between the heat exchanger inlet and outlet, v denotes the
fluid velocity, L and D;, stand for the length and hydraulic diameter of the tube, respectively, and fp
denotes the Darcy friction factor, which is equal to four times the Fanning friction factor.

Finally, an elevation in surface roughness commonly results in heightened pressure drops due to
escalated turbulence within the fluid dynamics regime. Notably, in the presence of laminar flow,
the friction factor is decoupled from surface roughness, being solely contingent upon the Reynolds
number.
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Figure 3 — Pipeline section with the presence of fouling.

2.3 Numerical simulations

Fifteen hundred simulations were conducted to generate the dataset utilized for training and testing
machine learning algorithms. Specifically, five hundred simulations were carried out for each degra-
dation level. Following the establishment of a maximum or critical fouling value derived from the
temperature requirements of the heat source, the fouling classes are indicated as no fouling, moder-
ate fouling, and severe fouling. The first corresponds to the nominal condition of the heat exchanger
and the absence of contamination, ensuring optimal heat transfer. The second represents an inter-
mediate level between the optimal and faulty conditions, serving as an alert for maintenance. The
third is considered a critical level, as surpassing this threshold results in temperatures exceeding
those specified in the heat source requirements. In particular, the learning models employed in this
study were designed with the aim of creating multi-class classifiers capable of recognizing the level
of fouling corresponding to a specific flight mission, based on modeled fault levels. The decision to
divide fouling into discrete levels and the consequent use of classifiers instead of regressors is based
on the concept that, since the temporal evolution of the defect is slow, the fault levels can be thought
of as thresholds that serve as warnings to plan maintenance strategies. From this perspective, a
division into levels of fault evolution is sufficient, and having a precise estimate of the extent of fouling
is not essential, as the focus is on monitoring thresholds rather than continuous values. Hence, owing
to its simplicity and effectiveness, classification emerged as the preferred approach.

To encapsulate the inherent variability within mission profiles, static air temperature, static air pres-
sure, true air speed, and heat power dissipation values during the cruise phase were randomly cho-
sen in each simulation. These selections were sampled from Gaussian distributions tailored to the
reference class of the aircraft in question. The distributions portraying these parameters are depicted
in Figure 4. Within this figure, the after mentioned quantities were normalized by dividing them by
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their mean values for industrial considerations. In constructing the synthetic dataset, a deliberate
choice was made to concentrate on a specific point within the mission profile where thermal steadi-
ness of the coolant was achieved, rather than analyzing time-series data for the entire mission profile.
By concentrating on this specific operational point, the dataset was designed to encapsulate critical
insights and characteristics representative of the system’s behavior during a stable thermal state.
This approach to dataset creation ensures that the ML algorithms are trained and tested on a spe-
cific operational condition, contributing to the reliability and efficacy of the subsequent analyzes and
model outcomes.

A Python script was utilized to size the TMS, and its output was later integrated into the dynamic
model. This model incorporates inputs from another Python script, which is responsible for defin-
ing simulation parameters such as fouling levels, environmental conditions, and mission profiles. The
data generated by the Amesim model is subsequently analyzed and used for both training and testing
machine learning algorithms under investigation. The sequential steps of this workflow are visually
depicted in Figure [B]

Air temperature Air pressure
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Figure 4 — Workflow illustration depicting the sequential steps involved in sizing and modeling the
TMS using Python scripts and Simcenter Amesim software.

2.4 Exploratory data analysis

In this study, the dataset has been generated to achieve a balanced representation across three
distinct fouling classes. Through a synthetic generation process, we ensure data cleanliness, elimi-
nating missing values, duplicate entries, and structural anomalies aiding data analysis and inference
regarding real-world datasets by mitigating potential confounding factors.

