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Abstract 

To address the star pattern recognition challenges arising from low signal-to-noise ratios of star points due to 

short exposure times of star sensors during the dynamic flight of aerospace vehicles, this paper proposes a 

convolutional neural network-based end-to-end star pattern recognition algorithm. According to the attitude 

information provided by the inertial navigation system, the sky region of the star to be identified was predicted, 

and the recognition pattern was input into the network model of the sky region. The star number to be identified 

is output by the network classifier to complete the star map recognition. This approach reduces model 

complexity and significantly enhances the accuracy, speed, and robustness of star pattern recognition. 
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1. Introduction 

The navigation system plays a crucial role in enabling aerospace vehicles to accomplish precise long-

range flight missions. Inertial navigation, characterized by its high reliability, resistance to interference, 

strong autonomy, and high update frequency, serves as the core navigation equipment for aerial 

vehicles. However, the error accumulation in inertial navigation over time often fails to meet the 

requirements for precise navigation during long-duration flights. Additionally, satellite navigation 

systems are susceptible to electronic interference and may even be completely compromised during 

high-intensity information warfare. Therefore, starlight navigation, which offers high precision, long 

endurance, all-weather autonomy, and continuous positioning, serves as a "fallback" method to assist 

inertial navigation[1]. 

Starlight navigation requires observing the navigational stars recorded in the star catalog to determine 

the attitude of the vehicle. Therefore, the challenge of star pattern recognition lies in accurately and 

quickly identifying which star in the star catalog corresponds to each star point in the star image[2]. 

Currently, star pattern recognition algorithms can be broadly classified into three categories: 

subgraph isomorphism algorithms, pattern recognition algorithms, and artificial intelligence 

algorithms[3]. 

The subgraph isomorphism algorithm considers the star pattern recognition problem as a special 

case of the subgraph isomorphism problem. This type of star pattern recognition algorithm takes the 

star points within the field of view as the vertices of the graph, with the angular distances between 

the star points as the edges, constructing an undirected graph. By searching for a subgraph in the 

navigation database that is consistent with the observed undirected graph, star pattern recognition 

can be achieved. The most typical subgraph isomorphism algorithm is the triangle algorithm. The 

earliest version of the triangle algorithm was proposed by Liebe in 1996[4]. Based on this algorithm, 

numerous improved versions of the triangle algorithm have been developed subsequently[5]. 
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Pattern recognition algorithms construct a unique pattern or signature for each navigational star, 

typically determined by the distribution of its neighboring star points. The navigational star in the 

database whose pattern most closely matches the observed pattern is identified as the corresponding 

star point. The grid algorithm, proposed by Padgett et al. in 1997, is one of the earliest pattern 

recognition matching algorithms[6]. The grid algorithm represents the relative positions of neighboring 

stars around the primary star using grid features for identification. The grid algorithm exhibits fast 

processing speed, high recognition rates, and strong robustness against positional noise, but it 

requires careful selection of calibration stars. 

With the rapid advancement of deep learning technologies, artificial intelligence-based star pattern 

recognition algorithms have emerged as a focal point of contemporary research[8]. These algorithms 

primarily leverage neural networks and intelligent algorithms to identify geometric distribution features 

surrounding star points[8]. Neural networks exhibit exceptional generalization and clustering 

capabilities, enabling them to identify the closest prototype from incomplete or distorted observational 

patterns[9]. Furthermore, once trained, these networks demonstrate extremely fast online matching 

speeds[10]. 

The starlight navigation system, based on wide-field-of-view star sensors for aerial vehicles, faces a 

primary technical challenge during flight. Under dynamic conditions, the star sensor may experience 

issues such as starlight being overwhelmed by noise or trailing phenomena, which affects normal 

starlight observations and poses challenges to maintaining stable attitude determination for starlight 

navigation during dynamic flight. For this purpose, this paper addresses the issues of insufficient 

starlight navigation response capability and low attitude determination accuracy in integrated 

navigation systems during the dynamic flight of aerospace vehicles. We delve into the observational 

and computational mechanisms of wide-field star sensors to enhance the update rate of astrometric 

computation data. By developing intelligent star pattern processing algorithm strategies, we aim to 

meet the requirements for fully autonomous, high-precision, highly reliable, and real-time navigation 

of aerospace vehicles. 

