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Abstract 

The discipline decoupling of distributed Uncertainty Multidisciplinary Design Optimization method in 

aircraft reliability-based design result in the ignore of the correlation between the state variables, 

particularly high-dimensional variables (data), leading to inaccurate outcomes. To address this issue, 

we propose an uncertainty multidisciplinary propagation analysis method that can consider correlated 

high-dimensional data. Our approach involves utilizing the Nataf transformation method to convert 

uncorrelated high-dimensional variables into correlated variables. Additionally, we introduce a warm-

up strategy to efficiently compute the marginal Cumulative Distribution Function of high-dimensional 

variables by the Maximum Entropy Model. This enables us to efficiently and accurately quantify the 

uncertainties of the high dimensional state variables. The results of the analytical problem and the 

solid rocket problem indicate that our method can enhance uncertainty quantification accuracy by 

accounting for the correlations between state variables. This improvement is particularly significant 

in the context of reliability-based design. 

Keywords: multidisciplinary uncertainty propagation, correlated high-dimensional data, nataf transformation, 
maximum entropy model, warm-up strategy 

 

Nomenclature 

X   = Inputs of the training set of samples in the design space 

X̂  = Inputs of the testing set of samples in the design space 

m  = Size of the samples in the design space 

X  = Inputs of all the samples in both of the design and uncertainty spaces 

n  = Size of the samples in the uncertainty space 

CY  = Matrix of correlated high-dimensional output data of the training set 

C,iY  = The ith high-dimensional correlated output data in CY , 1, ,i r= , where r is the size 

of high-dimensional outputs 

UŶ  = The predicted high-dimensional uncorrelated output data 

S

UŶ  = The predicted high-dimensional uncorrelated output data in the standard normal 

space 

CŶ  = The predicted high-dimensional correlated output data 

ρ   = Pearson correlation coefficient matrix of output data 

ρ̂  = Pearson correlation coefficient matrix of the predicted output data 



Uncertainty multidisciplinary propagation analysis method for correlated high-dimensional data in aircraft design 

2 

 

 

Φ  = POD orthogonal basis matrix 

a  = POD mode coefficient matrix 

μ  = The central moments of each POD mode coefficient vector 

( )
I

g   = The surrogate model of the ith central moments correlation μ  

( )g   = The surrogate model of the correlation coefficient matrix ρ  

( )P  = Probability density function 

( )F  = Cumulative Distribution Function 

1. Introduction 

Complex systems such as aircraft systems are constituted of multiple disciplines, including 

aerodynamics, structure, trajectory, and so on. This complexity introduces a significant amount of 

uncertainty during design, manufacturing and application. To address these uncertainties, 

Uncertainty Multidisciplinary Design Optimization (UMDO) method is utilized to enhance the reliability 

and robustness of aircraft systems. 

The typical UMDO framework involves an outer layer optimization nested within an inner layer 

uncertainty analysis. A common method for uncertainty analysis often utilizes the Monte Carlo 

method, which requires numerous high-fidelity numerical simulations. To improve efficiency, 

surrogate models are frequently utilized. Several uncertainty analysis methods based on surrogate 

models have been proposed, including the polynomial chaos expansions [1], Kriging [2], radial basis 

function [3], and neural networks [4]. These methods are only suitable for describing the uncertainty 

with mean and standard deviations. While, after uncertainty propagation across a discipline, the 

distributions of the discipline outputs are often not standard normal distributions [5-6] Shi proposed 

an accurate uncertainty surrogate modeling method for high-dimensional data with non-normal 

distributions employing the maximum entropy method (MaxEnt) [7]. 

Among various UMDO methods, the distributed UMDO method is particularly suitable for tackling 

complex multidisciplinary system problems. This method simplifies the propagation of uncertainties 

across multiple disciplines, allowing each discipline to conduct its own uncertainty analysis 

independently. Zaman proposes a single loop optimization design method that avoids coupled 

uncertainty propagation analysis [8]. Brevault proposes a new decoupled uncertainty multidisciplinary 

design optimization formulation ensuring the equivalence between the coupling and decoupling 

uncertain multi-disciplinary design optimization formulas [9]. More research in field of distributed 

UMDO method can be founded in the work of Qin [10] and An [11]. 