Figure [] presents an illustrative example of the trends in inlet heat exchanger temperatures through-
out an entire flight mission. The plot displays distinct temperature profiles for each fouling level con-
sidered, alongside the temperature threshold dictated by the heat source requirements. To ensure
comparability across trends, the mean values of the distributions of input model parameters outlined
in the preceding section, such as air temperature, air pressure, true air speed, and heat power, were
utilized in each of the three simulations. To maintain industrial confidentiality, all quantities depicted in
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Figure 5 — Workflow from the sizing of the TMS to the training and testing of the ML algorithms.

the figure have been appropriately scaled. Specifically, temperature values are scaled by the thresh-
old value, altitude values are scaled by the cruise phase altitude, and mission time is expressed as a
percentage. Figure [7]complements our analysis by showcasing boxplots that depict the distribution
of inlet and outlet temperatures and pressures of the heat exchanger across the fouling levels con-
sidered. For the same reason reported previously, both temperature and pressure values have been
scaled by their respective mean values. Notably, as fouling severity increases, higher values are
observed for each considered quantity. Furthermore, Figure [8| provides insights into the interdepen-
dencies within the dataset through a correlation matrix analysis, leveraging the Pearson correlation
coefficient. This coefficient quantifies the strength and direction of linear relationships between vari-
able pairs, offering valuable insights into dataset dynamics. Key features analyzed include Static Air
Temperature (SAT), Static Air Pressure (SAP), True Air Speed (TAS), coolant temperature at the heat
exchanger inlet (T1), coolant temperature difference between heat exchanger inlet and outlet (dT),
coolant pressure at the heat exchanger inlet (p1), and coolant pressure difference between heat ex-
changer inlet and outlet (dp). Significant correlations emerge between variables such as static air
temperature and static air pressure, as well as between the temperature and pressure at the heat
exchanger inlet. Conversely, weaker correlations are observed between environmental parameters
(SAT and SAP) and true air speed, as expected.

3. Data driven algorithms comparison

As shown in Figure [9] machine learning algorithms are mainly classified into four categories: (i)
supervised learning, (ii) unsupervised learning, (iii) semi-supervised learning, and (iv) reinforcement
learning [10, [11]. In the following these techniques are briefly described.

(i) Supervised learning techniques are employed in scenarios involving labeled datasets, where
the target variable is explicitly known, enabling the resolution of both classification and regres-
sion problems. Classification involves the assignment of data points to distinct classes, while
regression entails the estimation of continuous target variables [12].

(il) Unsupervised learning techniques are utilized in situations where labeled data is absent or when
the objective is to uncover underlying structures and patterns within a dataset. Unlike supervised
methods, unsupervised techniques operate without explicit target variables, instead emphasizing
the intrinsic organization of data. Key tasks in unsupervised learning encompass clustering,
anomaly detection, feature learning, and more [10].

7
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Figure 6 — Inlet heat exchanger temperature trends across varied fouling levels
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Figure 8 — Features correlations matrix heatmap.

(iiiy Semi-supervised learning techniques are employed in scenarios where datasets comprise both
labeled and unlabeled data points, combining elements from both supervised and unsupervised
methods. The objective of a semi-supervised learning model is to enhance predictive perfor-
mance beyond what can be achieved by exclusively relying on the labelled data [11].

(iv) Reinforcement learning techniques are based on reward and penalty, allowing software agents
and machines to automatically evaluate the optimal behaviour to improve their performance [13].

MACHINE LEARNING
ALGORITHMS

Supervised Learning Unsupervised Learning Semi-Supervised Learning Reinforcement Learning
(labeled data) (unlabeled data) (labeled + unlabeled data) (unlabeled data)
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Figure 9 — Machine learning algorithms classification.
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The following section presents a comprehensive assessment of the performance of six classification
algorithms within the context of a supervised learning problem. Classification problems are typically
divided into three distinct categories. The first, known as binary classification, pertains to scenarios
involving only two classes. The second, termed multiclass classification, is applicable when there
are more than two classes. The last category, referred to as multi-label classification, arises when a
single instance may be associated with multiple labels. In this study, multiclass classification methods

9
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are utilized to assess the severity of heat exchanger fouling, classifying it into three levels: no fouling,
moderate fouling, and severe fouling.