2. Measurement principle and measurement error of star sensor 

2.1 Measurement principle of star sensor 

To achieve starlight navigation for attitude determination, the primary task is to determine the pixel 

coordinates of stars on the imaging plane of the star sensor. Typically, each star occupies a 3×3 or 

5×5 pixel window, necessitating the use of a centroid extraction algorithm to compute precise sub-

pixel coordinates of the stars. The centroid method is commonly employed[11]. This algorithm 

calculates the precise sub-pixel coordinates of stars by weighted averaging the grayscale values of 

multiple pixels within the star's coverage area. It offers simplicity in computation while ensuring high 

positioning accuracy. Assuming the coordinates of stellar coverage in the star chart are x1  u x2 

and y1 v y2, the formula for computing the centroid of a star using the centroid method is: 
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Using the centroid method to extract star points, the coordinates of the star points in the imaging 

coordinate system of the star sensor can be obtained as ( , )u v . Assuming that the optical axis of the 

star sensor is located at coordinates
0 0( , )u v   in the plane of the sensor's coordinate system, and the 
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focal length of the star sensor is f, the star observation vector sW   in the star sensor coordinate system 

can be expressed as: 

 

0

0
2 2 2

0 0

( )
1

( )
( ) ( )

u u

v
u u v v f

f



− 
 

= −
 

− + − +  − 

sW  (2) 

Through star pattern recognition technology, it is possible to determine the specific correspondence 

between the detected stars in the star chart and the stars listed in the star catalog. According to the 

star catalog, the reference vector of a star in the celestial coordinate system can be denoted as Vc. 

Based on the aforementioned coordinate system definition, the following relationship can be derived: 

 s s b n

s i c b n i c= =W C V C C C V  (3) 

Where s

iC  represents the rotation matrix from the inertial coordinate system to the star sensor 

coordinate system. Using equation(4), we can solve for the spacecraft attitude matrix b

nC  based on 

the star sensor installation matrix. 

 T T( ) ( )b s s n

n b i i=C C C C  (4) 

2.2 Measurement error of star sensor 

During the imaging process of a star sensor, the three types of noise that have the greatest impact 

are shot noise, dark current noise, and readout noise. All three types of noise are classified as random 

noise. Since random noise follows a probabilistic distribution, the variance of the noise is typically 

used to measure its absolute magnitude. These three types of noise are independent and 

uncorrelated, meaning their noise power can be directly added together, hence they are also referred 

to as additive noise. The signal-to-noise ratio (SNR) is generally used to measure the relative 

magnitude of various noises. For dynamic star maps, when the light signal is weak, readout noise 

and dark current noise cannot be neglected. Photon shot noise, however, cannot be reduced or 

compensated for, which primarily limits the SNR. The SNR of a star map can be approximately 

expressed as: 
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Where S  represents the number of signal electrons from the star point; 2

shot denotes the variance of 

shot noise, which correlates with the number of incident photons; 2

dark represents the variance of dark 

current noise, which is dependent on the exposure time; and 2

read  signifies the readout noise, which 

is related to the intrinsic properties of the star sensor's fabrication process. 

3. End-to-end recognition method of fuzzy star map based on grid algorithm 

The grid algorithm, a pattern recognition-based star image recognition method, demonstrates good 

anti-interference capabilities. In this section, we build upon the grid star image recognition algorithm 

and incorporate convolutional neural networks (CNNs) to further enhance the robustness of the 

algorithm. 

3.1 Limitations of traditional grid recognition algorithms 

The grid algorithm is a typical pattern recognition-based star image recognition method, first proposed 

by Padgett and Kreutz-Delgado in 1997[6]. The fundamental principle of this algorithm involves 

defining a grid pattern for each star. The specific construction process includes the following steps: 

First, select the star r  to be identified within the star image and reposition it along with other stars 

within a certain angular distance to the center of the star image. Next, identify the nearest neighboring 

star m  within this range, which is farther from r  than a predetermined distance p , as the reference 

star. Rotate the star image about r  so that m  points towards the east direction of the star map. Then, 
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the star map is divided into *g g  grids. All stars in the sky area, except for the star to be identified r , 

are projected onto each grid. If a grid contains a star, it is marked as 1; otherwise, it is marked as 0. 

