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Multidisciplinary models are composed of numerous implicit systems that are solved in
a coupled manner. A common challenge arises when an individual discipline’s Jacobian is
non-invertible, which results in the coupled multidisciplinary model representing a saddle-point
problem. In general, the small-scale multidisciplinary saddle-point problems are solved with
the coupled Newton’s method. Nevertheless, coupled solver approaches are difficult to build and
have robustness problems. In addition, they necessitate solving large coupled linear systems in
large-scale applications. In this work, we use the newly developed nonlinear and linear Schur
complement (SC) solvers, appropriate for multidisciplinary models based on computational
fluid dynamics (CFD) to solve these saddle-point problems. The SC solvers are not susceptible
to the robustness problems of conventional coupled solutions since they leverage specialized
CFD solvers. Thanks to these solvers, the conventional constrained optimization, which has
a saddle-point system in its Jacobian, can be transformed into unconstrained optimizations.
In this work, we demonstrate several applications of Schur-complement-based optimizations
of CFD-based saddle-point problems: aerodynamic shape optimization (ASO) of a wing and
coupled aeropropulsive design optimization of a podded propulsor. In the ASO cases, the Schur-
complement solvers-based optimizations outperform the conventional constrained optimizations.
Although the conventional optimization in the coupled aeropropulsive design optimization
problem outperforms the SC solvers-based optimization, it requires an effective scaling of the
design variables of the boundary conditions and the constraints. SC solvers-based optimizations
always provide a feasible design at each design iteration, whereas the conventional approach
does not. Furthermore, in large-scale nonlinear saddle-point problems, the nonlinear SC solver
offers an alternative way to obtain a feasible solution for a given design instead of carrying
out a modest optimization in order to get feasible solutions. In the CFD-based saddle-point
applications, SC solvers will play an important role in the future because they are robust and
can solve the saddle-point problem using the native solvers of the specialized CFD model.

Nomenclature

𝐴ff = fan-face area
𝐶𝐷 = drag coefficient
𝐶𝐿 = lift coefficient
𝐶𝑝 = pressure coefficient
𝐷 = drag force
𝐹 = force
¤𝑚 = mass flow rate
𝑀 = Mach number
𝑝 = pressure
𝑃total = total shaft fan power
𝑟 = residual function
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𝑇 = temperature
𝑡 = thickness
®𝑉 = velocity
𝑣 = volume
𝑋 = design variables
𝑥shape = shape design variables
𝑥twist = twist design variables
𝛼 = angle of attack
Accronyms =
ASO = aerodynamic shape optimization
BC = boundary condition
CFD = computational fluid dynamics
DV = design variable
FPR = fan pressure ratio
MDO = multidisciplinary design optimization
RANS = Reynolds-averaged Navier–Stokes
SC = Schur-complement
XDSM = eXtended Design Structure Matrix
Subscripts and Superscripts =
(·)∗ = target value in optimization problems
(·)aero = value in the aerodynamic model
(·)prop = value in the propulsion model
(·)ff = quantity at the fan face
(·)fe = quantity at the fan exit
(·)t = total quantity
(·)s = static quantity

I. Introduction
Linear and nonlinear systems that arise from multidisciplinary models are challenging to solve [1]. A saddle-point

problem arises when a computational component or the governing equations for a specific discipline cannot be solved on
their own [2]. The structure of these models makes the hierarchical and BGS-based solvers inapplicable to these types
of scenarios. The general approach to solve saddle point problems is the fully coupled Newton’s method. Nevertheless,
the fully coupled Newton’s method is not necessarily the most efficient one. Even in cases when Newton’s method
provides quadratic convergence near the final solution, it may not necessarily be the most computationally efficient
approach because it necessitates solving a large linear system at each solver iteration.

The 2 × 2 block saddle-point system can be used to illustrate this problem in its most general form:[
𝐴 𝐵

𝐶 0

] [
𝑥

𝑦

]
=

[
𝑓

𝑔

]
. (1)

In the coupled nonlinear system, the partial derivatives of the residuals of the model with respect to its states are
contained in the Jacobian matrix, which is expressed as

𝜕𝑟1
𝜕𝑢1

𝜕𝑟1
𝜕𝑢2

𝜕𝑟2
𝜕𝑢1

0


[
Δ𝑢𝑖1
Δ𝑢𝑖2

]
=

[
−𝑟1 (𝑢𝑖1, 𝑢

𝑖
2)

−𝑟2 (𝑢𝑖1, 𝑢
𝑖
2)

]
, (2)

where the zero block is the result of several balance residuals and 𝜕𝑟1/𝜕𝑢1 is the coupled Jacobian of one or more sets
of governing equations.

Numerous applications of design optimization involve saddle-point problems. Two groups (coupled and decoupled)
of algorithms exist for addressing saddle-point problems [3]. One possible solution for solving large-scale saddle-point
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problems is the Schur-complement (SC) method, which is a decoupled approach. There have been significant efforts to
use SC method for preconditioning approaches [4–14]. However, only a few studies have addressed the saddle-point
problems in multidisciplinary models [2, 15]. Abdul-Kaiyoom et al. [16] developed nonlinear Schur complement (NSC)
and linear Schur complement (LSC) solvers to overcome the challenges posed by the fully-coupled Newton’s approach
and to address the problem with the BGS-based solvers. These SC solvers can be used to circumvent this drawback of the
BGS-based solvers and avoid the difficulties posed by the fully-coupled Newton’s approach. In addition, because the SC
solvers leverage specialized disciplinary solvers, they are less prone to robustness issues. In this paper, we demonstrate
several applications of SC-based optimizations to overcome the drawbacks of current solvers in saddle-point problems.

Many saddle-point problems arise from computational fluid dynamics (CFD) based multidisciplinary applications.
The aerodynamic shape optimization (ASO) of aircraft configurations to minimize drag or some other performance
metric that depends on drag, subject to a target lift constraint is a well-known example [17]. Typically, the target lift
value is achieved by enforcing the equality constraint in the optimization’s formulation. However, it can also be achieved
by changing the angle of attack at each design iteration implicitly to achieve the lift target. In this formulation, the target
lift value can be imposed using a balance equation with its own residual, where the angle of attack variable is included
in the model states. Because the balance residual itself does not explicitly depend on the angle of attack value, the
diagonal sub-block of the Jacobian matrix is zero and thus non-invertible. As a result, this formulation is not widely
used. The trim balance for aerostructural optimizations [18] and the continuation balance for CFD models with powered
boundary conditions (BCs) to model propulsors [19] are the other common CFD-based multidisciplinary models that
result in saddle point problems.