However, the above distributed UMDO methods do not consider the correlations between the state 

variables in uncertainty analysis, which will lead to accuracy loss in uncertainty propagation, limiting 

the performance of the multidisciplinary system. The Rosenblatt transform [12], Nataf transform [13] 

and Copula function [14] are often used to deal with one-dimensional correlated variables. Ghosh 

proposed a methodology for uncertainty propagation analysis within a distributed multidisciplinary 

architecture, which takes into account the correlation of one-dimensional state variables based on 

the Copula function [15]. 

One limitation in current research is the limited attention to the correlation between high-dimensional 

variables in uncertainty propagation analysis in the multidisciplinary system, such as the aerodynamic 

distributed loads, distributed stress of structural components, or thrust curves of solid engines. 

Therefore, it is crucial to develop a multidisciplinary uncertainty propagation analysis method 

considering the correlation between high dimensional data for the fine design of aircraft. 

We propose an uncertainty multidisciplinary propagation analysis method for correlated high-

dimensional data, which is validated and assessed through an analytical problem and a solid launch 

vehicle problem. The paper is organized as follows. Section 2 introduces the proposed uncertainty 
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multidisciplinary propagation analysis method in detail. Then the method is validated and assessed 

in Section 3. In section 4 we draw the conclusions.  

2. Methodology 

2.1 The procedure of the uncertainty multidisciplinary propagation analysis method for 
correlated high-dimensional data 

The procedure of the uncertainty multidisciplinary propagation analysis method for correlated high-

dimensional data is depicted in Figure 1, and detailed steps are introduced in the following. 

Step 1: High-dimensional sample generation.  

Determine the design space of the discipline design variables. Then the sampling plan with m 

samples are generated using the Random Latin Hypercube Sampling (RLHS), which is expressed as 

(1). 

  1 2, , m=X X X X  (1) 

where Xi is the ith design. To describe the uncertainty distribution of each design point Xi, an 

uncertainty space is specified around each design point for uncertainty sampling. It is defined to 

generate n samples within each uncertainty space, thus inputs of all the samples in both of the design 

and uncertainty spaces are expressed as (2). 

  11 1 21 2, , , , , , ,n n m n =X X X X X X  (2) 

Under the inputs of 
X , the correlated high-dimensional output variables C C,1 C,2 C,, , , r =  Y Y Y Y  can 

be obtained by discipline analysis, where C, C, ,1 C, ,2 C, ,, , ,i i i i d =  Y Y Y Y ∈ ℝ𝑚𝑛×𝑑.  

Step 2: Then the Pearson correlation coefficient matrix ρ  of high-dimensional output variables CY  is 

calculated. 

Step 3: Build the surrogate model for central moments and correlations coefficient matrixes 

The Proper Orthogonal Decomposition (POD) method is used to project 
C,iY  onto a low-dimensional 

space. The POD modes are truncated based on the energy proportion calculation, then the POD 

orthogonal basis matrix   and mode coefficient matrix a  are obtained. Thereafter, the central 

moments μ  of each mode coefficient vector can be computed to describe its’ uncertainty distribution. 

The size of the central moments is problem dependent. Further, the Back-Propagation Neural 

Network (BPNN) method is used to construct the surrogate model 
1
, , ,

k
g g g  
 =  g , which maps 

the m-dimensional design variable X to the central moments correlation μ and the correlation 

coefficient matrix ρ . 

 ( )
Ii g=μ X  (3) 

 ( )g=ρ X  (4) 

Step 4: Compute high-dimensional output data by POD reconstruction 

Using the built surrogate model g, the predicted correlation coefficient matrix ρ̂  and central moments 

μ̂  of the POD mode coefficients with a new X̂  can be obtained. 

Then, the Probability Density Function (PDF) ( )aP  can be computed using the MaxEnt method. 

Moreover, we can generate samples of the mode coefficients â  using ( )aP , and obtain the high-

dimensional output data UŶ  by POD reconstruction.  