Finally, flatten the 0, 1 matrix of the grid into a vector v  and store it in the navigation star catalog. 

The pattern establishment for the star r  to be identified is completed. By repeating the above steps, 

a feature library for star map matching is established, transforming the star image recognition problem 

into searching for grid patterns similar to the star to be identified within the feature library. The process 

of constructing grid patterns in the grid algorithm is illustrated in Figure 1. Experiments have shown 

that the grid algorithm has good robustness and a high recognition success rate. To some extent, it 

does not require parameter adjustments to adapt to the noise interference in star sensors. 

r

m

 

r m

 

（a） （b） 

 

1 g

g×g(g-1)×g
 

（c） （d） 

Figure 1 – Grid algorithm schematic diagram 

Despite the advantages of the grid algorithm[11], it still exhibits limitations in feature construction and 

recognition, which are primarily manifested in the following two aspects: 

(1) The accuracy of selecting the correct guide star is relatively low. Even in the absence of positional 

noise in the star points, the probability of correctly identifying neighboring stars is only about 50%. 

This probability further decreases as positional noise increases. The main reasons for this outcome 

include: firstly, when the star to be identified is at the edge of the field of view, there is an increased 

likelihood that the guide star falls outside the field of view; secondly, under the presence of magnitude 

noise, it is impossible to ensure that the extracted brightness information of the star points has 

sufficiently high precision. When an error occurs in determining the guide star, an incorrect feature 
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pattern will be constructed, leading to a failure in accurate identification. The grid algorithm mitigates 

the impact of erroneous neighboring star determination by increasing the number of stars to be 

identified, thereby maintaining a high recognition rate. 

(2) The feature pattern cannot accurately reflect the intrinsic similarity of the star map. For example, 

consider a grid with g=8 in Figure 2. Suppose its feature pattern vector is v . According to the 

construction process of the grid pattern feature vector, the elements (14, 19, 39, 45, 51) of the feature 

vector v  are 1, while the others are 0. Under the influence of the positional noise of star points, a star 

located at the grid edge may move from position A to position B, resulting in an extracted feature 

pattern vector v . Evidently, the elements (19, 22, 39, 45, 51) are 1, while the others are 0. It is 

apparent that there is a significant discrepancy between the feature vectors extracted using this 

method, despite similar distribution characteristics, failing to accurately reflect their similarity in the 

feature space. Consequently, this algorithm cannot meet the robustness requirements under noisy 

conditions. 

 

1 8

57 64

A

B

 
Figure 2 – Grid star map with g=8 

For some neural network star map recognition algorithms, the distance vectors or angular distances 

between reference stars and their neighboring stars are used to identify the reference stars. This 

means that patterns must be created in advance. Generally, the more patterns there are, the higher 

the accuracy. Unfortunately, too many patterns can lead to excessive computational complexity 

during network training. Therefore, these methods may not be suitable for practical tasks. Additionally, 

these methods make it difficult to achieve good recognition when there are false stars because false 

stars can alter the distance vectors or angular distances with reference stars. 

In order to address the shortcomings of grid algorithms and existing neural network star map 

recognition algorithms, an improvement approach is proposed. The idea is to combine the simplicity 

and ease of implementation of grid algorithms with the robustness of convolutional neural networks 

in handling small deformations, translations, and rotations of images. The model database is 

transformed into a network structure, reducing memory usage and shortening recognition time. The 

basic idea of the improved grid recognition algorithm based on convolutional neural networks is as 

follows: first, preprocess the star map by extracting star points from the star map and constructing 

recognition patterns for the stars to be identified. Then, divide the entire celestial region into partitions 

and train separate recognition networks for each partition. Next, predict the celestial region of the star 

to be identified based on attitude information provided by the inertial navigation system, and input the 

recognition pattern into the network model of that partition. Finally, the network classifier outputs the 

star ID of the star to be identified, completing the star map recognition. 
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3.2 Improved end-to-end recognition algorithm based on convolutional neural network 