In the coupled aeropropulsive design problems, the propulsion system effects are incorporated into the CFD model
for the coupled aeropropulsive model through the use of powered BCs. With the BC formulation, we satisfy several
conservation quantities between the CFD and the propulsion models across the fan through balance residuals to model
the coupled aeropropulsive system. In conventional optimizations, these residuals are enforced as constraints in the
problem formulation because these residuals are not explicitly dependent on the state values and the diagonal sub-block
of the Jacobian matrix is zero and thus non-invertible. It is evident from these examples that saddle-point problems arise
in many design optimization applications, in single-disciplinary and multidisciplinary optimizations. Thus, it is crucial
to address these saddle-point problems in design optimization to enable the flexible formulation of simulation-based
optimization problems.

In this study, we use the newly developed NSC and LSC solvers to circumvent the difficulties posed by the
fully-coupled Newton’s approach and to address this issue with the BGS-based solvers. The solvers were implemented
in OpenMDAO [20]. To automate the analytic derivative computation of coupled models with explicit and implicit
model components, OpenMDAO utilizes the MAUD architecture [21]. The NSC solver in forward mode was introduced
in coupled aeropropulsive design analysis with powered boundary conditions by Yildirim et al. [2]. Then, the NSC
solver was used in reverse mode in an aeroelastic coupling within a trim equilibrium analysis [15]. They showed that the
NSC solver successfully converged the saddle-point multidisciplinary problem. In this work, we use both NSC and LSC
solvers to perform optimizations and show the benefits of them.

In this paper, we will show several applications of Schur-based ASO and coupled aeropropulsive design optimizations.
For different linear and nonlinear solver tolerances, we will compare the SC-based optimization with the default
lift-constrained optimization in the ASO of a wing. Similarly, we will compare the SC-based optimization with the
default constrained optimization to show the benefits of SC solvers in the coupled aeropropulsive design optimization.

In this paper, we begin by outlining the mathematical formulation of the SC-based solvers in Sec. II. In Section III,
we perform two different CFD-based design optimization to demonstrate the effectiveness of SC solvers. Finally, we
present the conclusions of this work in Section IV.

II. Schur Complement Solver

A. Nonlinear Schur Complement Solver
The partial derivatives of the residuals with respect to the states are dealt with in the NSC solver There are two

ways to compute these partial derivatives: forward mode and reverse mode. The formulation for the solver differs
depending on the mode. The further explanation of the solvers is detailed in a previous publication by the current
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authors [2, 15, 16].

1. Forward mode
A typical multidisciplinary model structure that can take advantage of this solver has a CFD solver in the first

system (𝑟1), as will be shown in more detail in the following section. As a result, there are a lot more states in the first
system than in the second (𝑟2). The cost of linear solutions with the Jacobian of each system is likewise influenced by
this factor; the linear solutions with the Jacobian of the first system are substantially more expensive than the second.
Computational performance is therefore improved by minimizing the number of linear solutions with the first system.
This methodology is not limited to solving problems with CFD solvers; any system that has the ability to have several
components, each with its unique nonlinear solution, can be the first system. By combining these two concepts, we may
solve 𝑟1 = 0 with a constant 𝑢2, which is the same as the nonlinear BGS update for the first system. Thus, the Newton
update formula for this system becomes[

𝜕𝑟1
𝜕𝑢1

𝜕𝑟1
𝜕𝑢2

𝜕𝑟2
𝜕𝑢1

𝜕𝑟2
𝜕𝑢2

] [
Δ𝑢𝑖1
Δ𝑢𝑖2

]
=

[
−𝑟1 (𝑢′1, 𝑢

𝑖
2)

−𝑟2 (𝑢′1, 𝑢
𝑖
2)

]
=

[
0

−𝑟2 (𝑢′1, 𝑢
𝑖
2)

]
, (3)

where the intermediate state 𝑢′1 satisfies 𝑟1 (𝑢′1, 𝑢
𝑖
2) = 0.

By rearranging the first row of Eq. 3, we get

Δ𝑢𝑖1 = −
(
𝜕𝑟1
𝜕𝑢1

)−1
𝜕𝑟1
𝜕𝑢2

Δ𝑢𝑖2. (4)

Then using Eq. 4 in the second row of Eq. 3, Δ𝑢𝑖2 is computed by solving(
𝜕𝑟2
𝜕𝑢2

− 𝜕𝑟2
𝜕𝑢1

(
𝜕𝑟1
𝜕𝑢1

)−1
𝜕𝑟1
𝜕𝑢2

)
Δ𝑢𝑖2 = −𝑟2 (𝑢′1, 𝑢

𝑖
2), (5)

which requires 𝑛𝑢2 additional linear solutions with the matrix 𝜕𝑟1/𝜕𝑢1.
After taking the update Δ𝑢𝑖2, the final step in this method would be to compute a final update for 𝑢′1 to account for

the changes in 𝑢2. Δ𝑢𝑖1 can be found from 1st row of Eq. 3 and becomes

𝜕𝑟1
𝜕𝑢1

Δ𝑢𝑖1 = −𝑟1 (𝑢′1, 𝑢
𝑖
2) −

𝜕𝑟1
𝜕𝑢2

Δ𝑢𝑖2 = − 𝜕𝑟1
𝜕𝑢2

Δ𝑢𝑖2. (6)

That being said, the right side of this formulation is just a first-order approximation of 𝑟1 at (𝑢′1, 𝑢
𝑖
2 + Δ𝑢𝑖2) = (𝑢′1, 𝑢

𝑖+1
2 ).

