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Abstract 

Computer Fluid Dynamics (CFD) has become an important method of aircraft design. With the improvement 

of aircraft performance, the contradiction between accuracy and efficiency of numerical simulation becomes 

more and more obvious. In this paper, a deep learning framework based on large langrage model Bert” is 

proposed for predicting pressure and velocity distributions for 3D configurations. Based on our framework, the 

pressure and velocity distribution can be obtained quickly by inputting the aircraft shape points and incoming 

flow conditions. The proposed framework avoids the influence of computational grid on neural network model, 

and can use any CFD or experimental results for training. The transonic states of 500 shapes are calculated 

by Euler equation as inputs of neural network, of which 400 are used for training and 100 are used for testing. 

The results show that our method can accurately predict the surface pressure and velocity distribution of 

aircraft, and the time consumption is only seconds, thus achieving a win-win situation of accuracy and 

efficiency. Our framework is suitable for arbitrary CFD methods and experimental data, and avoids the 

dependence of neural networks on computational grids 
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1. Introduction 

With the rapid development of computer technology, computational fluid dynamics (CFD) has 

become an important method of aircraft design[1]. In aircraft design, researchers generally pay 

attention to the force coefficient integrated by surface pressure or friction distribution[2]. In order to 

get the force coefficient accurately, it is necessary to adopt carefully designed grid and accurate 

calculation method. In complex flow areas, it is necessary to increase grids to get good results. In 

recent years, CFD-based aerodynamic and multidisciplinary optimization has attracted the attention 

of researchers, which requires repeated use of CFD to solve the flow field. Fine design leads to the 

unbearable computation of repeatedly calling CFD. Even if the surrogate optimization method is 

adopted, it will face the problem of "dimension curse"[3][4]. How to deal with the accuracy and 

efficiency of CFD has become the key problem restricting aircraft design. 

In recent years, the rapid development of artificial intelligence, especially deep learning, provides a 

new way to solve the problem of CFD efficiency and accuracy. In fluid mechanics modeling and 

prediction, deep learning technology has great application prospects. "Universal approximation 

properties"[5] points out that a feedforward neural network satisfying certain conditions can 

approximate Borel measurable functions with arbitrary accuracy as long as a sufficient number of 

hidden elements are given. Because most functions in practical application satisfy the conditions 

stated in this theorem, the feasibility of deep learning of flow field has been firmly guaranteed in 

theory. On the other hand, the existing CFD method has obtained a large amount of data, which is 

a good platform for the application of deep learning technology. In the field of flow field prediction 

and aerodynamic design, data-driven models based on a large number of existing data have been 



widely studied, and convolution neural network (CNN) is one of the most popular approaches. Sekar 

et al.[6][7] processed the input airfoils into pixelated images and employed CNN for airfoil flow field 

prediction and inverse design, and the trained network achieved good prediction accuracy even on 

unseen airfoils. Thuerey et al[8]. also used CNN to simulate the airfoil flow. The influence of network 

parameters and sample size on the training results were studied, and the relative error of predicted 

pressure field was less than 3% on the unseen airfoils. Balla et al[9]. proposed a multi-ouput neural 

network for aerodynamic coefficients of airfoils in two dimensions and wings in three dimensions. 

Duru et al[10]. proposed an encoder-decoder neural network model (CNN-FOIL) to predict transonic 

flow field around airfoils and got good performance. Wu et al[11]. designed generative adversarial 

network (GAN) with CNN structure to predict the flow fields of supercritical airfoils. Hu et al[12]. 

transformed the non-uniform physical plane into a uniform computational plane through coordinate 

transformation, and carried out the flow field simulation of airfoils and simple wings based on CNN, 

which further broadened the applicable scope of CNN model in flow field prediction. Yang et al[13]. 

used varaitional autoencoder to generate new flowfields of airfoils under different conditions.  

All these studies have proved that deep learning has great potential in flow field prediction, but these 

studies mainly focus on two-dimensional airfoils or simple wings, and these methods depend on 

grids (mostly Cartesian grids or structured grids), which restricts their application in three-

dimensional complex configurations. Shen et al[14]. proposed a deep learning framework based on 

pointnet++ to get pressure on three-dimensional configurations. However, this method has not been 

verified in complex flow. Hines D et al[15]. used a graph neural network approach to predict surface 

pressure distributions of aircraft, this method got good performance for complex cases involving 

several hundreds of thousands of nodes. The emergence of transformer architecture[16] in 2017 

made a breakthrough in the field of deep learning. Subsequently, based on this architecture, new 

models suitable for natural language processing and computer vision, such as Bert[17], Chatgpt and 

Vision-transformer[18], appeared one after another, bringing deep learning research to a new height. 

