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Abstract

This paper presents a boundary integral formulation for the aerodynamic analysis of deformable lifting bodies
in compressible potential flows. The body contribution is expressed in a body-fitted curvilinear coordinate
system (material body description). Instead, the wake contribution, which is the critical element in this kind of
problems, is described through two different but equivalent formulations, both applicable also in a free-wake
solution mode: (i) a material wake description and (ii) a surface-fitted Lagrangian description. The numerical
investigation is aimed at validating the proposed formulations. First, for a simple non-lifting body problem the
integral formulation is validated against the analytical solution for the potential field generated by a moving
pulsating source. Then, the two alternative formulations for lifting bodies are cross-validated in the case of
the flight of a deformable bending wing at several Mach numbers. These results prove the capability of the
proposed approaches to solve lifting-body problems and their equivalence.
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1. Introduction
Current developments in aviation design and the increased demand for innovative aircraft, even with
unconventional geometry, require more reliable and high-performance computational tools for aero-
dynamic and aeroacoustic analyses.
A key aspect of aircraft design concerns the aerodynamic analysis and thus the prediction of air
loads generated by lifting surfaces. This becomes a challenging task when the designers deal with
highly flexible structures typical of innovative aircraft configurations, for which the aeroelastic phe-
nomena may generate significant deformations of the body that cannot be neglected in solving the
aerodynamic field.
The aeroelastic loop must be accounted for a correct and efficient design of aircraft structures [1,
2]. This phenomenon can be examined either experimentally or through a computational analysis
[3, 4]. The former presents reliable results but is very expensive, time-consuming, and fitted for a
specific aeronautical configuration. Also numerical studies are time-consuming when accomplished
through application of CFD high-fidelity solvers. However, in the early stages of aircraft design (i.e.,
conceptual and preliminary phases), the interest of the designers focuses on formulations capable of
producing accurate results with acceptable computational time.
The computational tools based on boundary integral equation formulations for the aerodynamic anal-
ysis of bodies moving in potential flows meet the time constraint while maintaining a good level of
accuracy [5, 6], and the ability to analyze complex aircraft configurations. In this context, the free-
wake analysis of lifting deformable bodies in compressible flows is still an open problem, to the
authors’ knowledge. The availability of such an aerodynamic solution tool could be of great help not
only in the design of highly flexible fixed-wing aircraft but also in the design of rotorcraft. Indeed, in
the latter applications the rotor wakes present highly distorted shapes, especially when strong blade-
vortex-interaction (BVI) phenomena occur, and the combination of compressibility effects and wake
shape deformation must be accurately captured by the computational tools in order to obtain reliable
aerodynamic simulations.
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This paper presents a novel boundary integral equation formulation suitable for the aerodynamic
analysis of flexible bodies moving in compressible potential flows, which can be considered as an ex-
tension of those developed in the past for rigid bodies [5, 7, 8]. It considers a surface-fitted curvilinear
coordinate system to describe the contributions from the different boundary surfaces. Specifically,
the body contribution is expressed through a body-fitted curvilinear coordinate system (material body
description), while the wake contribution can be expressed by two alternative but theoretically equiva-
lent formulations: (i) a material wake description in which the curvilinear coordinates follow the wake
material points, and (ii) a surface-fitted Lagrangian description in which the wake material points
move with respect to the curvilinear coordinate system.
The paper is organized as follows. First, section 2. presents the boundary integral equation formu-
lation for generic deformable surfaces moving in compressible flows. Then, section 3. shows the
application of the formulation to deformable lifting bodies. Finally, section 4. presents the numerical
investigation aimed at validating the proposed formulations. Specifically, for a non-lifting body prob-
lem the formulation is validated against the analytical solution of a moving pulsating velocity potential
source, while the two alternative formulations for lifting bodies are numerically cross-validated for the
problem of the evaluation of aerodynamic loads arising on deformable bending wings.