Compared to other traditional machine learning algorithms, CNN employ a multi-layer structure to 

enhance the network's generalization and abstraction capabilities[12]. The primary feature of CNNs 

lies in their ability to autonomously learn complex models by extracting abstract features from the 

input layer through a series of operations such as convolution filtering, local normalization, nonlinear 

functions, and downsampling. The network parameters are optimized through a training process 

involving backpropagation and optimization algorithms like gradient descent. The initial layers of the 

network typically represent low-level features, while the final layers are capable of integrating these 

low-level features to recognize and classify more complex target concepts. The overall structure of 

the Convolutional Neural Network is shown in Figure 3. 
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Figure 3 – Convolutional neural network structure diagram 

3.2.1 Convolution layer 

The convolution operation employs mechanisms of local connections and weight sharing, simulating 

the behavior of cell units with local receptive fields to extract primary signal features. Local 

connections refer to each neuron in the convolutional layer being connected to neurons within a 

certain region of the previous layer's features. Weight sharing means that neurons in the same feature 

use the same connection weights to establish relationships with local connections in the previous 

layer, thereby effectively reducing the number of network training parameters. Each neuron in the 

convolutional layer receives input from a specific region of neurons in the previous layer's feature 

map, with the size of this region determined by the size of the convolution kernel. The convolutional 

layer convolves the input data with m  learnable convolution kernels, adds biases, and then 

processes it through an activation function to obtain m  feature maps. The next layer of the 

convolutional structure consists of n  feature maps, which are obtained by convolving each of the m  

feature maps from the previous layer with *n m  convolutional kernels. After combining the results of 

every m  convolutions, adding biases, and processing through an activation function, the output is 

achieved. The mathematical expression for the convolutional layer is as follows. 
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Where x  is the input two-dimensional data; y  is the output of size *M N ; where 0 m M  ,

0 m M  ; w represents a convolution kernel of size *J I ; b  stands for bias; f  stands for activation 

function. 

3.2.2 Downsampling processing 

The dimensionality of the feature vectors generated after convolution is quite large. If these features 

are directly used for classification and recognition, it will result in massive computational load and 

high complexity. Therefore, before training a classifier on the extracted features, dimensionality 
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reduction is necessary. To simulate the dimensionality reduction process of complex cellular units, 

downsampling operations are employed to filter and combine primary features into higher-level and 

more abstract features. In the network, after sampling through the downsampling layer, the number 

of output feature maps remains unchanged, but the computational load of the network is significantly 

reduced. Additionally, the network's invariance to object translation and scaling is enhanced, 

improving the network's robustness. The mathematical expression for the downsampling operation 

is shown in Equation(7), where common downsampling operations include max pooling and average 

pooling. 
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Where x is the input vector after convolution processing, y is the output after downsampling, 1S and 

2S are the downsampling scales. 

3.2.3 Fully connected layer 

To enhance the nonlinear mapping capability of the network while limiting its size, a fully connected 

layer is introduced after the feature extraction layer. Unlike the convolutional layer, the fully connected 

layer can perceive global information, integrating the local features extracted by the convolutional 

layer to form global features for specific target tasks. In this layer, each neuron is connected to all 

neurons in the previous layer, while neurons within the same layer are not connected. The 

mathematical expression for the fully connected layer is as follows: 
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Where n  is the number of neurons in the previous layer, l is the number of current layers, jiw is the 

connection weight of neuron j  in this layer and neuron i  in the previous layer, ( )lb is the bias of 

neuron j  in this layer, and f  represents the activation function. 

3.2.4 Activation function 

When using the gradient descent method to update the weights of nodes in a deep neural network, 

the gradient change value for each layer needs to be multiplied by 1 /l l

p py y+  , where l

py  represents 

the value of the p-th node in the l-th layer. If the values of 1 /l l

p py y+   are all less than 1, the gradient 

will gradually decrease as the recursion continues, leading to the vanishing gradient problem. This 

results in slower updates of the weights W and biases b  in the hidden layers, making it difficult to 

achieve convergence. 

The ReLU activation function is commonly used in convolutional neural networks. The expression for 

the ReLU function is: 

 ( )
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From Equation(9), we know that the ReLU function remains unchanged when 0x  ; it is zero, when

0x  . The derivative of this function is simple: when 0x  , the derivative is 1, and when 0x  , the 

derivative is 0. Therefore, it does not suffer from gradient vanishing issues during backpropagation, 

helping to mitigate the problem of vanishing gradients. 

