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Abstract

This paper proposed a TV flux splitting scheme based on the complex arc-length coordinate system. By com-
bining the high-precision pseudo arc-length method with the positive-preserving HLL scheme, the robustness
of the algorithm is further improved, enabling it to handle complex and extreme cases.
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1. Introduction

The hyperbolic conservation law equation is widely used in fields such as implosion dynamics, iner-
tial confinement fusion, computational astronomy, magnetohydrodynamics, computational explosion
mechanics, and computational biology. It is extremely difficult to analytically solve the hyperbolic con-
servation law equation based on continuum mechanics. Currently, only some basic assumptions or
latitude reduction are used to simplify the equation, in order to obtain analytical solutions in simple
cases. Therefore, using computers for numerical calculations is an effective means of solving such
problems.

Accurately numerically solving the hyperbolic conservation law equation remains a challenge, and
solving this equation has a clear characteristic that no matter how smooth the initial conditions are,
over time, solutions with strong or weak discontinuities (discontinuous functions, discontinuous first-
order derivatives) may eventually emerge. The singularity generated during the solving process can
pose great challenges to subsequent calculations.

High speed flying aerospace vehicles generate shock waves and sparse waves, and even weak dis-
turbances can cause significant changes in the aircraft. Therefore, efficient, robust, and accurate nu-
merical formats are needed to solve this problem. Therefore, some high-precision and high-resolution
numerical formats have been proposed, such as Monotonic Upstream-Centered Scheme for Conser-
vation Laws (MUSCL)[T], Weighted Essentially Non-Oscillatory (WENO)[2, 3, 4], etc. However, when
using high-order reconstruction, the numerical solution will generate false oscillations (numerical dis-
persion) near discontinuities, while when using low-order reconstruction, the numerical solution will
be smoothed out at discontinuities (numerical dissipation).

The pseudo arc-length method (PALM)[5] has emerged to address the contradiction between high-
precision and high-resolution schemes. The PALM introduces an arc-length parameter and adds
an additional constraint equation[B, [7] to adaptively move the spatial grid towards the discontinuity,
greatly weakening the singularity at the discontinuity solution. It can be combined with high-precision
numerical formats such as WENO to achieve high-resolution capture of large gradient physical quan-
tities. Adaptive grid movement can cause non orthogonality in physical space, which poses great
difficulties in constructing high-precision formats. In this paper, through coordinate transformation,
the control equation is mapped to the uniformly orthogonal arc-length coordinate system of the grid,
and the WENO scheme under the uniform grid algorithm is adopted to improve computational effi-
ciency.
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This paper focuses on proposing a high-precision PALM based on Toro-Vazquea (TV)[8] splitting.
Existing TV algorithms are mainly based on the original Euler equation[8], and there is still a lack of
research on TV splitting algorithms in complex coordinate systems. Therefore, this paper expands
the application scope of the TV splitting algorithm and expands its application scope. In addition,
to address the problem of negative density and pressure in high-precision numerical formats in arc-
length coordinate systems (where sound velocity generates imaginary numbers, reducing algorithm
robustness and causing calculation termination), a high-precision original operator was combined
with a stable Lax Friedrich positive preservation scheme to form a high-precision operator with pos-
itive preservation properties and improve the algorithm stability, enabling the algorithm to handle
extreme problems such as strong shock waves[d], low density, and low pressure. The calculation
results show that the PALM based on TV splitting for the convective flux and the pressure flux has
excellent properties, such as long-term calculation without distortion, high calculation accuracy, and
strong capture of shock waves and other interruptions. This algorithm has certain guiding significance
for fluid dynamics related problems in the aerospace field and can improve computational efficiency.

2. Governing equations
2.1 Euler equations
Consider the 2D Euler equations
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The ideal gas state equation is as follows
- p (u2 + v2) R
PE =pe+ 5 ’pe_y—l' (3)

where p is the density, u and v are velocity vector components, E is the total energy, p is pressure, e
is the internal energy. y indicates the ratio of specific heat.