 
U
ˆ ˆT= Y a  (5) 
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Currently, each output data of UŶ  is independent. 

Step 5: Add correlated features to UŶ  

Calculate the central moments ( )ˆ 1,j j d=μ  for each uncorrelated output of UŶ . Based on ˆ
jμ , the 

MaxEnt method is used to compute the PDF ( )jP Y  of UŶ , then the Cumulative Distribution Function 

(CDF) ( )jF Y  can be obtained by integrating ( )jP Y . To improve computation efficiency, the warm-

up strategy is introduced. ˆ
jμ is first sorted in ascending order based on the deviation ( ),

1

=
k

ij i
i

 
=

 −  , 

where 
,j i  is the ith central moment of ˆ

jμ  and i is the mean of the ith central moment. Therefore, in 

the optimization process in MaxEnt method, the result obtained based on ˆ
jμ  can be used as the 

initial value of the latter process based on 
1

ˆ
j+μ . 

Based on ( )jF Y , convert UŶ  from the original space to the standard normal space, denoted as S

UŶ . 

 ( )( )S 1

U U
ˆ ˆF−=Y Y  (6) 

By employing inverse Nataf transformation method based on ρ̂  and ( )jF Y , we can further convert 

S

UŶ  to CŶ . 

 ( )1 S

C U
ˆ ˆNataf −=Y Y  (7) 

Step 6: Pass CŶ  as input data to the next discipline model. 

 

Figure 1 – Flowchart of the proposed uncertainty multidisciplinary propagation analysis method 

2.2 POD model 

POD can represent high-dimensional data by linear superposition of POD modes. As a reduced order 
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model, the POD can reduce high-dimensional data to low-dimensional data, which will enhance the 

efficiency of building surrogate models in the reduced order space. 

The high-dimensional data ( )i n dY  is expressed as follows, where n is the number of iY , and d 

denotes the dimension. 

 
,11 ,21 , 1

,12 ,22 , 2

,1 ,2 ,

i i i d

i i i d

i

i n i n i dn

 
 
 =
 
 
  

Y Y Y

Y Y Y
Y

Y Y Y

 (8) 

The mean vector 
iy  is computed using ( ), 1, ,i j j d=y . Then subtract the mean 

iy  from iY  to 

obtain the normalized data 
iY . 

 
,1 ,2 ,i i i i i d =  Y y - y y - y y - y  (9) 

Then the correlation matrix for the normalized data is calculated by (10). 

 
i i n=
T

C Y Y  (10) 

Thus the eigenvalues and eigenvectors of the correlation matrix can be obtained by solving (11). 

 Cξ = λξ  (11) 

The POD mode coefficients a  corresponding to (12). 

 T

i i=a ξ Y  (12) 

To minimize the number of POD modes, a mode truncation method can be applied using the mode 

energy ratio. This ratio, denoted by ( )I h , is defined as the proportion of the eigenvalue corresponding 

to a mode relative to the sum of all eigenvalues, represented by (13). 

 
( ) / sum(all )

k

i i
i

I h  =  (13) 

Typically, ( )I h  should exceed 99% to ensure accuracy [16]. 

2.3 BPNN algorithm 

As a type of neural network, BPNN demonstrates strong nonlinear fitting capabilities for multi-input 

and multi-output data of lower dimensions [17]. The input layer components of the typical architecture 

of a single hidden layer BPNN are denoted as ( )1,2,ix i n= , the hidden layer components are 

denoted as ( )1,2,jz j b= , and output layer components are denoted as ( )1,2,ky k s= . By 

adjusting parameters such as the number of hidden layers, neurons in each layer, interlayer activation 

function type, learning rate, and other hyperparameters [18], the model can enhance its fitting and 

generalization abilities, enabling robust prediction of output values for new samples. The specific 

process of BPNN is elaborated in reference [19]. 

2.4 Nataf transformation 

The Nataf transformation is an essential mathematical method that facilitates the mapping of a group 

of correlated random variables onto a set of uncorrelated standard normal variables. This 

transformation hinges on two key components: the marginal Cumulative Distribution Function (CDF) 

for each individual variable and the matrix of Pearson correlation coefficients that describe the 

relationships between the variables.  