3.3  Network parameter setting 

Firstly, the selection of the pattern radius R for the raster image is determined to statistically analyze 

the number of neighboring stars within different angular distances for stars with a magnitude less 

than 6.0 in the entire sky. The statistical results are shown in Figure 4. From the statistical results, it 
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can be seen that when 8R  , all stars in the sky have 8 or more neighboring stars, whereas when 

R=6、7°, some stars have only 1-2 neighboring stars. Since this algorithm belongs to the category 

of pattern recognition algorithms, it requires a sufficient number of neighboring stars as recognition 

information. At the same time, if the pattern radius is too large, it results in an insufficient number of 

navigational stars being recognizable within a single star map. Therefore, comprehensively 

considering these factors, a pattern radius of R=8° is chosen. 

 
Figure 4 – Distribution of neighboring stars within different angular distance ranges 

Secondly, based on the determined pattern radius, the size of the star map to construct the pattern 

and the size of the maximum pooling layer window L in the preprocessing are calculated. Calculations 

show that under the star sensor, an angular distance of 8° can span up to 667 pixel blocks. To avoid 

the impacts of estimation errors, a star map size of 1430×1430 pixels is redundantly selected for 

rasterization processing, and a window size of 22 with a stride of 22 is chosen for the maximum 

pooling layer to downsample the star map within the pixel. Finally, a 65×65 raster image size is 

obtained as the network output. Each raster spans approximately 0.25° of angular distance, allowing 

for the distinction of each neighboring star. 

To prevent overfitting, the network selected in this paper consists of only two convolutional layers 

and two fully connected layers. The two convolutional layers contain 32 and 16 square convolution 

kernels respectively. A max-pooling layer with a window size of 2 2  and a stride of 2 is connected 

after each convolutional layer, followed by batch normalization and the selection of the ReLU function 

as the non-linear activation. The final two layers are fully connected layers, and the number of 

neurons in each layer is adjusted according to the number of navigational stars in the region. The 

number of neurons in the first fully connected layer is twice the number of navigational stars, while 

the second fully connected layer has the same number of neurons as the number of navigational 

stars. Dropout is added in the first fully connected layer to reduce overfitting, and the final layer 

performs softmax classification. The training set and test set are divided from the training samples at 

an 8:2 ratio. Other training parameters are set as shown in Table 1. 

Table 1: Training Parameter Settings 

Parameter Value 

Num epochs 250 

Learning rate 0.001 

L2 weight decay 0.99 

Learn rate drop factor 0.4 

Drop step size 50 

Batchsize 256 
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4. Simulation verification 

4.1 Simulation of the nominal trajectory of aerospace vehicle 

This study focuses on the hypersonic glide vehicle provided by NASA, known as the "High Lift-to-

Drag Ratio Hypersonic Glide Vehicle" (abbreviated as CAV-H). The CAV-H hypersonic glide vehicle 

serves as the prototype for the HTV-2 hypersonic glide vehicle[13], jointly developed by the United 

States Air Force and Lockheed Martin. The aerodynamic shape and specific data of this vehicle are 

shown in Figure 5. 

planform
side view

  

Figure 5 – CAV-H aerodynamic configuration 

and data 

Figure 6 – Nominal trajectory simulation 

The general parameters of the aerospace vehicle are shown in the table below: 

Table 2 – CAV-H General parameters 

General parameters Value 

Mass（kg） 907.0 

Reference area（m2） 0.4836 

Reference length（m） 3.6 

Table 3 –Initial parameters 

Initial parameters Value 

Longitude of the launching point（deg） 115.0 

Latitude of transmitting point（deg） -30 

Launch height（km） 1.5 

Point of launch (deg) 90 

4.2 Training set sample generation 

4.2.1 Input identification mode construction 

Due to the rotational invariance property of convolutional neural networks in extracting image features, 

it is unnecessary to determine the rotation direction in advance. Instead, the star map to be 

recognized is directly downsampled using a circular range with the star as the center and a radiusR . 