Consequently, we may update the 𝑢2 vector and calculate the actual nonlinear residual 𝑟1 (𝑢′1, 𝑢
𝑖+1
2 ) instead of depending

on this first-order approximation. Using the first system’s specialized nonlinear solver, we can finally find 𝑢𝑖+1
1 . We can

converge 𝑟1 using this method, which is a necessary first step to get Eq. 3 in the first place, as opposed to utilizing a
single nonlinear solver iteration with the first system. To update the state vector 𝑢1 of the first system, the solver solely
uses specialized nonlinear solvers of sub-components of the first system. Therefore, it avoids introducing robustness
problems that arise from applying Newton’s approach in the absence of globalization. The intermediate states of the
first system that solves 𝑟1 = 0 for given 𝑢𝑖2 can be simply carried over as the 𝑢1 vector that arises from the previous
iteration. With this approach, 𝑢′1 in each iteration is replaced with 𝑢𝑖1. As a result, we solve the 𝑢1 using the first system’s
specialized nonlinear solvers and then update the 𝑢2 using Eq. 5. Then, we update 𝑢1 using the first system’s specialized
nonlinear solvers for the updated 𝑢2. This process is repeated until convergence criteria are reached in the NSC solver.
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2. Reverse mode
The reverse mode formulation for the NSC solver is derived in a manner similar to the forward mode. However, the

coupled Jacobian matrix is transposed in reverse mode. As a result, Eq. 3, the coupled Newton system, becomes[
(Δ𝑢𝑖1)

𝑇 (Δ𝑢𝑖2)
𝑇
] [

𝜕𝑟1
𝜕𝑢1

𝑇 𝜕𝑟2
𝜕𝑢1

𝑇

𝜕𝑟1
𝜕𝑢2

𝑇 𝜕𝑟2
𝜕𝑢2

𝑇

]
= −𝑟𝑇

=

[
−𝑟1 (𝑢′1, 𝑢

𝑖
2)

𝑇 −𝑟2 (𝑢′1, 𝑢
𝑖
2)

𝑇
]

=

[
0 −𝑟2 (𝑢′1, 𝑢

𝑖
2)

𝑇
]
.

(7)

The SC of the coupled Jacobian matrix is computed to get the updates to the states for the second system, as we covered
in Section II.A.1. Rearranging Eq. 7’s first column becomes

(Δ𝑢𝑖1)
𝑇 = −(Δ𝑢𝑖2)

𝑇

(
𝜕𝑟1
𝜕𝑢1

𝑇
)−1 (

𝜕𝑟1
𝜕𝑢2

𝑇
)
. (8)

Thus, the second column of Eq. 7 becomes(
(Δ𝑢𝑖2)

𝑇 𝜕𝑟2
𝜕𝑢2

𝑇

− (Δ𝑢𝑖2)
𝑇 𝜕𝑟1
𝜕𝑢2

𝑇
(
𝜕𝑟1
𝜕𝑢1

𝑇
)−1

𝜕𝑟2
𝜕𝑢1

𝑇
)
= −𝑟2 (𝑢′1, 𝑢

𝑖
2)

𝑇 . (9)

Following that, the Δ𝑢𝑖2 can be obtained by taking the transpose of Eq. 9 and solving(
𝜕𝑟2
𝜕𝑢2

𝑇

− 𝜕𝑟1
𝜕𝑢2

𝑇
(
𝜕𝑟1
𝜕𝑢1

𝑇
)−1

𝜕𝑟2
𝜕𝑢1

𝑇
)𝑇

Δ𝑢𝑖2 = −𝑟2 (𝑢′1, 𝑢
𝑖
2), (10)

which also requires 𝑛𝑢2 additional linear solutions with the matrix (𝜕𝑟1/𝜕𝑢1)𝑇 .
The next step in this technique would be to compute a final update for 𝑢′1 to account for the changes in 𝑢2 after taking

the update Δ𝑢𝑖2, which is similar to Eq. 3 in the forward mode. Nevertheless, we update the 𝑢2 vector and calculate the
true nonlinear residual 𝑟1 (𝑢′1, 𝑢

𝑖+1
2 ) instead of using the first-order approximation of 𝑟1 at (𝑢′1, 𝑢

𝑖
2 + Δ𝑢𝑖2) = (𝑢′1, 𝑢

𝑖+1
2 ).

We employ the first system’s specialized nonlinear solver, as detailed in Section II.A.1.

B. Linear Schur Complement Solver
Similar to the NSC solver, the LSC solver can function in both forward and reverse directions. In situations where

there are more output functions than design variables, the forward mode is effective. Conversely, the reverse mode
works well when there are more design variables than output functions [22, Section 6.7.3].

With regard to the explicit and implicit reliance of 𝑓 on 𝑥, we are interested in computing the jacobian (d 𝑓 /d𝑥) in
optimizations. 𝑥 represents the design variables, and 𝑓 represents the functions of interest. Consequently, 𝑓 ’s total
derivative with regard to 𝑥 and the state variables (𝑢) is as follows:

d 𝑓
d𝑥

=
𝜕 𝑓

𝜕𝑥
− 𝜕 𝑓

𝜕𝑢

(
𝜕𝑟

𝜕𝑢

)−1
𝜕𝑟

𝜕𝑥
, (11)

which results in partial derivatives only on the right-hand side [22, Section 6.7.2]. There are two methods to solve
the linear system on the right side: the direct method (forward mode) and the adjoint method (reverse mode) [22,
Section 6.7.2]. The linear system (𝜕𝑟/𝜕𝑢)−1𝜕𝑟/𝜕𝑥 is taken to be solved in the forward mode. In the reverse mode, the
linear system is solved using 𝜕 𝑓 /𝜕𝑢(𝜕𝑟/𝜕𝑢)−1. This linear system can be transposed to obtain the linear solution as
follows: (𝜕 𝑓 /𝜕𝑢)𝑇𝜓 = (𝜕𝑟/𝜕𝑢)𝑇 . The vectors known as adjoints are represented by 𝜓.
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1. Forward mode
The linear system in Eq. 11 is solved in the forward mode using 𝜕𝑟/𝜕𝑥. Consequently, the forward-mode linear

system can be expressed as
𝜕𝑟

𝜕𝑢
𝜙 =

𝜕𝑟

𝜕𝑥
. (12)

This equation (Eq. 12) can be formulated for two systems, just like the NSC solver. As a result, the linear system turns
into [

𝜕𝑟1
𝜕𝑢1

𝜕𝑟1
𝜕𝑢2

𝜕𝑟2
𝜕𝑢1

𝜕𝑟2
𝜕𝑢2

] [
𝜙1

𝜙2

]
=

[
𝜕𝑟1
𝜕𝑥
𝜕𝑟2
𝜕𝑥

]
. (13)

By rearranging the first row of Eq. 13, we get

𝜙1 =

(
𝜕𝑟1
𝜕𝑢1

)−1 (
𝜕𝑟1
𝜕𝑥

− 𝜕𝑟1
𝜕𝑢2

𝜙2

)
. (14)

The result of multiplying both sides by 𝜕𝑟2/𝜕𝑢1 and substituting in the second row of Eq. 13 is(
𝜕𝑟2
𝜕𝑢2

− 𝜕𝑟2
𝜕𝑢1

(
𝜕𝑟1
𝜕𝑢1

)−1
𝜕𝑟1
𝜕𝑢2

)
𝜙2 =

𝜕𝑟2
𝜕𝑥

− 𝜕𝑟2
𝜕𝑢1

(
𝜕𝑟1
𝜕𝑢1

)−1
𝜕𝑟1
𝜕𝑥

. (15)

𝜙2 is first solved using this formulation and then it is substituted into Eq. 14 to get 𝜙1 . The NSC solver in the forward
mode has already solved Eq. 5, which has identical linear solutions with 𝜕𝑟1/𝜕𝑢1 for 𝜕𝑟1/𝜕𝑢2. Therefore, it simply
needs to initialize the NSC solver’s solution in the LSC solver. When the linear system in the NSC solver is sufficiently
converged, the linear system in the LSC solver can be solved very quickly.