The Pearson correlation coefficient, denoted as ρ , quantifies the linear correlation between two 

variables 1X  and 2X , with its value bounded between -1 to 1. When ρ  is greater than zero, it 
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signifies a positive linear relationship between the variables; when ρ  is less than zero, it indicates a 

negative linear relationship. The closer the absolute value of ρ  is to 1, the stronger the correlation. 

 

1 2

1 2cov( , )

X X 
=

X X
ρ  (14) 

Suppose random vectors 1 2, , nX X X  with linear correlation, and denote the correlation coefficient 

matrix as ij n n



 =  ρ . The correlated matrix  1 2, ,

T

n=X X X X  can be transformed into the 

correlated standard normal vector Z using the following formula. 

 ( )( )1

i i iF−=Z X  (15) 

where ( )1−   denotes the inverse CDF of a standard normal variable, and ( )iF   is the CDF 

corresponding to iX . 

Let 0 0ij n n



 =  ρ be the correlation coefficient matrix of Z. Then the transition from the correlation 

coefficient 
ij  in original space to the correlation coefficient 

0ij  in standard normal space, can be 

achieved using the following integral function, as elaborated in the previous studies [20]. 

 
( )( ) ( )( )

( )
11

0, ,
j j ji i i

ij i j ij i j

i j

F fF f
f dz dz


 

 

−−
 

− −

 − −
 =  
     

 
ZZ

z z  (16) 

where ( )0, ,i j ijf z z  is the joint probability density function (PDF) of variables iz  and 
jz , with the 

correlation coefficient 
0ij . Given that 0ρ  is typically a symmetric matrix, it can be decomposed using 

the Cholesky Decomposition method, as shown in (17). 

 
0 0 0

T=ρ L L  (17) 

where 0L  denotes the lower triangular matrix obtained by the Choleskey decomposition. Then the 

correlated standard normal vector Z can be linearly transformed into an independent standard normal 

vector Y utilizing the matrix 0L  by (18). 

 1

0

−=Y L Z  (18) 

The Nataf transformation, which encompasses these steps, can be succinctly denoted as (19). 

 ( )( )1 1

0 f F− − =  Y L X  (19) 

This comprehensive process can be inverted, thereby enabling the sampling to produce correlated 

random vectors with specified distributions. 

 ( ) ( )1 1

0F f Nataf− − = = X L Y Y  (20) 

2.5 Maximum Entropy Model 

Entropy serves as a measure of the information content inherent in a random variable X. The 

principle that less probable events carry more information makes entropy an effective metric for 

quantifying uncertainty. A larger entropy value signifies a higher degree of uncertainty, which in turn 

minimizes the need for subjective assumptions. The self-information refers to the amount of 

information inherent in a specific outcome of X=x, representing the uncertainty that exists prior to 

the occurrence of event X. 

 ( ) ln ( )I x P x= −  (21) 

Information entropy is calculated by aggregating the uncertainties present across the entire spectrum 

of a probability distribution. 
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~ ~( ) [ ( )] [ln ( )]x P x PH X I x P x=  = −  (22) 

The principle of the maximum entropy provides a criterion for evaluating probability models.  

It asserts that the optimal model is the one that maximizes the entropy while satisfying all the 

constraints. Thus, we can identify the model with the highest entropy by solving optimization problem 

in (23). 

 max ( ) ( )ln ( )d

s.t. ( )d 1

( ) ( )d ,1i

i

H x p x p x x

p x x

x p x x i n 







= −

=

− =  







 (23) 

where ( )p x  is the PDF of the random variable x; i  denotes the ith central moment of x, with n 

denoting the order of the moments. The information entropy is maximized to obtain a more precise 

PDF.  

The initial value for the optimization using is quite important, as it can significantly affect optimization 

outcomes and the efficiency of the convergence process. To enhance solution efficiency of MaxEnt 

in calculating multiple CDFs, a warm-up strategy is proposed.  

The center moments μ  of multiple groups of data to be computed are sorted in ascending order 

based on the following formula. 