Using the powerful feature extraction ability of transformer architecture and based on bert model we 

realized the prediction of aircraft surface flow field which is not limited by grid type and suitable for 

three-dimensional complex configuration. The results show that our method can accurately predict 

the transonic flow field of different flying wing configurations within 5 seconds, and accurately capture 

the shock wave intensity and shock wave position 

2. Methodology 

2.1 Shape generation 

On the basis of the baseline shape, this section aims to generate a dataset with a variety of shapes 

by the parametric approach. The baseline flying wing is shown as Figure 1. Specific parameters are 

shown in Table 1. The advanced geometric modeling and CFD evaluation software OPENVSP is 

used for geometric parameterization. Compared with free form deformation method which controls 

the change of coordinate points, OPENVSP realizes the shape generation and deformation of aircraft 

by specifying physical variables such as airfoil, sweep angle, root chord length and spread length, 

which has physical significance and is not easy to generate unreasonable shape. 

 
Figure 1 -Geometry of baseline flying wing 

 



 

Table 1 Geometry parameters of baseline flying wing 

Sweep1 Sweep2 Root_chord Span1 Span_total 

55° 20° 3.85m 3.36m 5.6m 

 

When the new configuration is generated, the inner wing sweep angle Sweep1, the outer wing sweep 

angle Sweep2 and the outer wing half span Span1 are selected as parameterized variables, keeping 

the airfoil profile and other parameters unchanged. 500 samples are randomly generated by Latin 

Hypercube method, and the range of each parameter is shown as Table 2. Figure 2 gives the 

distribution of each parameter. It can be seen that the distribution of each parameter accords with 

random distribution, which proves the rationality of sampling. 

 
Table 2 Parameter value range 

 Baseline Deform range 

Sweep1 55° [30°, 60°] 

Sweep2 20° [10°, 30°] 

Span1 3.36m [1m, 2.75m] 

 

 
(a) Sweep1 vs Sweep2 

 
(b) Sweep1 vs Span1 

Figure 2 -Parameter distribution 

 

The shapes of some samples are shown as Figure 3, and it can be seen that the shape after 

deformation is smooth and conforms to the aircraft design criteria, which proves the effectiveness of 

the parametric method. 

 
(a) Sample1 

 
(b) Sample2 

 
(c) Sample3 

Figure 3 -Shapes of different samples 

2.2 CFD simulation  

In this work, 500 cases are generated as the dataset Considering that the three-dimensional problem 

requires large sample size and the numerical solution of RANS equation takes a long time, we use 

Cartesian grid solver to solve Euler equation, and get the surface pressure distribution of different 
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samples. By solving the Euler equations for numerical simulation, we can obtain nonlinear flow 

characteristics such as shock wave and ensure high computational efficiency. The Euler equations 

can be expressed as follows: 
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Where u denotes the velocity,  and p denote density and pressure, respectively.  E  denotes the 

total energy per unit mass. The air is treated as an ideal gas, thus,  is 1.4. For time advance, the 

implicit Lower-Upper Symmetric Gauss-Seidel scheme is used to solve the Euler equations and the 

Courant-Friedrichs-Lewy (CFL) number is 100. In order to further improve the efficiency, Cartesian 

grid is adopted as the computational grid. In all the calculations, the surface grid size of the flying wing 

is about 50000, and the calculated states are shown in Table 3. At this condition, there is shock wave 

s on the aircraft surface, which further tests the accuracy of our method. Because the purpose of this 

paper is to verify the method, the accuracy of CFD solver has not been studied in detail. Figure 4 

shows the convergence history of sample 1. After 800 CFD iterations, the lift or drag coefficient 

converges basically, which can be used for neural network training. 

 
Table 3 Inflow conditions 

Ma Angle of attack Angle of sideslip 

0.85 3° 0° 

 

 
Figure 4 -Convergence history for sample1 

2.3 Bert model 

Bert model is based on transformer architecture, including pre-training and fine-tuning. In NLP, Bert 

model is excellent in cloze problem because it trains a depth bidirectional model. Bert's success also 

shows that deep learning is representational learning, and we can fine-tune parameters according to 

different downstream task requirements on the pre-training model to achieve the desired results. 