2. A Boundary Integral Equation Formulation for Potential Compressible Flows Around
Deformable Surfaces

Let us consider a reference system rigidly connected with the undisturbed inviscid fluid, R(x), for
which the perturbation flow velocity is described through the velocity potential. Then, the problem
governing the propagation of the velocity potential perturbations, φ(x, t), can be written as [7]
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where c indicates the speed of sound in the undisturbed fluid and σ is a nonlinear term which is
non-negligible in the transonic regime.
In the above equation φ̄ = φH( f ) extends φ to the whole domain R3, with H( f ) denoting the Heav-
iside function, and f (x, t) = 0 representing the surface bounding the fluid domain where the signal
propagation is described by eq. (1).
To derive the solution of eq. (1), the free-space Green’s functions method is used [9, 10]. Specifically,
following [11, 12] the Lagrangian Green’s function is derived as
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−1
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∣∣∣∣
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where r = |x−x∗|, with x and x∗ denoting, respectively, source and the observer points, t indicates
the emission time and t∗ is the observer time. In addition, M represents the Mach number related
to the velocity of the source point, and Mr denotes its projection onto the direction observer-source
distance vector. Furthermore, θ̌ denotes the time taken by the signal to propagate between these
two points, whereas, the symbol |ǧ=0 represents the evaluation at the signal emission time, t = t∗− θ̌ .
Then, by introducing a surface-fitted curvilinear coordinate system (ξ1,ξ2,ξ3) such that ξ3(x, t) = 0
identifies the boundary surface points, it is possible to map them onto the plane (ξ1,ξ2,0)) through
the function x = X(ξi, t).
Thus, following a procedure similar to that presented in [8, 9, 12, 13, 14], the boundary integral
equation formulation solution of eq. (1) for deformable boundary surfaces in arbitrary motion in com-
pressible flows is given by the expression
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where Mn is the projection of the Mach number onto the direction normal to the surface, J(ξ1,ξ2, t) is
the Jacobian of the transformation x = X(ξi, t) and ň = n−MnM. In addition,
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Note that when eq. (3) is used as an integral equation, it presents a singular doublet contribution
which produces a free term equal to 1/2 (see [15] for details). The remaining contribution is, thus,
evaluated as the principal Cauchy value.

3. Aerodynamics Boundary Integral Equation Formulation for Deformable Lifting Bod-
ies

As shown in [5, 8, 10], in the case of the perturbation field generated by lifting bodies the potential
solution is given by the superposition of body and wake contributions.
While the most convenient and natural way to evaluate the body contribution is to use a body-fitted
curvilinear coordinates system following the body surface material points, the wake contribution can
be described in two different, but theoretically equivalent, forms: (i) a material wake description in
which the curvilinear coordinates follow the wake material points, and (ii) a surface-fitted Lagrangian
description in which the wake material points move with respect to the curvilinear coordinate system.
The corresponding two different boundary integral equation formulations are presented in the follow-
ing two subsections.

3.1 Material Wake Description
To derive the integral equation with the surface material wake description (MW), each point of the
wake surface is identified by the curvilinear coordinate system (λ ,α), where λ represents the span
position of the trailing edge point from which the wake point was released, while α denotes the time
of release (i.e., α = 0 corresponds to the initial time and α∗ denotes the current time). Thus, a line
α =constant identifies the locus of the material wake points that were at the trailing edge at a given
time, t = α, while a line λ =constant identifies all points emitted from the the same trailing edge point.
In this framework, the wake surface progressively grows while the trailing edge moves.
In compressible flows, due to signal propagation delay, not all wake points affect the potential solution
at a given observer point at a given time [11]. Thus, for a given observer point and a given observation
time, effective and non-effective sub-domains of the wake surface can be identified, separated by a
line defined by the coordinate α̌ = α(α∗,λ ,ξ∗). From these observations, the following boundary
integral formulation for the velocity potential generated by lifting wings is derived
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where the first integral is the body contribution, the second is the effective wake surface contribution
and the third is an integral over the separation line between the effective and the non-effective wake
portions. Note that, in case of free-wake mode analysis in which the shape of the wake is determined
as part of the solution by moving the the wake points accordingly to the velocity field self-induced by
the wake vorticity, the Mach number in eq. (5) corresponds to the local induced velocity.