 
( )

1

=
k

ii
i

 
=

 −  (24) 

where k is the size of the central moments , i  is the ith central moment and i is the mean of the ith 

central moment. Then in the optimization process in MaxEnt method, the result obtained based on 

the former set of central moments can be used as the initial value of the optimization process of the 

latter set of central moments. 

3. Numerical Examples 

3.1 Analytical Problem 

The analytical problem consists of three systems coupling with each other, as is shown in Figure 2. 

There are four uncertain source variables for the whole system, of which 1x , 2x  and 3x  are the 

inputs for subsystem 1, and 1x , 2x , 4x  are the inputs for subsystem 2. Both of the output of 

subsystem 1 and 2 are state variables, respectively expressed by 1y  and 2y , which are passed to 

subsystem 3 as inputs. The final output of the whole system is g.  

 
Figure 2 – The uncertainty propagation relation in the analytical problem 

The numerical models for the three systems are given as follows. 

System 1: 
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 2

1 1 1 2 1 3a b= + +y x x x  (25) 

System 2: 

 2

2 2 2 1 2 4a b= + +y x x x  (26) 

System 3: 

 5

1 20
g dy= + y y  (27) 

Where a and b are both system parameters, and [0,2]a , [2,4]b . ( )1, 4i i =x  is the input 

variable with the desian space and uncertainty space detailed in Table 1. iy  represents the ith high-

dimensional state variable. g is the output variable of subsystem 3. 

Table 1 – Design and uncertainty space  for analytical problem 

Uncertainty 
variables 

Design space Uncertainty space 

Upper bound 
Lower 
bound 

Distribution Mean Standard deviation 

1x  1 2 Gaussian - 0.1 

2x  -1 0 Gaussian - 0.1 

3x  0 1 Gaussian - 0.1 

4x  0 1 Gaussian - 0.1 

 

Table 2 presents the energy proportion respectively of the first one, two and three modes of 1y , 2y  

with the correlation coefficient matrix ρ . To ensure the accuracy of the POD reconstruction, the first 

2, first 1 and first 3 orders are selected as the casting spaces for 1y , 2y , and ρ . 

Table 2 – POD mode energy ratio for analytical problem 

Number of eigenvalues 
Energy ratio 

1st order 2nd order 3rd order 

Energy ratio of 1y  94.56% 99.98% 100% 

Energy ratio of 2y  99.85% 100% 100% 

Energy ratio of ρ  80.18% 98.64% 99.86% 

 

To compare the impact of ignoring the correlation between the hign-dimensional state variables, the 

original correlated data C C,1 C,2, =  y y y , the predicted correlated data Cŷ , and the predicted 

uncorrelated data Uŷ  are then passed to System 3. The output of System 3 for different input is 

compared in Figure 3 and Table 3.  



Uncertainty multidisciplinary propagation analysis method for correlated high-dimensional data in aircraft design 

9 

 

 

 
Figure 3 – The output of System 3 for different input in analytical problem 

Table 3 – Comparison of the outputs of System 3 in analytical problem 

Relative error 

Variables 
meang  stdg  

Relative error of Cy  and Cŷ  1.67% 1.64% 

Relative error of Cy  and Uŷ  1.69% 19.75% 

In Figure 3, g_original, g_correlated and g_uncorrelated represent the output of System 3 

respectively obtained by passing Cy , Cŷ  and Uŷ  to subsystem 3. In Table 3, meang  and stdg  denote 

the mean and standard deviation of the ouput g, respectively. It is observed that g_original and 

g_correlated exhibit similar means and standard deviations, whereas the standard deviation shows 

a difference of 19.75% between g_uncorrelated and g_original. The method's capacity to accurately 

propagate uncertainty across various disciplines is thereby validated, highlighting ignoring correlation 

between hign-dimensional state data can did result in great loss in uncertainty propagation analysis.  

