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Abstract

A state-space formulation for the study of the aeroelastic behavior of morphing wings is presented. It is
based on an Unsteady Lifting-Line Theory model for the prediction of the aerodynamic loads coupled with a
structural dynamics model to obtain an aeroelastic operator suitable for stability analysis and aeroservoelastic
applications. The sectional unsteady aerodynamic loads are evaluated by the application of the Küssner-
Schwarz theory, with wake inflow from trailed vorticity determined numerically application of the Biot-Savart
law. The wake vorticity release derives from the evaluation of the sectional bound circulation given by the Kutta-
Joukowski theorem extended to unsteady flows. The accuracy of the overall aeroelastic model is assessed
by comparison with experimental data regarding the paper flutter phenomenon considered in the literature.
The results from the proposed model present a good correlation with the experimental data, and highlight the
important role of the trailed vorticity.
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1. Introduction
Since the beginning of aviation engineers have tried to develop the best aircraft configurations for the
wide range of purposes they were built to accomplish. Usually, conventional aircraft are optimized for
a single design point: for instance, civil aircraft are built with long spans to increase efficiency, military
ones with smaller swept-back wings to improve maneuverability, VTOL (vertical take-off and landing)
configurations were born to operate in urban or extreme environments. However, as aeronautical
technology advances, this concept is becoming more and more limiting.
As already happened in the past, engineers have drawn inspiration from nature for the definition of
new paradigms of aviation. Observing the flight behavior of birds and insects shows how quickly they
can change shape to move from efficient cruising conditions to agile and precise maneuvers. This ex-
treme adaptability inspired the idea of morphing aircraft. Nevertheless, morphing is not a completely
new concept. For instance, the Wright Brothers designed their Flyer including an actuating cable that
could be directly controlled by the pilot to change (to morph) the twist of the wing, performing roll
control. Even the classical high lift devices that we are used to seeing in the common civil aircraft,
such as flaps and slats, are applied to morph the wing geometry, being deployed when needed to
increase the lift by increasing the wing surface, and then retracted during the cruise phase to reduce
the drag and, thus, fuel consumption.
The most comprehensive definition of "morphing" is "real-time adaptability to enable multi-point op-
timized performance", provided by the NATO RTO technical team in [1]. There are many different
approaches regarding morphing aircraft, meticulously reviewed by Barbarino et al. [2] and more
recently by Ajaj et al. [3], who divided them into three main categories of shape morphing wings:
planform, out-of-plane and airfoil morphing. The planform category is divided into span, sweep and
chord morphing. The out-of-plane one is achieved by the twist, the dihedral or gull and the spanwise
bending. There are also two different ways of morphing the airfoil, namely through the thickness and
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the camber. The most widely used category is the camber morphing, due to its effectiveness and
versatility.
The literature is rich in contributions regarding camber morphing. For instance, Campanile and An-
ders [4] have developed the belt-rib airfoil, which consists of a closed shell reinforced by hinged
stiffeners, which allow in-plane deformations and whose shape can be modified through shape mem-
ory alloys or piezoelectric materials. Similarly, Woods et al. [5, 6, 7] developed the Fishbone Active
Camber (FishBAC), a biologically inspired compliant airfoil in which an internal bending beam acts
as a spine and an elastomeric matrix composite acts as the skin surface. A low-fidelity aeroelastic
model of the FishBAC has been developed by Zhang et al. [8], which can be used for preliminary
and conceptual design, as well as for optimization purposes. Murua et al. [9] (extending the work
made by Palacios and Cesnik [10, 11]) developed an aeroelastic two-dimensional, multi-dofs model,
examining the effect of the stiffeners on the aeroelastic stability. Drazumeric et al. [12] proposed a
flexible airfoil model accomplished by the combination of a rigid airfoil-shaped leading edge, with a
flexible composite thin laminated plate attached to its trailing edge. Following [9], Sambenedetto et
al. presented a new aeroelastic model [13] where both rigid-body and deformable-camber degrees of
freedom of a semi-infinite thin plate are considered, with control action obtained through the actuation
of two piezoelectric thin foils applied to the main structure.
Aeroelastic problems related to airfoil camber deformation are studied also in fields far from aeronau-
tics. Among them, an interesting medical application concerns the study of the aeroelastic instability
of the human soft palate modelled as a flexible cantilevered plate, which occurs in the upper-airway
disorder generating the condition of snoring (see [14, 15]). In addition, Watanabe et al. developed an
aeroelastic model applied to the study of paper flutter [16], which is a phenomenon limiting the speed
of printing in paper machines (see also [17] where an analytical state-space aeroelastic model has
been developed and applied to the same problem for stability analysis and flutter control purposes),
whereas flag flutter instability was examined by Argentina et al. [18] and Eloy et al. [19] (in both
cases, the structural problem is modelled through a semi-infinite flexible cantilever plate).
The present paper aims to develop an aeroelastic solver for morphing wings where the aerody-
namic solution is determined by an Unsteady Lifting-Line Theory, ULLT, formulation based on the
Küssner-Schwarz theory [20, 21], which can be considered as the extension to deformable airfoils
of the well-known Theodorsen theory [22]. In the proposed approach, the influence of the wake
is considered semi-analytically: the shed vorticity effects are accounted for analytically through the
Küssner-Schwarz theory, whereas the wake inflow due to trailed vortices (three-dimensional effects)
is determined numerically as part of the ULLT solution process. The aeroelastic formulation de-
veloped here couples the ULLT model presented and validated in [23] with the structural dynamics
operator representing a morphing wing with deformable camber, thus providing a solution tool that
combines a good level of accuracy with low computational cost, making it particularly suitable for
pre-design and optimization purposes.
The paper is structured as follows. First, the mathematical formulation of the unsteady aerodynamic
Küssner-Schwarz theory for airfoils is briefly outlined. Then, the ULLT is recalled, along with the
methodology applied to obtain the finite-state aerodynamic operator to be combined with the struc-
tural dynamics model to define the state-space aeroelastic operator suitable for stability analysis and
control purposes. The accuracy of the ULLT aerodynamic solver and an analytical simplified ver-
sion of it is assessed by comparison with the results given by a higher-fidelity model, and then the
aeroelastic predictions concerning paper flutter are correlated with experimental data.