2. Reverse mode
The linear system that is solved in the reverse mode differs from the forward mode to compute the derivatives. The

linear system with 𝜕 𝑓 /𝜕𝑢 on the right-hand side of Eq. 11 is solved using the adjoint method (reverse mode). When
solving the adjoint term in the reverse mode, it can be shown as

𝜓𝑇 ≡ 𝜕 𝑓

𝜕𝑢

(
𝜕𝑟

𝜕𝑢

)−1
. (16)

By multiplying both sides by 𝜕𝑟/𝜕𝑢 and transposing the entire equation, we may obtain the adjoint equation, which is

𝜕𝑟

𝜕𝑢

𝑇

𝜓 =
𝜕 𝑓

𝜕𝑢

𝑇

, (17)

where 𝜓 are the adjoint vectors. Thus, the linear system becomes[
𝜕𝑟1
𝜕𝑢1

𝑇 𝜕𝑟2
𝜕𝑢1

𝑇

𝜕𝑟1
𝜕𝑢2

𝑇 𝜕𝑟2
𝜕𝑢2

𝑇

] [
𝜓1

𝜓2

]
=

[
𝜕 𝑓

𝜕𝑢1

𝑇

𝜕 𝑓

𝜕𝑢2

𝑇

]
. (18)

By rearranging the first row of Eq. 18, we obtain

𝜓1 =

(
𝜕𝑟1
𝜕𝑢1

𝑇
)−1 (

𝜕 𝑓

𝜕𝑢1

𝑇

− 𝜕𝑟2
𝜕𝑢1

𝑇

Ψ2

)
. (19)

Multiplying both sides by (𝜕𝑟1/𝜕𝑢2)𝑇 and substituting in the second row of Eq. 18 become(
𝜕𝑟2
𝜕𝑢2

𝑇

− 𝜕𝑟1
𝜕𝑢2

𝑇
(
𝜕𝑟1
𝜕𝑢1

𝑇
)−1

𝜕𝑟2
𝜕𝑢1

𝑇
)
𝜓2 =

𝜕 𝑓

𝜕𝑢2

𝑇

− 𝜕𝑟1
𝜕𝑢2

𝑇
(
𝜕𝑟1
𝜕𝑢1

𝑇
)−1

𝜕 𝑓

𝜕𝑢1

𝑇

. (20)
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Maero, Altitude,α Maero, Altitude,α

CFD vxyz , u

Aerodynamic Postprocess CD ,CL

(a) XDSM diagram of the MDA formulation with the conventional constrained optimization problem.

Maero, Altitude Maero, Altitude

NSC α α

CFD vxyz , u

Aerodynamic Postprocess CL CD

rCL Balance

(b) XDSM diagram of the MDA formulation with the SC-based optimization problem.

Fig. 1 XDSM diagrams for the ASO of both the conventional and SC solvers-based optimizations. 𝑣𝑥𝑦𝑧 are the
volume coordinates and 𝑢 are the state variables from the CFD solver (ADflow).

As with the forward mode, we may obtain 𝜓1 by first solving for 𝜓2 and then substituting this value into Eq. 19. Similar
to the forward mode, the linear solution with (𝜕𝑟1/𝜕𝑢1)𝑇 for (𝜕𝑟2/𝜕𝑢1)𝑇 in the NSC solver can be used as an initial
guess in the LSC solver when the NSC solver and LSC solver operate in the reverse mode. This will cause the linear
system to converge quickly.

While using both NSC and LSC solvers in the same mode (either forward or reverse) is preferred, it is also possible
for them to operate in different modes. This is because the linear solution from the NSC solver can be initialized in the
LSC solver, which can quickly converge the linear system in the LSC solver. Four distinct mode combinations arise
from this.

III. CFD-Based Application
In this section, we show the benefits of SC solvers for the ASO of a wing and a coupled aeropropulsive optimization

of a podded propulsor. Both of these CFD-based applications are detailed in the following sections.
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Fig. 2 Wing geometry and FFD control points.

A. Aerodynamic Shape Optimization of a Wing
In this section, we perform an ASO of a wing using SC solvers (NSC and LSC solvers). When dealing with

conventional ASO problems, the wing’s shape is modified to minimize drag and yet produce the desired lift under
cruise conditions. The lift constraint is typically applied as an equality constraint in an ASO. However, we may solve
for the lift at each design iteration with the use of SC solvers by enforcing balance residual, which eliminates the
need to enforce the equality constraint. Figure 1 demonstrates the XDSM diagram for both these approaches. In the
SC-based optimization, the angle of attack becomes a state variable. The following sections explain both conventional
and SC-based optimizations.

1. Methodology
We use ADflow [23] as a CFD solver, which solves the RANS equations on structured multiblock and overset grids.

In all of the results, we use the Spalart–Allmaras (SA) turbulence model [24]. ADflow computes the derivatives needed
for gradient-based optimization [25] using an effective adjoint solver and uses a robust approximate Newton–Krylov
solver algorithm [26]. Furthermore, we use the geometry parameterization module pyGeo [27] and the volume mesh
warping module IDWarp [28]. We use the free form deformation (FFD) scheme [29] implemented in pyGeo [27], as
illustrated in Fig. 2, to modify the shape of the wing.

Both of the problems defined in Figure 1 are implemented using the MPhys library, which is constructed using the
OpenMDAO framework [20]. This means that in our ASO problems, we only need to compute the partial derivatives of
each component. OpenMDAO then employs the modular analysis and unified derivatives (MAUD) architecture [21] to
address the coupled derivative problem, especially useful for SC-based optimization.