2.2 Pseudo arc-length method

The PALM starts from the perspective of eliminating or reducing the singularity of solutions to hyper-
bolic partial differential equations. By introducing arc-length parameters & = &(x,y),n = n(x,y) and
adding an additional constraint equations, where

(d&)* = (dx)*+ Y. Mi(dwi), (dn)* = (dy)* + Y Aai(dwi)’. (4)
i=1 i=1

In the formula: 4;, and A,, represent weighting coefficients, dw,, and dw,, represent weighted physical
quantities, which can be pressure, velocity, density, etc., and » represents the number of weighted
variables.
In order to have a clear understanding of the PALM algorithm, Figure(@l) and Figure(B) explain the
basic principle of the PALM in one and two dimensional space.
Taking one dimension as an example, equation @ can be further simplified as

n

(dE)? = (dx)* + ) Ai(dey)’. (5)
i=1
Then, it can be further obtained that
d 1 no dw;
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WhereM (x) is the arc-length monitor function. From equation(B), it can be seen that when the arc-
length parameter & is constant, the larger the dw;, the smaller the dx, that is, in the region with a
larger physical quantity gradient modulus, the spatial step size of the grid decreases, i.e. the grid
adaptively moves towards the discontinuity. The corresponding geometric meaning can be refered
in Figure(), it can be seen that the solution at the strong discontinuity in the original physical space
exhibits strong singularity. Due to the adaptive movement of the grid, the generation of non-physical
understanding is avoided. Then the solution at the discontinuity becomes a smooth solution, which
is the essence and principle of the PALM.

On the other hand, similar conclusions can be reached for two-dimensional space. From Figure(2), it
can be seen that due to the adaptive movement of the grid, the original physical space has undergone
deformation. Therefore, directly constructing high-order numerical scheme in the coordinate system
(x,y) of Figure(®) is more complex and prone to generating ill conditioned equations, which make it
very difficult to solve the equation(fll). Therefore, considering coordinate transformation, the control
equation(l) is mapped to the arc-length coordinate system (£,n). Since the coordinate system (&, 1)
in Figure(B) is uniformly orthogonal, the uniform grid algorithm can be used to construct the high-order
scheme.

The governing equations in the arc-length coordinate system are

au  oF (ﬁ) oG (ﬁ)

5 T e T oy =0. (7)
with N
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Where J is the spatial transformation jacobi 5((5‘%)), U and V are inversion speed in arc-length space,
with U = & u+Eyv and V = nu+ nyv.
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Figure 1 — Principle of 1D PALM (From left to right, they are: original physical space, adaptive
physical space, and uniform arc-length space).

2.3 TV splitting

In the flux splitting method, traditional Steger-Warming[10] and Van Leer formats[11] can capture
discontinuities corresponding to nonlinear waves, but cannot accurately capture discontinuities cor-
responding to linear waves, which resulting in excessive dissipation when calculating the contact
surfaces and shear waves. In order to combine the advantages of flux difference splitting method
and flux vector splitting method, the advection upstream splitting method (AUSM) format has been
developed. This paper is based on the Toro-Vazquea (TV) splitting[T2] format, which extends the TV
splitting from the physical space coordinate system (x,y) to the arc-length coordinate system (&,1).

3
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Figure 2 — Principle of 2D PALM (From left to right, they are: original physical space, adaptive
physical space, and uniform arc-length space).

Taking the £ direction as an example, splitting numerical flux F(U) into convective flux fl( ) and
pressure flux f,(U), where

p 0
o= pu - ST &p
f,(U) =JU oy — JUK £ (U) =J Ep (11)
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The Jacobi matrices for convective flux and pressure flux are A; and Ao.
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Due to the complexity of matrices A; and A,, we can obtain their eigenvalues using Mathematica
software, where A; is as follows

Then A, is also as follows
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Further, the eigenvalues of matrix A; and A, can be obtained as
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Then, by defining the inverse sound velocity in the arc-length space, the characteristic values of
pressure flux can be further simplified as

(o)