In eq. (5), ∆Vt = ∆∇tφ is the difference between the tangential fluid velocity evaluated over the upper
and lower wake surfaces, (aλ ,aα) are the covariant base vectors, Jw = |aλ ×aα | is the Jacobian of the
transformation, and [λ1,λ2] represent the root and tip points of the trailing edge. Furthermore, the
Kutta-Morino condition [10] allows us to obtain ∆φ from the time history of the jump of the velocity
potential calculated at the trailing edge. Finally, note that, the deformation velocity of the separation
line is zero (at the time of release from the trailing edge they are fixed with the undisturbed air), and
thus in the line integral we have G0 =−1/4πr, θ = r/c, and hw = |1+aα ·∇θ |.

3.2 Surface-Fitted Lagrangian Wake Description
Since the numerical evaluation of the line-integral contribution in eq. (5) is quite critical and implies
a low rate of convergence, it is useful to consider an alternative formulation that does not present a
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line contribution. This can be obtained by using a surface-fitted Lagrangian wake description where
the curvilinear coordinate system (α,λ ) is such that, as in the previous case, λ , represents the radial
position of the trailing edge point from which the wake material point was released, while α originates
from the current position of the trailing edge and can be identified with a backward time shift (i.e.,
α = 0 denotes the trailing edge ∀t) [8, 16]. Note that, following this approach, for instance, once the
steady-state condition is reached for a free-wake analysis of a translating wing, each (α,λ ) wake
geometric point moves with the same trailing edge body velocity.
Thus, it can be shown that the following boundary integral formulation for the potential function is
derived through the surface-fitted Lagrangian wake description (SFW)
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+ Ǧ0
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where the first integral is the contribution of the body and the second integral is the contribution of
the wake surface. In this formulation, no line-integral contribution appears.
Note that, in eq. (6) the Mach number in the wake contribution corresponds to the velocity of the wake
geometric points identified by the (α,λ ) coordinates.

4. Numerical Results
This section presents the numerical results obtained with the new formulation. In section 4.1, the
validation of the formulation for the non-lifting bodies (Eq. (3)) is validated against the analytical
solution of a pulsating source, while section 4.2 shows a cross-correlation of the formulations for
lifting bodies (Eqs. (5) and (6)) applied to a deforming wing with a fixed wake.

4.1 Pulsating Moving Source Surrounded by a Porous Surface
This analysis consists of the comparison between the potential field generated by a pulsating velocity
potential source evaluated analytically and that given by the proposed boundary integral formulation
applied to a deforming porous surface wing that surrounds the source, considering the analytical
normal derivative of the potential over the body as input [17, 18].
The wing has a span equal to 3m, the chord length is equal to 1m, and the sections have a lenticular
shape with the maximum thickness equal to the 40% of the chord length. The numerical analysis is
accomplished for different Mach numbers and body deforming through the combination of harmonic
bending and torsion deflections.
The results are shown in figs. 1a to 1c in term of the potential evaluated at three different body points
for the source pulsating at frequency ωs = 3Hz and bending and torsion frequencies equal to, respec-
tively, ωb = 1Hz and ωt = 2Hz. These figures show a perfect agreement between the analytical and
the numerical solution, thus proving the capability of the proposed formulation to capture perturbation
fields in deforming-boundary domains.

4.2 Deforming Lifting Wing with Fixed Wake
The cross-validation of the two aerodynamic formulations for lifting bodies presented in sections 3.1
and 3.2 is performed by considering a lifting deforming wing with span b = 10 m, chord length c = 1

m, and angle of attack equal to α = 5◦. The wing is assumed to be subject to bending deformations
and three flight Mach numbers are considered (M = 0.5,0.6,0.7). Two harmonic bending deformations
with frequency ωb = 1 Hz are considered. The ratio between their amplitudes is A2/A1 = 3.25.
Note that although the formulations presented in sections 3.1and 3.2 allow for a free wake analysis,
all the results are obtained by assuming a fixed wake model, thus neglecting the wake deformation
due to the induced velocity (i.e., the wake surface coincides with the locus of the points swept by the
trailing edge).
Examples of the wake geometry considered in the two proposed wake formulations are given in
fig. 2 and fig. 3. Specifically, fig. 2 shows the wake as deriving from the material description MW. It
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(a) M = 0.4. (b) M = 0.5.