2. Küssner-Schwarz’s Theory
The Küssner-Schwarz theory is a linear aerodynamic theory, for incompressible, potential flows pro-
viding the airfoil pressure loads generated by an arbitrary distribution of downwash [20, 21].
Let us consider a coordinate system, (x,z), with the origin located at the mid-point of an airfoil of
length 2b, the x-axis aligned with the unperturbed flow of velocity V and the airfoil, positive from the
leading to the trailing edge, and the z-axis positive upward.
For ξ = x/b = cosθ , the Küssner-Schwarz theory demonstrates that, for an arbitrary downwash dis-
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tribution, v(ξ , t), such that, in the frequency domain,

ṽ(θ) =−V

[
P̃0 +2

∞

∑
n=1

P̃n cos(nθ)

]
(1)

with

P̃n =− 1
πV

π∫
0

ṽ(θ)cos(nθ)dθ (2)

the following pressure jump across the airfoil arises

∆ p̃(θ) =−ρV 2

[
2ã0 tan

(
θ

2

)
+4

∞

∑
n=1

ãn sin(nθ)

]
(3)

where ρ is the air density and ãn are coefficients given by{
ã0 =C(k)(P̃0 + P̃1)− P̃1

ãn = P̃n + ik (P̃n−1 − P̃n+1)/(2n) for n ≥ 1
(4)

with the reduced frequency defined as k = ωb/V (ω is the angular frequency) and C(k) representing
the lift deficiency function which is defined by the Theodorsen theory [22].
For a harmonically varying camber deformation expressed as

Z(ξ , t) = Z0(ξ )ei [ω t+φ(ξ )] (5)

where φ(ξ ) and Z0(ξ ) denote, respectively, the local angular phase and local amplitude of the defor-
mation, the downwash is defined as follows

v(ξ , t) =
V
b

∂Z
∂ξ

+
∂Z
∂ t

(6)

from which a direct relation between structural dofs and pressure jump can be easily derived.