ATy = 8 Ce :,/y% (E2+&2). (18)
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Similarly, the eigenvalues of the Jacobi matrix for n-direction convective flux g; (fJ) and pressure flux

) (fl) can be obtained as
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Further, the eigenvalues of B; and B, can be obtained as
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Then, the characteristic values of pressure flux can be further simplified as
3 <V— \ /V2+4c,,2)
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For solving numerically equation(), we adopt a conservative method of the form
~ ~ A& 1~ ~ AN [~ ~
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The numerical flux FH%_J. at the half node can be decomposed into the convective flux f; .1, andthe
) 1 2

pressure flux fz_+1 , with
i+5.J

Fi+%,j :f1i+%,j+f2i+%.j' (23)
We use the upwind scheme to calculate the convective numerical flux at the midpoint
= J12U1 2K, Uy >0
f = : 24
Lt { J12U12Kg, Uy 2 <0 24)
The calculation formula for the pressure numerical flux at the midpoint is as follows
B =Ji2pi2(0,E,E LUI )" (25)
i+5.j /2P1/2\5 Gxs Gy y—1 /

The velocity and pressure at the interface are obtained by solving the linear solution of the Riemann
problem composed of pressure subsystems

_ PrSHUg — pLSYUL — pr+ prL.
PrSK — PLST
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In equation(P8) and equation(P42), the wave velocity is calculated using the characteristic value equa-
tion(d8) of the pressure subsystem, with

SM:;<U— U2+4C§2> 7SM=;<U+ U2+4C€2>- (28)
L

R

2.4 Hybrid TV Riemann solver

Although the TV format can not only accurately capture shock waves, but also contact discontinuities
and shear waves, the TV format can generate non-physical understanding of negative density and
negative pressure when calculating certain complex problems due to the instability of shock waves.
Research has shown that under appropriate wave velocity estimation, the HLL type format automat-
ically satisfies the entropy condition and has positive preservation. Therefore, this paper mixes the
HLL format with the TV format to produce a stable and robust composite format.

S =min (0,(U—Cz),),S¥ =max (0, (U+C¢) ) - (29)

FLSY — FeS}! - SSY (U, — )

FHLL,H_%J = 5% - §LM (30)
The numerical flux of the mixed format can be expressed as
Frv_p = UuFry + (1 — ) Fyp. (31)

Where p is a switching function with values of 0 or 1. A simple and effective strategy is that when the
calculation result U"*! generates negative density or negative pressure value, u is set 0, otherwise it
is 1.

3. Numerical tests
3.1 2D Sedov blast problem
We consider a very strong explosion wave problem, the calculation region is [0,1.1] x [0,1.1], the

pseudo arc- length control function(B) is M = \/1 +p2+15|Vp|?, and the calculation time is r = 0.001.
The lower and left boundaries are set as reflection boundaries, and the right and upper boundaries
are set as exit boundaries. The explosion point is set at the origin of the coordinates, the calculated
number of grids is 200 x 200, and the detailed initial value conditions are as follows:

(1,0,0,4 x 10713, 1.4) else 5
(p7u7v7p7’}/): (170,0,9ZE§S4X10431.4)XSAxay§Ay ) (3 )

Figure(B3) shows the density map of the 2D sedov problem. The flow field in this example contains
extremely high pressure ratios and extremely low pressures. If no positive limiters are added during
the numerical solution process, it is easy to generate negative pressures due to errors in the numer-
ical format, which can cause the program to terminate prematurely. From the results in Figure(B), it
can be seen that the program ran to the final moment under the constraint of the positive limiter and
obtained the correct calculation result, indicating that the hybrid limiter proposed in this paper played
a positive role, This greatly enhances the robustness and stability of the algorithm. From the calcula-
tion results, it can be seen that the density contour lines obtained by the pseudo arc length algorithm
are clearer and sharper, and their numerical solutions are on the interface The low dissipation at the
discontinuity indicates that the pseudo arc length algorithm has a high resolution in capturing strong
shock waves.
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L
Figure 3 — 2D sedov problem-density. (From left to right, they are: PALM, fixed grid, mesh of PALM)