(c) M = 0.6.

Figure 1 – Comparison between the velocity potential time history on three different body control
points evaluated analytically and numerically.

is interesting to note that by varying the observer point compressibility effects alter the geometrical
locus of the separation line between the influencing and non-influencing wake. Instead fig. 3 shows
the wake corresponding to the non-material wake description, SFW.
Then, for both bending configurations and three Mach numbers, figs. 4a and 4b present the solutions
from the two formulations evaluated in terms of the converged time history of the lift coefficient (CL)
(the convergence is accomplished in terms of the number of discretization panels used over the wing
and the wake). The agreement between the predictions of the two formulations is excellent, thus
proving their full equivalence.
This conclusion is confirmed by the results in table 1, which shows, for both configurations analyzed,
the relative squared error (RSE) of the time history of CL predicted by the two formulations. Indeed,
the maximum deviation is 0.53% in the worst case.

Table 1 – Relative squared error of the lift coefficient varying Mach number.

M 0.5 0.6 0.7
Conf-1 0.45% 0.25% 0.51%
Conf-2 0.08% 0.20% 0.53%

Finally, considering the flight condition at M = 0.7 and configuration-2, figs. 5a to 5d show the com-
parison between the chordwise pressure coefficient, CP, at the section located at 80% of the span for

5



A BIEF FOR POTENTIAL COMPRESSIBLE FLOWS AROUND DEFORMABLE BODIES

Figure 2 – Sketches of the MW description. Grey surface: deformed wing; red bullet: observer point;
red line: separation line between influencing and non-influencing wake portions; dark blue surface:

influencing wake portion; light blue surface: non-influencing wake portion.

four-time instants evaluated by the two wake formulations. Again, the agreement is perfect. Note that
although not shown here, this level of agreement is maintained for other spanwise sections and all
Mach numbers and configurations examined.

5. Conclusions
This paper has presented a boundary integral formulation for the aerodynamic analysis of deformable
lifting bodies moving in compressible potential flows. It is capable of performing free-wake analyses
where the shape of the wake is determined as part of the solution. The body surface contribution is
described through the introduction of a surface-fitted material curvilinear coordinate system. Instead,
the wake contribution, which can be considered as the critical element in this kind of aerodynamic for-
mulation, is expressed by two different but equivalent formulations: one derived from the application
of a material curvilinear coordinate system for the mapping of the wake surface, and a second one
which still considers a surface-fitted curvilinear coordinate system for the surface mapping which,
however, defines geometric and not material wake points. By considering a pulsating source sur-
rounded by a porous deforming surface, the results of the numerical investigation have first validated
the capability of the proposed formulation to describe perturbation fields of the velocity potential in
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Figure 3 – Sketches of the SFW description. Grey surface: deformed wing; red bullet: observer
point; dark blue surface: wake surface.

fluid domains bounded by deforming surfaces. Then, a bending lifting wing has been examined by
applying the two formulations for the wake description, and the outcomes of the investigation have
confirmed their perfect equivalence. Thus, the results of this paper can be considered as a first
step towards the validation of the proposed deformable-boundary integral formulation for the free-
wake aerodynamic analysis of lifting bodies in arbitrary motion in compressible flows. To the authors’
knowledge, this kind of approach is novel in the field of boundary element methods. It can be of great
interest to aircraft designers since it represents a good trade-off between simulation accuracy and
computational cost. Finally, it is worth mentioning that this type of formulation can be extremely effi-
cient for rotorcraft aerodynamic analyses where the wake shape plays a fundamental role, especially
in problems dominated by strong blade-vortex interaction phenomena.
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(a) Configuration-1. (b) Configuration-2.

Figure 4 – Lift coefficient time history at three different Mach numbers.

(a) t = 0.25s (b) t = 0.50s

(c) t = 0.75s (d) t = 1s

Figure 5 – Pressure coefficient at section y/b = 0.8, configuration-2, M = 0.7.
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