2. Problem Formulation
The problem formulations of the typical lift-constrained and the residual enforced wing optimizations are shown in

Table 1. The angle of attack, which is the coupling variable (𝑢2 in Eqs. 5, 10, 15, and 20), is not a design variable in the
residual enforced wing optimizations. Moreover, there is also no equality constraint for lift. We solve the lift constraint
as residuals using the NSC solver at each design iteration:

𝑟𝐶𝐿
(𝛼) = 𝐶𝐿 − 𝐶∗

𝐿 = 0, (21)

where 𝐶∗
𝐿

is the target lift coefficient. Table 1 demonstrates both of the problem formulations.
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Table 1 The optimization aims to minimize the drag subject to lift and geometric constraints.

Function/Variable Description Quantity

Conventional lift-constrained optimization:

Minimize 𝐶𝑑

By varying 𝑥shape Shape design variables 96
𝑥twist Twist design variables 7
𝛼 Angle of attack 1

Subject to 𝐶𝐿=𝐶∗
𝐿

Lift coefficient 1
𝑡 ≥ 𝑡min Thickness constraint 200
𝑣 ≥ 𝑣min Volume constraint 1

Residual enforced optimization using SC solvers:

Minimize 𝐶𝑑

By varying 𝑥shape Shape design variables 96
𝑥twist Twist design variables 7

Subject to 𝑡 ≥ 𝑡min Thickness constraint 200
𝑣 ≥ 𝑣min Volume constraint 1

For SC-based analyses and optimizations, there are 4 convergence-related parameters for the NSC solver: the
relative nonlinear convergence of each CFD simulation (𝜂CFD), the relative linear convergence (𝜂lin) of each solution to
obtain the linear solutions in Eq. 5 in forward mode or Eq. 10 in reverse mode, and the relative and absolute nonlinear
convergence of the NSC solver (𝜂rel and 𝜂abs). We set the absolute tolerance of NSC solver (𝜂abs) to 10−6 and the
relative tolerance of NSC solver (𝜂rel) to 10−8. In addition, the linear systems in the LSC solver (Eq. 15 in forward mode
or Eq. 20 in reverse mode) are also solved to a similar tolerance to the linear systems in the NSC solver. The CFD is
converged to a relative tolerance of 10−14 in both of the optimization problems in Table 1, and the adjoint linear system
is solved to a tolerance of 10−14 in conventional lift-constrained optimizations and in Eq. 14 in forward mode or Eq. 19
in reverse mode for SC-based optimizations.

To generate practical designs, we include geometric constraints which include thickness and volume constraints.
We choose a Mach number (𝑀) of 0.8 and an altitude of 10, 000 meters. We use the sparse nonlinear optimizer
(SNOPT) [30], a sequential quadratic programming (SQP) algorithm, through pyOptSparse interface [31].

3. Results
First, we perform a simple nonlinear analysis of the problem in Fig. 1b to solve for 𝐶𝐿 = 0.5 using the NSC solver in

reverse mode. We set the relative convergence of the nonlinear and linear residuals in the NSC solver to 𝜂CFD = 10−4
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Fig. 3 MDA of 𝐶𝐿 residual enforced case using the NSC solver.

and 𝜂lin = 10−3. Fig. 3 demonstrates the cost of each stage of the solver. We partially converge the CFD residuals prior
to the initial NSC solver iteration, as delineated in Sec. II.A. Then, we solve the linear system needed for the update
formula in Eq. 5 in forward mode or Eq. 10 in reverse mode for each iteration of the NSC solver. We restart this linear
system from the previous solutions. We converge to a tolerance of 𝜂lin with respect to the initial linear residual norm at
the beginning of each solution. The CFD model is then reconverged by ANK solvers for the updated balance variable
using the NSC solver. Approximately 15 orders of magnitude are reduced in the CFD model residuals and more than 6
orders of magnitude are reduced in the balance residuals when the solution procedure is repeated until a 𝜂abs value of
10−6 or a 𝜂rel value of 10−8 is obtained. The NSC solver offers an option to obtain a feasible solution for a given design
instead of carrying out a modest optimization to get feasible solutions.

To demonstrate the efficacy of the SC solvers, we perform several optimizations. We only consider reverse mode for
optimizations because the number of design variables is higher than the cost functions. Two distinct optimizations
were carried out for the conventional wing optimization scenario in Table 1. In the conventional 𝐶𝐿 constrained
optimization, the scaling of the 𝐶𝐿 constraint severely affects the performance. As a result, in this case, we carry out
two optimizations: one in which we scale the 𝐶𝐿 constraint and the other not. In the residual enforced cases, we choose
different combinations of 𝜂CFD and 𝜂lin tolerances to accelerate convergence of the optimization. The optimality and
feasibility criteria were set to 10−16. All the optimizations were allowed to converge to the smallest possible optimality
and feasibility tolerances. Table 2 explains the summary of optimizations. Figure 4 demonstrates 𝐶𝐷 convergence with
respect to the major iteration and time. In the conventional 𝐶𝐿 constrained optimization, the scale of the 𝐶𝐿 constraint
has a major impact on the optimization cost. When the 𝐶𝐿 constraint is scaled down, the equality constraint at the
beginning of the optimization does not influence the merit function greatly, giving the optimizer more latitude to modify
the design variables in an effort to reach the optimum. However, when this constraint is not scaled adequately, the cost of
the optimization is more than twice as high as most of the optimization based on SC solvers. For a given 𝜂CFD, when the
tolerance for the linear system (𝜂lin) is higher, the optimization ends abruptly and reaches a less accurate solution. When
the 𝜂lin is higher (10−1 or 10−2), the cost of the optimization is also higher. For the tolerances listed in Table 2, Two SC
solver-based optimizations perform better than the conventional optimizations, including the scaled one. Conventional
optimization scenarios required more iterations and took longer to converge than those two optimizations utilizing SC
solvers in Table 2.

For this problem, we were able to identify the 𝐶𝐿 constraint’s scalability due to the problem’s simplicity and our
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Fig. 4 𝐶𝐷 history with respect to the major iteration and time.

experience with it. It is extremely challenging to choose the right scaling numbers with more general and complex
optimization problems. Nonetheless, the scalability problem is not encountered by the optimization that utilizes SC
solvers. In addition, SC solvers-based optimization always provides a feasible design, whereas conventional optimization
does not.

In this application, we showed that the SC solvers-based optimization can outperform the conventional constrained
optimizations while avoiding the challenges of finding a good scaling value for constraints. It illustrates how balanced
residual problems in multidisciplinary design optimization can be substituted with SC solvers.
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Table 2 The optimization aims to minimize the drag subject to lift and geometric constraints.