As shown in Figure 6, the process involves zero-padding the pixels outside this range, followed by 

max-pooling with a window size of *L Land a stride of L . Subsequently, the compressed image 

undergoes binarization: grid points with a grayscale value greater than the threshold T  are assigned 

as 1, while those less than T  are assigned as 0. Finally, the resulting binary image serves as the 
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recognition pattern for network input. 

r

R
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R

Downsampling

Recognition 
window

 

Figure 7 – Improved raster algorithm for pattern recognition 

To improve the robustness of the recognition network in different noise conditions, it is necessary to 

train with an ample amount of samples. The samples are divided into two categories: noise-free and 

noisy. The noise-free samples are constructed based on simulated star maps under ideal conditions, 

following the recognition patterns mentioned earlier. On the other hand, noisy samples require the 

introduction of varying degrees of noise into the ideal star map. The type and quantity of original noisy 

samples directly affect the network's resistance to interference. The more noisy samples in the 

training set, the higher the accuracy of recognition. However, due to hardware constraints and 

efficiency, there are limitations on the types and quantities of noise. The types and methods of adding 

noise are shown in Figure 7.  

(1) Position noise 

The position noise results in the displacement of the stellar coordinates in the ideal star chart. 

Gaussian noise with mean 0 and standard deviations x  and y , is added to the x  and y coordinates 

of all stars in the ideal star chart except for the primary star to be identified. In order to adhere to the 

principle of symmetry, the setting x  is equal to y . The standard deviations range from 0 pixels to 2 

pixels in increments of 0.4 pixels, yielding six different categories of positional noise of varying 

magnitudes. 

(2) Magnitude noise  

For stars with magnitudes near the detection limit of the sensor, magnitude noise may cause them to 

dim and disappear. Conversely, for stars previously undetectable, magnitude noise may brighten 

them into visibility. Thus, a detectable magnitude threshold of 6.0Mv is set, and the ideal star chart is 

simulated according to this threshold. Magnitude noise is then added to each star in the ideal star 

chart except for the primary star to be identified, and stars dimmer than 6.0Mv are filtered out. Finally, 

noise samples can be constructed based on the previously generated noisy images. The magnitude 

noise follows a Gaussian distribution with the parameter a ranging from 0Mv to 1.0Mv in increments 

of 0.2Mv, resulting in six different categories of magnitude noise. 

(3) Missing star  

Some stars that should appear may randomly disappear due to circuit noise or imaging noise in the 

optical system. For the ideal star chart, excluding the primary star to be identified, 0 to 5 stars are 

randomly discarded to generate samples with missing stars. This results in six different categories of 

star-missing samples with varying degrees of star loss. 

(4) Artificial star  
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Artificial stars are common in real star charts; planets, cosmic dust, background white noise, and 

even flames from an airplane's tail can be mistaken for false stars. The appearance of false stars is 

random and therefore considered to be uniformly distributed across the image plane. In a circular 

area with a radius R  around the star to be identified, randomly add 0 to 5 false stars with magnitudes 

ranging from 0Mv to 6Mv. This results in six different categories of false star samples with varying 

degrees of false star occurrence. 

Based on the analysis above, there are a total of 1,296 categories of noise samples. For each 

category, 5 star maps are generated, resulting in 6,480 training samples for each star recognition 

pattern. Additionally, during the training process, each sample is randomly rotated around its center 

at various angles. 

S

 

S

 

（a）Position noise （b）Magnitude noise 

S

 

S

 

（c）Missing star （d）Artificial star 

Figure 8 – Noise sample diagram 

4.3 End-to-end identification algorithm performance comparison 

To evaluate the performance of the improved grid star map recognition algorithm based on 

convolutional neural networks presented in this section, we tested the robustness of this algorithm 

under four different noise conditions. Additionally, given that this algorithm falls under the category of 

pattern recognition algorithms, we used two other typical pattern recognition star identification 

algorithms as references: the first is the traditional grid algorithm; and the second is an improved 

version of the traditional grid algorithm based on radial-angular features[14]. Star maps were 

generated for recognition testing by randomly selecting the star sensor's optical axis direction and 

the rotation angle around the optical axis, with the default assumption that the celestial region pointed 

to by the optical axis is known. 