3.2 Solid Rocket Problem 

The proposed method is applied in quantifying the uncertainty propagation between the engine and 

the trajectory disciplines of a solid rocket. The zero-dimensional internal ballistic numerical simulation 

method is employed as the engine discipline model. There are six uncertain input variables of the 

engine discipline: star side half angle, angle fraction, outer diameter of the charge column, length of 

the charge column, throat radius, and spread ratio. The uncertain output variables of the engine 

discipline are the time-varying thrust P and time-varying mass M, which are also input variables for 

the trajectory discipline. The trajectory discipline focuses solely on the motion of the center mass in 

rocket, and the output is the velocity V and total energy E at the moment of first stage engine 

separation. 

Three first modes are chosen for POD modeling according to the energy proportion analysis by 

achieving 99.9%. Thus, the high-dimensional state variables P and M can be represented 

respectively by three parameters. For the correlation coefficient matrix ρ  between P and M, first eight 

modes are chosen with an energy proportion of 99.2%. 

To compare the impact of ignoring the correlation between the hign-dimensional state variables, the 

original correlated data 
C C C, =  y P M , predicted correlated data Cŷ , and predicted uncorrelated 

data Uŷ  are then passed to the trajectory discipline. The entire uncertainty propagation analysis runs 
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the MaxEnt method 300 times within 2 minutes. The outputs of the trajectory discipline are compared 

in Table 4,Table 5 and Figure 4. 

  

Figure 4 – The output of the whole rocket system for different inputs 

Table 4 – Comparison of the outputs of the whole rocket system 

Relative error 
Variables meanV  stdV  meanE  stdE  

Relative error of Cy  and Cŷ  0.01% 2.29% 0.02% 3.18% 

Relative error of Cy  and Uŷ  0.02% 36.63% 0.05% 35.77% 

Table 5 – Time cost computing the CDFs in the whole rocket system 

 Time cost(s) 

Set the initial coefficient to 0 809 
Adopt the warm-up strategy 81 

 

Table 4 and Figure 4 illustrate the uncertainties in V and E. After considering the correlation between 

the high-dimensional state variables, the accuracy of the standard deviation in V is improved by 

34.34%, and the accuracy of the standard deviation in E is improved by 32.59%. Thereby the 

method's capacity to accurately propagate uncertainty across various disciplines is validated. 

Additionally, Table 5 compares the time cost for computing the CDFs in the whole rocket system with 

and without a warm-up strategy. The results indicate that the warm-up strategy significantly improves 

the calculation efficiency. 

4. Conclusion 

We proposed an innovative uncertainty propagation analysis method that can consider correlated 

high-dimensional state variables across various disciplines of a complex system. This method 

combines the Nataf transformation method with POD reduced order modeling, to effectively enhance 

the accuracy of uncertainty propagation across multidisciplinary systems. The main conclusions are 

drawn as follows. 

This uncertainty propagation analysis method for correlated high-dimensional data effectively 

converts uncorrelated high-dimensional data into correlated data, preserving the inherent correlation 

among state variables. This aspect is often neglected in traditional distributed analysis methods. The 

method's effectiveness has been validated through applications to both an analytical problem and a 

solid rocket problem. 

During the conversion process, multiple CDFs need to be computed. To increase efficiency, the 

warm-up strategy strategy is used when computing CDFs with MaxEnt. In the solid rocket problem, 

the time cost for computing the CDF in the whole rocket system is 81 seconds, which confirms its 
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practicability in practical application. Despite the large number of CDF required, the warm-up strategy 

significantly improves calculation efficiency, making the calculation consumption borned. 

The data in numerical examples further emphasize the effectiveness of the proposed method. In 

analytical problems, this method improves the prediction accuracy for the standard deviation of output 

in System 3 by 18.11%. In solid rocket problem, it enhances the prediction accuracy for the standard 

deviation of the velocity and the total energy at the separation time of the first stage engine by 6.2% 

and 23%, respectively. These improvements underscore the importance of considering the 

correlation of high-dimensional variables in uncertainty propagation analysis. 

While the proposed method effectively addresses issues related to the correlation of high-

dimensional data, it predominantly focuses on linear correlations between variables. Future research 

should extend this approach to encompass the complex nonlinear correlations which are often 

present in aircraft design. 
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