Cases Time
Scaling for
𝐶𝐿constraint

Optimal 𝐶𝐷 Optimal 𝛼

Conventional opt - unscaled 12 hours and 22 minutes 1 0.01832313 3.864◦

Conventional opt - scaled 3 hours and 57 minutes 10−4 0.01832313 3.864◦

SC solvers-based opt: 𝜂CFD = 10−3 𝜂lin = 10−1 10 hours and 24 minutes – 0.01832589 3.350◦

SC solvers-based opt: 𝜂CFD = 10−3 𝜂lin = 10−2 7 hours and 39 minutes – 0.01832313 3.858◦

SC solvers-based opt: 𝜂CFD = 10−3 𝜂lin = 10−3 4 hours and 37 minutes – 0.01832313 3.863◦

SC solvers-based opt: 𝜂CFD = 10−4 𝜂lin = 10−2 5 hours and 52 minutes – 0.01832454 3.501◦

SC solvers-based opt: 𝜂CFD = 10−4 𝜂lin = 10−3 3 hours and 49 minutes – 0.01832314 3.865◦

SC solvers-based opt: 𝜂CFD = 10−5 𝜂lin = 10−1 9 hours and 42 minutes – 0.01832395 3.623◦

SC solvers-based opt: 𝜂CFD = 10−5 𝜂lin = 10−2 5 hours and 43 minutes – 0.01832363 3.661◦

SC solvers-based opt: 𝜂CFD = 10−5 𝜂lin = 10−3 3 hours and 17 minutes – 0.01832315 3.851◦

B. Coupled Aeropropulsive Design Optimization of a Podded Propulsor
Our primary motivation for applying the SC solvers is to solve nonlinear systems arising from CFD-based models.

In particular, we want to solve the nonlinear problems that result from using boundary conditions to model propulsors in
CFD models. We also use the coupled aeropropulsive model as a benchmark case, explaining how the SC solvers are
integrated into the rest of the solver hierarchy, and studying the solvers’ performance.

1. Coupled Aeropropulsive Model
We use the BC version of the benchmark aeropropulsive model created in our earlier work [19] as the aeropropulsive

model in this study. The benchmark model is a podded electric fan design that is based on the aft-propulsor of NASA’s
STARC-ABL concept [32], as illustrated in Fig. 5. Despite being a straightforward design, it illustrates the main
difficulties in coupling a CFD solver to a propulsion model for a fully coupled aeropropulsive model. In this work, we
exclusively investigate the BC version of the benchmark model since the nonlinear system arising from this version
causes the Jacobian matrix to have a zero sub-block, making it impossible to use BGS-based solvers. The SC solvers,
however, have no limitations in the same way. Powered BCs are used in the coupled aeropropulsive model to introduce
the propulsion system effects into the CFD model. The BC technique is useful even though source-term formulations are
more accurate for fan simulations [33]. The source-term formulation is not supported by all CFD solvers; for this reason,
a BC formulation is more broadly applicable. Furthermore, although source-term formulations yield higher accuracy for
parts like fans, they become computationally constrained when simulating an engine core, for which low-order cycle
models can yield adequate accuracy [34]. Therefore, the BC version is important in coupled aeropropulsive problems
and we use SC solvers to solve and optimize these problems.

2. Boundary Conditions
We match many coupling parameters within the BC model to maintain consistency between the aerodynamics

and propulsion models, using the methodology proposed by Lamkin et al. [35]. The mass flow rate (𝑟 ¤𝑚), area (𝑟𝐴),
and velocity (𝑟𝑉 ) between the propulsion models and the CFD must be satisfied across the fan using the BC version.
Furthermore, the total net thrust requirement (𝑟𝐹) is also computed in this residual evaluation. The static pressure at
the fan face (𝑝aero

s,ff ), and the total pressure (𝑝aero
t,fe ), total temperature (𝑇aero

t,fe ), and mach number (𝑀prop
fe ) at the fan exit

are tuned to achieve the conservation of these quantities. The conservation between the propulsion and aerodynamic
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(a) Podded electric fan geometry in OpenVSP. The core and
the nacelle are modeled using two separate components.

(b) CFD model of the podded fan. The CFD simulations use
an overset mesh that contains a symmetry plane about the
centerline of the propulsor. The contours on the symmetry
plane show the normalized stagnation pressure values, and
contours on the propulsor surfaces show the coefficient of
pressure values.

Fig. 5 Geometry and the CFD model of the podded fan.

models is expressed as
𝑟 ¤𝑚

(
𝑝aero

s,ff , 𝑝aero
t,fe , 𝑇aero

t,fe , 𝑀
prop
fe

)
= ¤𝑚aero

fe − ¤𝑚prop
fe = 0,

𝑟𝐴

(
𝑝aero

s,ff , 𝑝aero
t,fe , 𝑇aero

t,fe , 𝑀
prop
fe

)
= 𝐴aero

fe − 𝐴
prop
fe = 0,

𝑟𝑉

(
𝑝aero

s,ff , 𝑝aero
t,fe , 𝑇aero

t,fe , 𝑀
prop
fe

)
= 𝑉aero

fe −𝑉
prop
fe = 0.

(22)

The total net thrust requirement is also given as

𝑟𝐹

(
𝑝aero

s,ff , 𝑝aero
t,fe , 𝑇aero

t,fe , 𝑀
prop
fe

)
=

(
¤𝑚aero

fe 𝑉aero
fe + 𝑝aero

s,fe 𝐴aero
fe

)
−

(
¤𝑚aero

ff 𝑉aero
ff + 𝑝aero

s,ff 𝐴aero
ff

)
− 𝐷total − 𝐹target = 0,

(23)

where 𝐹target refers the target net thrust requirement. The fan model in the BC version between the propulsion and
aerodynamic models is valid when the three residuals in Eq. 22 are met. These conservation residuals are enforced
as equality constraints in the conventional coupled aeropropulsive optimization. Thanks to SC solvers, these balance
residuals can be solved to achieve a feasible design at each design iteration.

3. Problem Formulation
In the coupled aeropropulsive optimization, we minimize the total shaft power (𝑃total) with respect to the constraints.