First, the robustness of the star map recognition algorithm under centroid position error conditions is 

tested. Eight levels of positional noise are set, with a mean of 0 and standard deviations ranging from 
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0.2 to 1.6 pixels. For each noise level, 10,000 simulated star maps are randomly generated as test 

data. The impact of positional noise on the recognition rates of different algorithms is shown in Figure 

9. The results show that the recognition rate of this algorithm consistently remains above 96%, and 

it stays above 99% without any degradation when the positional noise is less than 1 pixel. This 

indicates that the algorithm presented in this paper possesses considerable robustness against slight 

deformations caused by positional noise. In comparison with the other two algorithms, as positional 

noise increases, the recognition rate of the proposed algorithm always surpasses that of the others. 

The recognition rate of the traditional grid algorithm experiences a steep decline. When the positional 

noise increases to 1.6 pixels, the recognition rate of the traditional grid algorithm drops to 85.64%, 

while the recognition rate of the algorithm based on radial-angular features decreases to 94.22%. In 

contrast, the proposed algorithm maintains a recognition rate of 96.40%, showing only a slight decline. 

  

Figure 9 – The effect of position noise on 

recognition rate 

Figure 10 – The effect of magnitude noise on 
recognition rate 

  

Figure 11 – The effect of the number of false 

stars on the recognition rate 

Figure 12 – The effect of the number of missing 
stars on the recognition rate 

Then, the robustness of the star map recognition algorithm under magnitude noise is tested. Five 

levels of magnitude noise are set with a mean of 0 and standard deviations ranging from 0.2 to 1.0 

magnitudes. For each level, 10,000 simulated star maps are randomly generated as test data. The 

impact of magnitude noise on the recognition rates of different algorithms is shown in Figure 10. The 

results show that all three algorithms can maintain a recognition rate above 97% when the magnitude 

noise is below 0.4 magnitudes. This is because grid images are constructed independently of 

brightness information. However, under high-magnitude noise, the recognition rate of the traditional 

grid algorithm drops to 80%, and the recognition rate of the algorithm based on radial-angular 

features also falls to 90%. This decline is due to some low-brightness stars within the field of view 

disappearing or false stars appearing under magnitude noise, which affects the establishment of 
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recognition patterns. Although the proposed algorithm is slightly affected overall, its recognition rate 

remains higher than the other two algorithms. 

Next, the robustness of the star map recognition algorithm under the influence of different numbers 

of false stars is tested. The number of false stars increases from 0 to 5, and their positions and 

magnitudes are randomly added to the simulation. Simultaneously, 10,000 simulated star maps are 

randomly generated as test data. The impact of the number of false stars on the recognition rates of 

different algorithms is shown in Figure 11. The results indicate that the algorithm presented in this 

paper demonstrates strong robustness under the influence of false stars, maintaining an accuracy 

rate above 95%. When the number of false stars increases from 1 to 5, the recognition accuracy of 

the radial-angular-based algorithm slightly decreases from 98.03% to 92.24%, whereas the 

recognition accuracy of the traditional grid algorithm drops from 98.37% to 67.59%. As mentioned 

previously, the key to generating grid images is identifying the correct reference stars, and the 

presence of false stars leads to incorrect selections. 

Lastly, we tested the robustness of the star map recognition algorithm under the influence of different 

numbers of missing stars. Within the radius range of the recognition pattern, we randomly reduced 

the number of stars by 1 to 5, while simultaneously generating 10,000 simulated star maps as test 

data. The impact of the number of missing stars on the recognition rates of different algorithms is 

shown in Figure 12. The results indicate that the algorithm presented in this paper performs better 

under the influence of missing stars compared to traditional algorithms. When the number of missing 

stars increases from 1 to 5, the recognition accuracy of the radial-angular-based algorithm decreases 

from 97.541% to 60.04%, while the recognition accuracy of the traditional grid algorithm drops from 

94.45% to 38.23%. In contrast, the accuracy rate of the proposed algorithm remains above 80%, 

significantly higher than the other two algorithms. 

5. Conclusion 

The paper proposes an end-to-end method for recognizing blurred star patterns. The algorithm 

simplifies the traditional recognition process of first determining the centroid position and then 

matching the star pattern. In real flight environments, noise in star points can seriously reduce the 

signal-to-noise ratio of star patterns. In this paper, the CNN algorithm is used to quickly detect star 

patterns. By using the above solution, the attitude accuracy of the starlight navigation system can be 

improved. The simulation example given in the paper demonstrates the effectiveness of this method. 
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