3. Unsteady Lifting-Line Theory for Morphing Wings Aeroelasticity
In this work, the aeroelastic operator for morphing wings is derived by applying a frequency-domain
Unsteady Lifting Line Theory, ULLT, solver suitable for the analysis of unsteady aerodynamics of
morphing wings with deformable camber. It applies the Küssner-Schwarz theory to evaluate the
pressure distribution along the whole wing, which is then integrated to obtain the generalized loads
as projections onto the shape functions, ψ j, of the distributed pressure, namely

f j =−b
1∫

−1

∆ p̃(ξ )ψ j(ξ )dξ (7)

Given a distribution of the wake trailed vorticity, the Biot-Savart law is used to determine its effects on
the sectional downwash appearing in the Küssner-Schwarz theory (which, on the other hand, already
considers shed vorticity effects). A similar approach is used in [23] as an extension of the ULLT for
non-morphing wings presented in [24]).
The wake vorticity released by the lifting body is determined from the relation between the sectional
bound circulation and the sectional circulatory lift provided by the extension of the Kutta-Joukowski
theorem to unsteady linear aerodynamics presented in [25], which closes the loop of the aerodynamic
system.
This aerodynamic solution approach yields the following relation between the M generalized aerody-
namic forces, f, and the M Lagrangian coordinates, q, of the structural dynamics problem

f̃ = E(k) q̃ (8)
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where E is the transcendental [M×M] aerodynamic matrix, that collects the aerodynamic frequency
response functions (see [23] and [24] for details).
The presence of the transcendental contributions comes from three sources: i) the exponential con-
tribution due to the delays appearing in the Biot-Savart law used to evaluate the downwash generated
by the wake trailed vorticity (the vorticity at a given wake point corresponds to the vorticity released
by the trailing edge when passing at that point), ii) the Theodorsen’s lift deficiency function used to
evaluate the coefficients an of the Küssner-Schwarz theory (see Eq. (4)), and iii) the frequency re-
sponse function, G(k), of the unsteady Kutta-Joukowski theorem (see [25]). This implies that, in this
form, the aerodynamic matrix is unsuitable for aeroelastic stability analyses and control applications.
To overcome this difficulty, it is convenient to apply the following rational-matrix approximation of the
aerodynamic matrix along the imaginary axis of the complex plane

E(k)∼= (ik)2A2 + ikA1 +A0 +Q(ikI−A)−1R (9)

where A2, A1 and A0 are [M×M] matrices, A is a diagonal [Np×Np] matrix, where Np is the number of
aerodynamic poles that can be arbitrarily increased to better approximate the aerodynamic transfer
functions, whereas Q is a [M ×Np] matrix and R is a [Np ×M] matrix. All these constant-coefficient
matrices can be determined by a least-square approximation technique [26, 13].
Thus, the combination of Eq. (9) with (8), followed by the transformation into time domain yields, for
τ = t V/b, {

f(τ) = A2 q̈+A1 q̇+A0 q+Qr
ṙ = Ar+Rq

(10)

which represents the state-space model of the wing generalized aerodynamic loads derived from
the frequency-domain ULLT solver, perfectly suitable for aeroelastic stability analyses and control
purposes once coupled with the operator representing the structural dynamics of the examined wing.
In Eq. (10), r denotes the vector of the Np additional aerodynamic states introduced by the rational
contribution in Eq. (9).

3.1 Validation of the Frequency-Domain ULLT for Morphing Wings
In the following, the ULLT model is validated by comparing its unsteady loads predictions with those
given by a higher-fidelity aerodynamic model. The latter consists of a zero-th order Boundary Element
Method (BEM) tool based on a boundary integral equation solution for velocity potential flows, with
collocation points located at the centers of the boundary discretization elements, and pressure loads
evaluated through the Bernoulli theorem [27, 28, 29].
The test case analyzed is an untwisted rectangular morphing wing with chord length c = 1 m, span
length l = 20 m and sweep angle Λ = 30°. The undisturbed-flow dynamic pressure is assumed to
be equal to unity. The magnitude and phase of the aerodynamic matrix components are evaluated
within the reduced frequency range k ∈ [0,2].
The set of shape functions considered for the evaluation of the generalized forces is such that they
represent a wing modelled as a clamped-free bending-torsion beam, with chordwise deformation
described by the eigenfunctions of a free-free uniform bending beam. Overall, four shape functions
are considered, the first two corresponding to the first bending and torsion natural modes of vibration
of a clamped-free rigid-section beam, and the other two consisting of the combination of the first
bending mode with chordwise deformation described by the first two bending modes of the free-free
beam. Therefore the aerodynamic matrix E(k) has dimension [4× 4]. For the sake of brevity, only
4 out of the resulting 16 transfer functions are shown. Specifically, we consider E13(k), which is the
transfer function between the first mode of camber deformation and the generalized force related to
the first wing bending mode, and E34(k) and E43(k), which are the transfer functions involving only the
camber deformation modes.
These results are shown in Figs. 1 to 3. Overall, the ULLT results are in good agreement with the BEM
results for the whole reduced frequency range considered, in terms of both magnitude and phase of
the transfer functions. It is worth noting that the ULLT solver is significantly faster computationally
than the BEM tool (it is about 2.5 times faster than the BEM).
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Figure 1 – Transfer function E13(k), blue ULLT, black BEM.