We use 1-D thermodynamic cycle models developed with the pyCycle library [36] to estimate the total shaft power
needed by the fan. Using a polytropic efficiency assumption and a tabular performance map, pyCycle sizes the
compressor in the design mode. Using the FPR value obtained from the CFD simulations, we modify the fan’s adiabatic
efficiency until the compressor reaches the desired polytropic efficiency of 0.97. This number is taken from the NASA
N+3 technology level reference propulsion system [37]. We recover the fully coupled system when the optimizer fulfills
the conservation residuals for the BC version in Eq. 22.
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In these types of typical optimization problems, these conservation quantities are constrained to achieve the feasible
optimum. However, thanks to SC solvers, these conservation quantities are enforced as balance equations in a residual
form to satisfy them at each design iteration. Figure 6 demonstrates these two different coupling problems for the BC
version of the coupled aeropropulsive model. Table 3 shows the conventional coupled aeropropulsive optimization
and SC-based optimization problem formulations. 𝑝aero

s,ff , 𝑝aero
t,fe , and 𝑇aero

t,fe , which are the coupling variables (𝑢2 in
Eqs. 5, 10, 15, and 20), are not a design variable in the SC solvers-based case. In addition, there are no conservation
residual constraints, 𝑟 ¤𝑚, 𝑟𝐴, and 𝑟𝑉 . We solve them using SC solvers.

FPR constraint is imposed in both problem formulations. We also enforce geometric constraints to ensure practical
designs. Thickness constraints for nacelle are included in the problem formulation to maintain the initial thicknesses. We
use the same packages as described in Section III.A.1. However, the geometry of the podded propulsor is parameterized
using OpenVSP [38], which is demonstrated in Figure 5a. We choose a Mach number of 0.785 and an altitude of 36,
000 feet.

For SC-based analyses and optimizations, we set the absolute tolerance of NSC solver (𝜂abs) to 10−4 and the relative
tolerance of NSC solver (𝜂rel) to 10−6. The CFD is converged to a relative tolerance of 10−12 in both of the optimization
problems in Table 3, and the adjoint linear system is solved to a tolerance of 10−12 in conventional residual enforced
optimizations and in Eq. 14 in forward mode or Eq. 19 in reverse mode for SC-based optimizations.

4. Results
We first analyze a simple nonlinear analysis of the problem shown in Fig. 6b using the NSC solver in reverse mode.

We set the relative convergence of the nonlinear and linear residuals in the NSC solver to 𝜂CFD = 10−4 and 𝜂lin = 10−3

to demonstrate the cost of each stage of the solver in Fig 7. The NSC solver successfully converges the BC residuals and
finds the required BC conditions. We partially converge the CFD residuals prior to the initial NSC solver iteration, as
delineated in Sec. II.A. Similar to the case in Section III.A.3, we solve the linear system needed for the update formula
in Eq. 5 in forward mode or Eq. 10 in reverse mode for each iteration of the NSC solver. Approximately 12 orders of
magnitude are reduced in the CFD model residuals and more than 6 orders of magnitude are reduced in the balance
residuals when the solution procedure is repeated until a 𝜂abs value of 10−4 or a 𝜂rel value of 10−6 is obtained. Instead of
performing a modest optimization to achieve a feasible solution for the given design, the NSC solver offers an alternative
to achieve a feasible nonlinear solution.

We perform two sets of optimizations, as detailed in Table 3. In this study, we only consider reverse mode
for optimizations because the number of design variables is higher than the cost functions. For the conventional
BC-constrained optimization, we perform 3 optimizations for different scaling of constraints and BC design variables.
For the SC solvers-based optimization, we choose different combinations of 𝜂CFD and 𝜂lin tolerances to accelerate
the convergence of the optimization. Figure 8 demonstrate the convergence of 𝑃total for these optimizations. Table 4
summarizes these optimizations. In all of the optimizations, the major step limit parameter in SNOPT is set to 0.1
except for the 𝜂CFD = 10−5 and 𝜂lin = 10−2 case in SC solvers-based optimizations, where it is set to 0.01. In all of the
cases, the optimality criteria and the feasibility criteria were set to 10−6 and 10−8, respectively. The scaled conventional
constrained optimizations and all of the SC solvers-based optimizations satisfied the optimality criteria except for the
𝜂CFD = 10−5 and 𝜂lin = 10−5 and 𝜂CFD = 10−6 and 𝜂lin = 10−2 cases in SC solvers-based optimization. These two SC
solvers-based cases converged to the optimality tolerance in the order of 10−6. The scaled conventional constrained
optimizations converged to the feasibility tolerance successfully. SC solvers-based optimizations converged to the
feasibility tolerance of at least in the order of 10−7. The unscaled case in the conventional constrained optimization
problem failed to converge after 13 hours, which is the time limit set for the optimization.

Based on our experiences from the previous studies [19, 39, 40], we scaled the BC design variables in scaled-1 case
and both the BC design variables and the BC constraints in scaled-2 case. The scaled optimizations in the conventional
constrained problem and the SC solvers-based optimizations converged to the same optimal point. In terms of cost, the
scaled optimizations outperform the SC solver cases. To achieve this performance, however, finding an appropriate
scaling through trial and error is needed. SC solvers are not limited by these scalability problems. Therefore, SC solvers
are still a potential option for using them in these types of saddle-point problems. When the 𝜂lin is 10−2 in each 𝜂CFD
tolerances, the cost of the optimization is higher because of the numerical errors.

In this application, we showed that the SC-based optimization outperforms the unscaled conventional optimization.
Although the scaled cases are more efficient than the SC solvers-based optimizations, SC solvers provide an alternative to
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Table 3 Single-point optimization problem definition with the BC version. The differences compared to SC
solvers-based optimizations in conventional optimizations are highlighted in red.

Variable/Function Description Quantity

Conventional constrained optimization:

minimize 𝑃total Power required for the fan 1

By varying 𝑃aero
s,ff Static pressure at fan face 1

𝑃aero
t,fe Total pressure at fan exit 1

𝑇aero
t,fe Total temperature at fan exit 1
𝑀

prop
fe Mach number at fan exit 1

𝑥plug Plug shape 2
𝑥nacelle Nacelle shape 15

Total 21

Subject to 𝑟𝐹 = 0 Net thrust residual 1
FPR = FPR∗ Target FPR 1
𝑀ff ≤ 0.6 Upper limit of fan face Mach number 1
𝑟 ¤𝑚 = 0 Conservation of ¤𝑚 between “aero” and “prop” models across the fan 1
𝑟𝐴 = 0 Conservation of 𝐴 between “aero” and “prop” models across the fan 1
𝑟𝑉 = 0 Conservation of 𝑉 between “aero” and “prop” models across the fan 1
0.99 ≤ 𝑔geo ≤ 3.0 Geometric thickness constraints 14