3.2 Double Mach reflection problem

This is a common calculation example in practical engineering problems, where a shock wave with a
Mach number of 10 is directed towards a wedge at a certain angle. By changing the angle of the ref-
erence frame, the calculation area of this problem can be set to [0,4] x [0, 1], the number of calculation

grids is 640 x 160, and the value of the pseudo arc-length control function is M = 1/1+2|Vp[*. The
calculated termination time is set r = 0.2. A Mach number 10 oblique shock wave is directed at a 60
degree angle towards the surface of a wedge-shaped object that coincides with the x-axis, forming a
rich flow field structure, such as jets, vortices, shear layers, etc. The initial conditions are as follows:

(8,8.25c0860,—8.255in0,116.5,1.4)x < xo+ =

(p,u,v,p,y):{ (14,0,0,1,1.4)x 2 x0 + 2 Vi (33)
Figure(d) shows the density map of the Double Mach reflection problem.From the calculation results,
it can be seen that the density and pressure contour lines of the PALM based on TV splitting are
clearer and sharper, and its numerical solution has lower dissipation at interface discontinuities, indi-
cating that the PALM has higher resolution in capturing strong shock waves. In addition, during the
process of solving the physical quantities on both sides of the normal direction of the shock wave
surface, it is easy to generate negative density and pressure in numerical calculations due to the
instability of the shock wave. The mixed operator enhances the robustness of the algorithm, thus
supporting the complete calculation of the program.

3.3 High Mach number astrophysical jets

High Mach number astrophysical jets are typically believed to be generated by processes such as
supernova explosions, or star formation. They have extremely high Mach numbers and exhibit com-
plex jet structure. This example considers a jet flow with a Mach number of 2100. The calcula-
tion region of this example is [0, 1] x [-0.25,0.25], and the region is initially filled with (p,u,v,p,y) =
(0.5,0,0,0.4127,1.667). The top, bottom, and right sides are set as outflow boundary conditions, and
the left boundary region is set with inflow boundary conditions, specifically:

(5,800,0,0.4127,1.667),—0.05 < y < 0.05

(Pau,V,ILY) = { (5,0,0’04127, 1667) ,else (34)

The number of calculation grids is 400 x 200, and the value of the pseudo arc-length control function

is M = /1+20|Vp|*. The calculated termination time is set 7 = 0.001. Figure(8) shows the detailed
calculation results. This example has a very high requirement for the stability of the algorithm. The
head and tail of the jet and the outer boundary of the whole jet are filled with extremely strong shock
waves, and the small disturbance will produce negative density and pressure and then suspend the
calculation. As can be seen from the calculation results in Figure(8), the algorithm proposed in this
paper is very robust and effective, and it can guarantee the calculation to the end time stably. In ad-
dition, the pseudo-arc length method maintains a very high resolution due to the adaptive movement

7
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Figure 4 — Double Mach reflection problem-density. (From left to right, they are: PALM, fixed grid,
mesh of PALM)
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Figure 5 — High Mach number astrophysical jets problem-density. (From left to right, they are: PALM,
fixed grid, mesh of PALM)
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of the grid, and can obtain a sharp shock surface, which is very advantageous in the calculation of
strong shock waves.

4. Concluding Remarks

This paper aims to construct a flux scheme with high-resolution and robust numerical stability. The
main work includes: (1) proposed a TV splitting scheme based on the complex arc-length coordinate
systems. By decomposing the flux vector into convective flux and pressure flux, the TV splitting is
extended from the fixed grid to the complex coordinate system; (2) Mapping non-physical space to
arc-length space through coordinate transformation facilitates the construction of high-precision nu-
merical scheme; (3) The calculation results show that the solver constructed in this paper not only
has higher accuracy but also effectively overcomes numerical instability in strong shock wave simu-
lation. The application of the numerical format constructed in this paper to complex flow problems
such as compressible turbulence, as well as the development of solvers on three-dimensional spatial
and unstructured grids, it is worth further research in the future.
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