3.1 Naive Bayes

The Naive Bayes (NB) algorithm is a probabilistic classification method that relies on the assumption
of conditional independence among features given the class label, facilitating efficient computations.
The algorithm calculates class probabilities using Bayes’ theorem, combining prior probabilities and
likelihoods. Its simplicity, computational efficiency, and respectable predictive performance make it
a valuable tool in the realm of probabilistic classification [14]. The Python scikit-learn library pro-
vides several Naive Bayes algorithms, offering a range of options. For our dataset, the Gaussian
Naive Bayes method was deemed most suitable. Due to its simplicity, default parameter values were
adopted, yielding training and testing accuracies of 70.83% and 65.00%, respectively. A comprehen-
sive assessment of model performance is presented in Table |1, showcasing metrics such as preci-
sion, recall, and F1-score. Additionally, Figure [10fa) presents the confusion matrix, offering a visual
depiction of classification results and insights into the model’s performance across different classes.
Figure[11)a) displays the Receiver Operating Characteristic (ROC) curve, indicating the performance
of the classification by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR)
at varying threshold values. ROC curves are commonly applied in binary classification tasks, where
TPR and FPR are clearly defined. In multi-class classification scenarios, TPR or FPR can be derived
by converting the output into binary form. Here, a one-vs-rest strategy is employed, comparing each
class against the remainder treated as a single entity.

Table 1 — Classification report for Naive Bayes algorithm.

precision recall Fi-score support

no fouling 0.70 0.80 0.75 100
moderate fouling 0.48 0.41 0.44 100
severe fouling 0.74 0.74 0.74 100
accuracy 0.65 300

3.2 K-nearest neighbors

The k-Nearest Neighbors (k-NN) algorithm is a non-parametric and instance-based method grounded
in the principle of proximity-based classification. K-NN operates by assigning a class label to an input
data point based on the consensus of the classes of its k-nearest neighbors in the feature space
[15]. While Naive Bayes models are generally insensitive to feature scaling, k-NN relies on distance
metrics, calculating distances between data points for predictions. Thus, it is advisable to normal-
ize or scale features to prevent any single feature from unduly influencing the distance computation.
This normalization ensures that all features contribute uniformly to the distance calculation. In the
scikit-learn library, various scaling techniques are available. For our dataset, we opted for the Stan-
dardScaler due to its suitability for our use case. In order to enhance the performance of k-NN and
subsequent algorithms, it is imperative to tune their hyperparameters. In this study, we conduct hy-
perparameter tuning using the GridSearchCV function available in the scikit-learn library. Through
a systematic exploration of hyperparameter combinations, GridSearchCV facilitates the identifica-
tion of optimal parameter values, contributing to enhanced model performance. This rigorous tuning
process ensures that the k-NN algorithm is tailored to the specific characteristics of the dataset,
promoting robust and effective classification results. Following the tuning of hyperparameters the
model achieved an accuracy of 89.75% on the training dataset, showcasing its capability to effectively
capture patterns within the training samples. While, on the testing dataset, the model exhibited an
accuracy of 85.00%, indicating its ability to generalize well to previously unseen data. The detailed
classification report for the k-NN model is provided in Table [2 while Figure [10[b) and Figure [T1]b)
visually present its confusion matrix and its ROC curves.
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Table 2 — Classification report for k-Nearest Neighbors algorithm.

precision recall F1-score support

no fouling 0.89 0.91 0.90 100
moderate fouling 0.81 0.72 0.76 100
severe fouling 0.84 0.92 0.88 100
accuracy 0.85 300

3.3 Decision tree

Decision Tree (DT) algorithms are used for both classification and regression problems. For classi-
fication task, the algorithm operates by partitioning the input space into regions, each assigned to a
class label, and makes predictions based on these regions. The partitioning is done by recursively
splitting the input space based on feature values, resulting in a tree-like structure [16]. The tree was
generated using the DecisionTreeClassifier from the scikit-learn library, with hyperparameters opti-
mized through GridSearchCV. The model exhibited a training accuracy of 88.25% and a test accuracy
of 85.00%. The classification report of the DT metrics is reported in Table [3|while in Figure [T0fc) and
Figureare shown, respectively, its confusion matrix and its ROC curves.