Total 20

Residual enforced optimization using SC solvers:

minimize 𝑃total Power required for the fan 1

By varying 𝑀
prop
fe Mach number at fan exit 1

𝑥plug Plug shape 2
𝑥nacelle Nacelle shape 15

Total 18

Subject to 𝑟𝐹 = 0 Net thrust residual 1
FPR = FPR∗ Target FPR 1
𝑀ff ≤ 0.6 Upper limit of fan face Mach number 1
0.99 ≤ 𝑔geo ≤ 3.0 Geometric thickness constraints 14

Total 17

achieve a feasible design at each iteration. Therefore, it illustrates how balanced residual problems in multidisciplinary
design optimization can be substituted with SC solvers.
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Maero, Altitude,α,

ps,ff, pt,fe,Tt,fe

Maero, Altitude,Mprop
fe

CFD paeros,ff ,V aero
ff ,Aaero

ff , ṁaero
ff

paeros,ff ,V aero
ff ,Aaero

ff , ṁaero
ff ,

V aero
fe ,Aaero

fe , ṁaero
fe ,

FPR,Tt,ff,Tt,fe

FPR,Mff

Flow Transfer ppropt,ff , hpropt,ff ,Mprop
ff

Propulsion
Ptotal, rF

rV , rṁ, rA

(a) XDSM diagram of the MDA formulation with the conventional constrained optimization problem.

Maero, Altitude,α Maero, Altitude,Mprop
fe

NSC ps,ff, pt,fe,Tt,fe

CFD paeros,ff ,V aero
ff ,Aaero

ff , ṁaero
ff

paeros,ff ,V aero
ff ,Aaero

ff , ṁaero
ff ,

V aero
fe ,Aaero

fe , ṁaero
fe ,

FPR,Tt,ff,Tt,fe

FPR,Mff

Flow Transfer ppropt,ff , hpropt,ff ,Mprop
ff

Propulsion
V aero
fe ,Aaero

fe , ṁaero
fe ,

V prop
fe ,Aprop

fe , ṁprop
fe

Ptotal

rV , rṁ, rA Balance rF

(b) XDSM diagram of the MDA formulation with the SC-based optimization problem.

Fig. 6 XDSM diagram for the coupled aeropropulsive design optimization.
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Fig. 7 MDA of residual enforced coupled aeropropulsive case using the NSC solver in rev mode.
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Fig. 8 𝑃total convergence history with respect to the scaled-2 case’s optimal 𝑃total.
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Table 4 The optimization aims to minimize the total shaft power (𝑃total) subject to constraints.

Cases Time
Scaling

𝑟 ¤𝑚, 𝑟𝐴, 𝑟𝑉

Scaling
𝑃aero

s,ff , 𝑃aero
t,fe , 𝑇aero

t,fe

Optimal
𝑃aero

s,ff (Pa), 𝑃aero
t,fe (Pa), 𝑇aero

t,fe (oK)
𝑃total

Conventional opt : unscaled 13 hours and 02 minutes 1, 1, 1 1, 1, 1 Failed Failed
Conventional opt : scaled-1 5 hours and 38 minutes 1, 1, 1 104, 104, 102 26760.0, 44357.6, 263.6 3577.495
Conventional opt : scaled-2 3 hours and 37 minutes 102, 101, 102 104, 104, 102 26760.1, 44357.9, 263.5 3577.496

SC solvers-based opt: 𝜂CFD = 10−5 𝜂lin = 10−2 11 hours and 27 minutes – – 26759.9, 44357.4, 263.6 3577.505
SC solvers-based opt: 𝜂CFD = 10−5 𝜂lin = 10−4 9 hours and 36 minutes – – 26760.0, 44357.6, 263.6 3577.495
SC solvers-based opt: 𝜂CFD = 10−5 𝜂lin = 10−5 9 hours and 11 minutes – – 26760.1, 44357.8, 263.5 3577.488
SC solvers-based opt: 𝜂CFD = 10−6 𝜂lin = 10−2 10 hours and 52 minutes – – 26759.9, 44357.6, 263.6 3577.517
SC solvers-based opt: 𝜂CFD = 10−6 𝜂lin = 10−4 8 hours and 42 minutes – – 26760.0, 44357.6, 263.6 3577.496
SC solvers-based opt: 𝜂CFD = 10−6 𝜂lin = 10−5 9 hours and 24 minutes – – 26760.1, 44357.8, 263.5 3577.488
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IV. Conclusions
In this work, we present the results of applying new SC-based solvers on computational fluid dynamics-based

saddle-point problems. Using BGS-based techniques is not possible with this type of model due to the non-invertible
block diagonal of the Jacobian matrix. Using a fully coupled Newton’s technique is one viable solution for these systems,
but it has drawbacks as well because it is not robust and solving a large linear system is difficult. Similar challenges
exist in linear solvers, which cannot solve a saddle-point linear system. To overcome these limitations, we applied SC
solvers, which use the SC of the fully coupled Jacobian to compute the update to the non-invertible system. We present
several applications to demonstrate an alternative approach to handle saddle-point optimization.

First, we presented a benchmark aerodynamic shape optimization of a wing to show the solvers’ performance. At
every design iteration, the nonlinear SC solver can successfully solve the balancing equation and achieve the target lift.
The linear system is also effectively solved by the linear SC solver. The SC solvers-based optimizations outperform the
conventional lift-constrained optimization. It is no longer necessary to formulate these balance problems as non-linearly
constrained optimization problems thanks to the flexibility of SC solvers. We demonstrated how SC solvers allow the
equality constraints in conventional optimization to be converted into residual forms. Moreover, we also showed how
the SC-based optimizations are cost-effective when compared to the conventional lift-constrained optimization. In
addition, we also demonstrated a fully coupled aeropropulsive design optimization using SC solvers. The nonlinear SC
solver successfully converges the balancing equations and achieves the desired boundary conditions at each design
iteration. The linear system is also successfully solved by the linear SC solver. Although the well-scaled conventional
constrained optimization outperforms SC solvers-based optimizations, it provides an alternative approach to achieve a
feasible design at every iteration.

When compared to conventional optimizations, the SC solver-based optimization proved to be more cost-effective
in the aerodynamic shape optimization benchmark case we provided. It was not the most effective in the coupled
aeropropulsive optimization. However, a well-scaled problem formulation is required in the case of conventional
coupled aeropropulsive optimization with the balance residual constraints. SC solvers-based optimization always
provides a feasible solution at each design iteration while conventional optimization does not. SC solvers can be
a problem-dependent method in terms of cost-effectiveness. The solvers will therefore be a crucial component of
simulation-based design optimization frameworks.
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