Figure 2 – Transfer function E34(k), blue ULLT, black BEM.

Finally, the rational matrix approximation of matrix E defined is performed in order to derive a reduced-
order model of the aerodynamic operator to be coupled with a structural dynamics model to define
the state-space aeroelastic operator. The comparisons between the transfer functions directly given
by the ULLT model and those provided by the 3-pole rational-matrix approximation are shown in Figs.
4 to 6. These results show the excellent accuracy of the reduced-order model from which state-space
aeroelastic operator can be readily derived.

4. Numerical Aeroelastic Investigations
This section presents some results concerning the paper flutter analysis. As already mentioned in
the Introduction, it is an aeroelastic phenomenon that has been deeply investigated in the literature,
from both the numerical and experimental point of view.
The present numerical results are compared with the numerical and experimental outcomes pre-
sented in [16] and [14]. Specifically, Watanabe et al. [16] developed an aeroelastic model based on
the Küssner-Schwarz theory and the application of the exact transcendental form of the lift deficiency
function. The velocity and frequency of paper flutter were determined through the widely-known V-g
method. Instead, the experimental flutter data are provided by Watanabe et al. [16] for a wide range
of paper-like materials, and by Huang for aluminum foils [14].
In the present work, the paper foils are structurally considered as semi-infinite thin plates, clamped
on the side impinged by the freestream and free on the opposite side. Then, the aeroelastic system
is completed by the inclusion of the aerodynamic operator, defined in two different ways. The first
one consists of a fully-2D aerodynamic model based on the Küssner-Schwarz theory and developed
in [17]. It considers the rational approximation of the lift deficiency function provided by Venkatesan
and Friedmann [30], which allows the direct description of the aerodynamic operator in a state-space
form. The second one is the ULLT model described in Section 3, which can be considered as an
extension of the fully-2D model that accounts for trailed vorticity effects. In the following, the two
aerodynamic models are referred to as "2D aero" and "ULLT", respectively.
Not included in the Küssner-Schwarz theory, viscous effects are introduced by superposition in both

5



Finite morphing wing state-space aeroelastic model through Unsteady Lifting-Line Theory

Figure 3 – Transfer function E43(k), blue ULLT, black BEM.

Figure 4 – RMA of the transfer function E13(k), blue exact, red approximated.

aerodynamic models, in order to take into account the corresponding tension loads that play a non-
negligible role in this aeroelastic stability problem. This is accomplished by considering a constant
viscous drag coefficient, Cd , related to the interaction between plate and fluid.

4.1 Aeroelastic Analyses through the Fully-2D Aerodynamic Model
First, the aeroelastic results obtained by the application of the fully-2D model are compared with the
numerical outcomes provided by Watanabe et al. [16] for a paper of composite material (for details,
see [16]).
This is shown in Fig. 7, where the nondimensional flutter velocity, U∗

f , is depicted as a function of the
mass ratio, a, for three different values of the drag coefficient (present results are related to converged
values of the number of natural modes of vibration, M, and the number of coefficients of the Küssner-
Schwarz theory, N). Both the nondimensional flutter velocity and mass ratio are defined by Watanabe
et al. as

U∗
f =

U f√
EpJp

ρc3

, a =
ρptp

ρc
(11)

where U f is the dimensional flutter velocity, c = 2b is the chord, while the subscript p stands for the
properties of the plate, respectively the density, ρp, the thickness, tp, the Young modulus, Ep, and the
moment of inertia, Jp.
Since the mass ratio is inversely proportional to the chord, the drag decreases as a increases, namely
as the surface of the plate shrinks. This effect has a negative impact on the stability of the system,
since the drag produces a tension stiffening the plate, thus making it more stable. Indeed, Fig. 7
shows that at low values of the mass ratio the flutter velocity increases as Cd increases. Overall,
the present fully-2D model provides flutter predictions that are in perfect agreement with those by
Watanabe et al. [16].
The two models show very similar results also regarding the flutter frequency, Ff , whose trend is
shown in Fig. 8, where F1, F2, F3, F4 are the first four frequencies of vibration. The flutter frequency
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Figure 5 – RMA of the transfer function E34(k), blue exact, red approximated.