Therefore, on the basis of Bert model, we have carried out the work of predicting the pressure 

distribution of three-dimensional configuration. The transformer architecture is shown in Figure 5. 

Wherein, the left half is an encoder and the right half is a decoder. We can use the entire Transformer 

architecture as needed, or we can use the encoder or decoder section alone. 
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Figure 5 -The transformer architecture 

Bert model can be regarded as the encoder part of Transformer, that is, we can use Bert model to 

extract features. In this paper, we use Bert Base model, whose parameters are about 110 million. The 

Bert model diagram is shown in Figure 6. Specific details about the Bert model can be found in 

reference [17]. 

 
Figure 6 -Bert model 

 

Figure 7 shows the concrete steps of the proposed model. In the training process, CFD evaluation is 

carried out on the generated shape at first. Then the grids and the corresponding surface pressure 

distribution are tokenized and input into Bert model, where the surface pressure distribution is used 

as the label value. After Bert model, the output results are logistically regressed, and finally the 

predicted surface pressure distribution is obtained. When predicting, the corresponding surface 

pressure distribution can be obtained by inputting the coordinate points of the new shape. 

 



 
Figure 7 -Model diagram 

3. Results and Discussion 

Since the number of coordinate points of different shapes is not the same, we unify the number of 

coordinate points of different shapes to 60,000 (greater than the number of coordinate points of the 

shape itself). When the outline coordinate points are less than 60000, we randomly extract some 

coordinate points from the coordinate points to supplement. Adaptive momentum estimation 

optimization algorithm is used as the optimizer during the training process, and the learning rate is 

0.001. The MSEloss in PyTorch is used as the loss function, and the maximum training epoch is set 

to 100. Since a total of 500 CFD cases have been solved, the dataset is randomly divided into a 

training set (400), and a test set (100) in this study. In the training process, the results of the new 

round will be compared with the results of the previous round. If the loss function decreases, the 

current model will be saved, so as to ensure that the saved model after reaching the maximum epoch 

is the best model. The training of the model is performed on the GPU of Nvidia Tesla A100.  

The convergence history of the training set and the test set is shown in Figure 8. The initial loss 

function value of the training set and the test set is around 0.02. After 100 epch training, the loss 

function value of the best model on the training set and the test set is around 0.0003, which is two 

orders of magnitude lower than the initial value. 

 

 
Figure 8 -Convergence history  

 

In order to quantify the accuracy of the model prediction, R-square is used to characterize the 

consistency between the predicted velocity and pressure distribution and CFD calculation results. The 

R-squre can be seen in Table 4. It can be seen that in addition to the velocity w along the spanwise 

direction of the aircraft, the R-square value of other velocity components exceeds 0.99, and the R-

square value of the surface pressure coefficient reaches 0.999, which proves that the model has good 

fitting ability. 



 

Table 4 R-square for prediction 

 Cp u v w 

R-square 0.999 0.994 0.987 0.997 

  

Figure 9 and Figure 10 show the comparison of model predicted values and CFD values for the contour 

surface pressure distribution and X-direction velocity distribution in the test set. It can be seen that in 

the test set, there are obvious shock waves on the surface of the aircraft under the condition of 

transonic velocity. The model accurately predicted the surface pressure distribution and velocity 

distribution, and predicted the shock wave position and intensity. 

 

 
(a) Prediction 

 
(b) CFD 

Figure 9 -Pressure coefficient comparison from validation set 

 
(a) Prediction 

 
(b) CFD 

Figure 10 -U velocity comparison from validation set 

 

Figure 11 gives the comparison between the pressure distribution predicted by the model and CFD 

calculation results at different locations along the spanwise. It can be seen that the shock position 

predicted by the model is very consistent with the shock position calculated by CFD and the peak 

pressure. When there is no shock wave on the surface, the pressure predicted by the model is almost 

consistent with the CFD calculation result. 

  

 



 
(a) y/b=0.29 

 
(b) y/b=0.65 

Figure 11 -Pressure coefficient comparison for different location 

 

4. Conclusions 

1) The framework proposed in this paper can accurately predict the surface pressure 

distribution and velocity field of 3D configuration at transonic conditions. The method in this 

paper only needs seconds to predict a state, which greatly improves the efficiency 

compared with traditional CFD methods. 

2) The method in this paper only needs grid points or geometric modeling points as inputs, 

and has the potential to predict multiple physical fields, so it has strong applicability and 

extensibility. 
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