Table 3 — Classification report for decision tree algorithm.

precision recall Fi-score support

no fouling 0.87 0.91 0.89 100
moderate fouling 0.82 0.71 0.76 100
severe fouling 0.86 0.93 0.89 100
accuracy 0.85 300

3.4 Random forest

Random Forest (RF) is an ensemble technique [17] that fits several decision tree in parallel using
different subset of the dataset. RF uses majority voting for classification tasks or averages for regres-
sion task to get the final result. This method allows to reduce the over-fitting and it is generally more
accurate than a single decision tree model. Using the random forest algorithm from the scikit-learn
library and optimizing its hyperparameter through the function GridSearchCV, we obtained a training
accuracy of 90.92% and a test accuracy of 88.00%. In Table [4] Figure [10(d), and Figure [T1|d) are
reported, respectively, the classification report of the RF metrics, the confusion matrix, and the ROC
curves.

Table 4 — Classification report for random forest algorithm.

precision recall Fi-score support

no fouling 0.90 0.90 0.90 100
moderate fouling 0.83 0.81 0.82 100
severe fouling 0.91 0.93 0.92 100
accuracy 0.88 300

3.5 Adaptive boosting
Adaptive Boosting (AdaBoost), first introduced by [18], is an ensemble learning technique charac-
terized by an iterative approach aimed at enhancing weak classifiers by learning from their errors.
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Unlike random forests, which employ parallel ensembling, AdaBoost utilizes a sequential ensemble
approach. By combining multiple underperforming classifiers, AdaBoost constructs a robust classifier
that typically achieves higher accuracy. AdaBoost is recognized as an adaptive classifier, significantly
improving classifier efficiency. However, there is a risk of overfitting in certain scenarios. Applying the
AdaBoost algorithm through the scikit-learn library resulted in training and test accuracies of 90.75%
and 87.33%, respectively. Additional metric values are provided in Table |5, while the confusion matrix
and ROC curves are depicted in Figures[10fe) and [T1fe).

Table 5 — Classification report for adaptive boosting algorithm.

precision recall Fi-score support

no fouling 0.90 0.87 0.88 100
moderate fouling 0.81 0.81 0.81 100
severe fouling 0.91 0.94 0.93 100
accuracy 0.87 300

3.6 Support vector machine

The Support Vector Machine (SVM) algorithm serves both classification and regression tasks [19]. In
high-dimensional spaces, SVM establishes hyperplanes, positioned to maximize the margin from the
nearest training data points within any class, facilitating robust separation. A wider margin generally
corresponds to lower generalization error. SVM’s efficacy in high-dimensional spaces is influenced
by diverse kernel functions such as linear, polynomial, radial basis function (RBF), and sigmoid.
However, in noisy datasets with overlapping classes, SVM performance may degrade [10]. The RBF
kernel was selected for our specific use case due to its superior flexibility in handling complex decision
boundaries compared to other kernels. Following hyperparameter tuning, the model achieved a
training accuracy of 94.33% and a test accuracy of 93.33%. Detailed SVM metrics are presented
in Table [6] and corresponding confusion matrix (Figure [10ff)) and ROC curves (Figure [T1]f)) are
provided.

Table 6 — Classification report for support vector machine algorithm.

precision recall F1-score support

no fouling 0.95 0.94 0.95 100
moderate fouling 0.90 0.90 0.90 100
severe fouling 0.95 0.96 0.96 100
accuracy 0.93 300
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Figure 10 — Confusion matrices for the evaluated algorithms.
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Figure 11 — ROC curves for the evaluated algorithms.
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4. Conclusion

In this study, we conducted a comprehensive comparative analysis of six distinct machine learning
algorithms — Naive Bayes, k-Nearest Neighbors, Decision Tree, Random Forest, Adaptive Boosting,
and Support Vector Machine — applied to assess fouling severity in an aircraft thermal management
system’s heat exchanger. Through rigorous evaluation, each algorithm’s performance and suitability
for the task were thoroughly examined. Our findings provide valuable insights into the efficacy and
applicability of these algorithms in real-world scenarios. Future research endeavors could explore
additional algorithms or refine existing models to further enhance diagnostic accuracy and optimize
thermal management systems’ efficiency.
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