Figure 6 – RMA of the transfer function E43(k), blue exact, red approximated.

is strongly dependent on the mass ratio. At low mass ratios (long plates) the value of the flutter
frequency tends to the natural frequency of the third mode of vibration, while at high mass ratios
(small plates) it tends to the frequency of the second mode of vibration. For mid-values of a, the
value of the flutter frequency is between F2 and F3, thus proving that the second and third natural
modes of vibration are aeroelastically coupled.
Next, we compare the outcomes provided by the fully-2D model with the experimental data proposed
by Watanabe et al. [16] and by Huang [14]. These results, given in terms of nondimensional flutter
velocity as a function of the mass ratio, are shown in Fig. 9 for Cd = 0.2 and Poisson ratio equal to
ν = 0.4. The tension due to drag has a positive effect on the accuracy of flutter velocity predictions
which are in fair agreement with the experimental data even for low values of the mass ratio (compare
with Fig. 7).

4.2 Aeroelastic Analyses through the ULLT Model for Camber Morphing Wings
In Fig. 9 some discrepancies between the 2D numerical results and the experimental data appear.
Here, we assess the paper flutter prediction accuracy when the ULLT model is applied, thus including
the trailed vorticity effects.
In particular, we examine the problem described in [14] where an aluminum plate of span length equal
to 6 cm is considered. Four different values of mass ratio are considered, corresponding to the chord
lengths equal to 4,6,8,10 cm.
The results are depicted in Fig. 10 and demonstrate that the inclusion of the trailed vorticity effects
in the ULLT model improves the accuracy of the flutter numerical predictions given by the fully-2D
computational tool that can be considered of overall good quality.

5. Conclusions
A state-space model for the aeroelastic study of camber morphing wings is presented. The aerody-
namic operator is obtained through an unsteady lifting-line theory approach based on the Küssner-
Schwarz theory for the evaluation of the sectional loads. The circulatory lift of each wing section is
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Figure 7 – Flutter velocity as a function of the mass ratio. Comparison between present results and
numerical results by Watanabe et. al [16] for three different values of Cd .

Figure 8 – Flutter frequency as a function of the mass ratio. Comparison between present results
and numerical results by Watanabe et. al [16] for Cd = 0.0.

Figure 9 – Flutter velocity as a function of the mass ratio. Comparison between present results and
experimental results by Watanabe et. al [16] and Huang [14] for Cd = 0.2 and ν = 0.4.

8



Finite morphing wing state-space aeroelastic model through Unsteady Lifting-Line Theory

Figure 10 – Flutter velocity as a function of the mass ratio. Comparison between fully-2D present
results, ULLT present results and the experimental data by Huang [14] for Cd = 0.2.

related to the bound circulation through an extended version of the Kutta-Joukowski theorem which
is valid for unsteady linear aerodynamics. The effects of the corresponding trailed vorticity released
in the wake are numerically taken into account by application of the Biot-Savart law. For a camber-
deforming bending-torsion wing, the accuracy of the aerodynamic model is successfully assessed by
comparing the evaluated transfer functions relating generalized forces to Lagrangian coordinates with
those given by a high-fidelity computational tool. Considering the paper flutter problem, the aeroelas-
tic model is obtained by coupling the rational-matrix approximation of the ULLT aerodynamic matrix
with the structural model describing a clamped-free semi-infinite thin plate. It is demonstrated that the
paper flutter velocity predictions given by the proposed state-space ULLT-based model are in good
agreement with the available experimental data. It improves the results obtained by a fully-2D model
still based on the Küssner-Schwarz theory, and previously validated against numerical outcomes
available in the literature, which does not consider trailed vorticity effects.
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